Data in "Determination of Intrinsic Effective Fields and Microwave Polarizations by High-Resolution Spectroscopy of Single NV Center Spins"

Data.xlsx

Figure	Data Sheets	Notes
Fig2	Fig2A	2-D plot
	Fig2B	1-D plot
	Fig2C	2-D plot
	Fig2D	2-D plot
Fig3	Fig3	4x 1-D plots (Panel 1, 2, 3, 4)
Fig4	Fig4A	6x 1-D plots (NV1, NV2, NV3, NV4, NV5, NV6)
Fig5	Fig5A	2-D plot

Code

<u>Esrfit_Npeak.m</u>:

Code used to normalize the ESR spectra with a well-defined number of observed peaks

<u>Esrfit_xN.m</u>: Code used to normalize the ESR spectra with an unknown number of peaks

<u>GaussianFunc.m</u>: Single Gaussian function used for fitting low-power ESR spectra

<u>Gaussian xN Func.m</u>: Superimposed Gaussian functions used for fitting low-power ESR spectra

<u>LorentzFunc.m</u>: Single Lorentzian function used for fitting high-power ESR spectra

<u>Lorentz</u> <u>xN</u> <u>Func.m</u>: Superimposed Lorentzian functions used for fitting high-power ESR spectra

<u>Rabifit_xN.m</u>: Code used to normalize and fit the Rabi oscillations

<u>Rabi_xN_Func.m</u>: Superimposed harmonic functions used for fitting the Rabi oscillations

FourierTransformRabi.m:

Code used to calculate the Fourier transformation of time evolution spectra