
Efficiency of
Instantiation

Didier Verna

Introduction

Experiments

C++

LISP
Structures

Classes

X-Comp

Conclusion

Perspectives

Thanks!

CLOS Efficiency: Instantiation

Didier Verna

didier@lrde.epita.fr
http://www.lrde.epita.fr/˜didier

ILC 2009 – Tuesday, March 20th

1/36

mailto:didier@lrde.epita.fr
http://www.lrde.epita.fr/~didier

Efficiency of
Instantiation

Didier Verna

Introduction

Experiments

C++

LISP
Structures

Classes

X-Comp

Conclusion

Perspectives

Thanks!

The context

Don’t look at me. . . like that
Not (particularly) interested in performance
Not (at all) a LISP implementer

I Merely an observer

Look at me. . . like this
Surrounded by C++ gurus (Cf. Olena)
Performance does matter to them
But you should see the code !

I This would be so much easier in LISP, but. . .

2/36

Efficiency of
Instantiation

Didier Verna

Introduction

Experiments

C++

LISP
Structures

Classes

X-Comp

Conclusion

Perspectives

Thanks!

They wouldn’t dare to complain about parens. . .
Because if you can read this,

template <template <class> class M, typename T, typename V>
struct ch_value_ <M <tag::value_<T>>, V>
{ typedef M<V> ret; };

template <template <class> class M, typename I, typename V>
struct ch_value_ <M <tag::image_<I>>, V>
{ typedef M <mln_ch_value(I, V)> ret; };

template <template <class, class> class M, typename T,
typename I, typename V>

struct ch_value_ <M <tag::value_<T>, tag::image_<I>>, V>
{ typedef mln_ch_value(I, V) ret; };

template <template <class, class> class M, typename P,
typename T, typename V>

struct ch_value_ <M <tag::psite_<P>, tag::value_<T>>, V>
{ typedef M<P, V> ret; };

3/36

Efficiency of
Instantiation

Didier Verna

Introduction

Experiments

C++

LISP
Structures

Classes

X-Comp

Conclusion

Perspectives

Thanks!

They wouldn’t dare to complain about parens. . .
surely you can read that !

(template (template (class) (class M) (typename T) (typename V))
(struct (ch_value_ (M (tag::value_ T)) V)
(typedef (M V) ret)))

(template (template (class) (class M) (typename I) (typename V))
(struct (ch_value_ (M (tag::image_ I)) V)
(typedef (M (mln_ch_value I V)) ret)))

(template (template (class class) (class M) (typename T)
(typename I) (typename V))

(struct (ch_value_ (M (tag::value_ T) (tag::image_ I)) V)
(typedef (mln_ch_value I V) ret)))

(template (template (class class) (class M) (typename P)
(typename T) (typename V))

(struct (ch_value_ (M (tag::psite_ P) (tag::value_ T)) V)
(typedef (M P V) ret)))

4/36

Efficiency of
Instantiation

Didier Verna

Introduction

Experiments

C++

LISP
Structures

Classes

X-Comp

Conclusion

Perspectives

Thanks!

The performance “issue”

Typical conversation

Yobbo: But LISP is slow right?
Me: How do you know that?

Yobbo: [choose your favorite answer]
7 Huh, it’s a well known fact
7 Well, that’s what I heard
7 Last time I checked [. . .]
3 It’s dynamic, so it’s slow

The real problems
Lack of strong evidence (don’t know / don’t care)
From the ground up (micro-benchmarking)

I Where are we today in terms of performance?
6/36

Efficiency of
Instantiation

Didier Verna

Introduction

Experiments

C++

LISP
Structures

Classes

X-Comp

Conclusion

Perspectives

Thanks!

My (not so) secret agenda
On the behavior and performance of LISP

You

Are

Here

Meta−Programming (?)

Dynamic OO

Slot Access Generic DispatchInstantiation

Dedication

The ELW’06 Paper

7/36

Efficiency of
Instantiation

Didier Verna

Introduction

Experiments

C++

LISP
Structures

Classes

X-Comp

Conclusion

Perspectives

Thanks!

Table of contents

1 The experiments

2 C++ Grounding

3 LISP surprises
Structures
Classes

4 Cross-language comparison

8/36

Efficiency of
Instantiation

Didier Verna

Introduction

Experiments

C++

LISP
Structures

Classes

X-Comp

Conclusion

Perspectives

Thanks!

Experimental protocol

Class *instance = new Class;
(make-instance ...)

6= compilers
Class size (1, 7, 49 slots)
Class hierarchy (plain, vertical, horizontal)
Slot type (fixnums, single-floats)
Slot initialization (yes, no)
Slot allocation (instance, class)
Optimization level (safe, optimized, inline)

I 1300+ individual tests

10/36

Efficiency of
Instantiation

Didier Verna

Introduction

Experiments

C++

LISP
Structures

Classes

X-Comp

Conclusion

Perspectives

Thanks!

Compilers

C++: GCC 4.3.2 (Debian package 4.3.2-1)
LISP:

I CMU-CL 19d (Debian package)
I SBCL 1.0.22.17
I ACL 8.1 Express Edition

11/36

Efficiency of
Instantiation

Didier Verna

Introduction

Experiments

C++

LISP
Structures

Classes

X-Comp

Conclusion

Perspectives

Thanks!

Class hierarchies

−−

Class N+1

slot 1

Class 1

slot 2

Class 2

slot N

Class N

slot 1

slot 2

...

slot N

Class

slot 1

Class 1

slot 2

Class 2

slot N

Class N

−−

Class N+1

...

...

HorizontalVerticalPlain

13/36

Efficiency of
Instantiation

Didier Verna

Introduction

Experiments

C++

LISP
Structures

Classes

X-Comp

Conclusion

Perspectives

Thanks!

Slot initialization / allocation

Initialization
Compile-time constants
LISP: :initform only
C++: inside a provided constructor with no argument

Shared slots
C++: strictly compile-time
LISP: run-time, but hopefully during class finalization or
first instance creation

15/36

Efficiency of
Instantiation

Didier Verna

Introduction

Experiments

C++

LISP
Structures

Classes

X-Comp

Conclusion

Perspectives

Thanks!

Optimization modes

C++
-O3 -DNDEBUG

LISP

Not inlined: (make-instance some-class)
I “safe”: (safety 3) (... 0)
I “optimized”: (speed 3) (... 0)

“inline”:
I “optimized” settings
I (make-instance ’myclass)

17/36

Efficiency of
Instantiation

Didier Verna

Introduction

Experiments

C++

LISP
Structures

Classes

X-Comp

Conclusion

Perspectives

Thanks!

Final remarks

structures vs classes
C++: struct⇐⇒ class

LISP: struct 6= class

Meta-classes
LISP-specific

Memory management
C++: manual
LISP: automatic through (different) GC

I Avoid benchmarking

18/36

Efficiency of
Instantiation

Didier Verna

Introduction

Experiments

C++

LISP
Structures

Classes

X-Comp

Conclusion

Perspectives

Thanks!

Experimental conditions

Debian GNU Linux / 2.6.26-1-686 packaged kernel
i686 DualCore CPU

I 2.13GHz
I 2GB RAM
I 2MB level 2 cache

Single user mode
All benchmarks at least 1s
Avoid memory exhaustion / swapping (C++)

I 10% significance margin

20/36

Efficiency of
Instantiation

Didier Verna

Introduction

Experiments

C++

LISP
Structures

Classes

X-Comp

Conclusion

Perspectives

Thanks!

C++ Results
5,000,000 objects, local slots

no slot 1 slot 7 slots 49 slots
0s

1s

2s

3s

4s

pl
ai

n
cl

as
s

ve
rt.

 h
ie

ra
rc

hy
ho

rz
. h

ie
ra

rc
hy

in
t p

la
in

 c
la

ss
in

t v
er

t.
hi

er
ar

ch
y

in
t h

or
z.

 h
ie

ra
rc

hy

flo
at

 p
la

in
 c

la
ss

flo
at

 v
er

t.
hi

er
ar

ch
y

flo
at

 h
or

z.
 h

ie
ra

rc
hy

Safe
Optimized

22/36

Efficiency of
Instantiation

Didier Verna

Introduction

Experiments

C++

LISP
Structures

Classes

X-Comp

Conclusion

Perspectives

Thanks!

C++ behavior

Immune to slot type
Optimization mode flattens timings

I Small effect of initialization remains
Safe mode very sensitive to:

I Slot initialization
I Class hierarchy

I Morphology of constructor call chain
Shared slots: all flat

23/36

Efficiency of
Instantiation

Didier Verna

Introduction

Experiments

C++

LISP
Structures

Classes

X-Comp

Conclusion

Perspectives

Thanks!

LISP structure results
10,000,000 objects, inline mode

pl
ai

n
st

ru
ct

hi
er

ar
ch

y
fi

xn
um

 p
la

in
 s

tr
uc

t
fi

xn
um

 h
ie

ra
rc

hy
si

ng
le

-f
lo

at
 p

la
in

 s
tr

uc
t

si
ng

le
-f

lo
at

 h
ie

ra
rc

hy

no slot 1 slot 7 slots 49 slots
0s

1s

2s

3s

4s

CMUCL
ACL
SBCL

25/36

Efficiency of
Instantiation

Didier Verna

Introduction

Experiments

C++

LISP
Structures

Classes

X-Comp

Conclusion

Perspectives

Thanks!

LISP structure behavior

Dependence on slot type
Internal representation / (un)boxing
Immune to (fixnum) slot initialization
Slots always initialized to nil (not required)
Immune to structure hierarchy
struct⇐⇒ vector

Discrepancies
Type checking:

I CMU-CL: always (except fixnums in 19d)
I SBCL: depends on compiler settings
I ACL: never

CMU-CL on single-float ???

26/36

Efficiency of
Instantiation

Didier Verna

Introduction

Experiments

C++

LISP
Structures

Classes

X-Comp

Conclusion

Perspectives

Thanks!

LISP class results
SBCL, 5,000,000 objects, standard class, local slots

no slot 1 slot 7 slots 49 slots
0.1s

1s

10s

100s

pl
ai

n
cl

as
s

ve
rt.

 h
ie

ra
rc

hy
ho

rz
. h

ie
ra

rc
hy

fix
nu

m
 p

la
in

 c
la

ss

fix
nu

m
 v

er
t.

hi
er

ar
ch

y

fix
nu

m
 h

or
z.

 h
ie

ra
rc

hy

flo
at

 p
la

in
 c

la
ss

flo
at

 v
er

t.
hi

er
ar

ch
y

flo
at

 h
or

z.
 h

ie
ra

rc
hy

Safe
Optimized
Inline

28/36

Efficiency of
Instantiation

Didier Verna

Introduction

Experiments

C++

LISP
Structures

Classes

X-Comp

Conclusion

Perspectives

Thanks!

LISP class behavior

Immune to slot type / class hierarchy
No special representation, instance vector lookup +
access
Slots always initialized (secret unbound value)
But only slot access time visible
Inline mode: (make-instance ’class)
Improvement 15x to 100x !!
Shared slots: all flat
Bug (fixed): dependent on class size

29/36

Efficiency of
Instantiation

Didier Verna

Introduction

Experiments

C++

LISP
Structures

Classes

X-Comp

Conclusion

Perspectives

Thanks!

Discrepancies

Type checking:
I CMU-CL: not in safe mode, in contradiction with the

manual (fixed)
I SBCL: missing on shared slots (fixed)
I ACL: never

Meta-class:
I CMU-CL sensitive (30 – 50% degradation)

Slot initialization:
Makes ACL faster (20% in inline mode)
ACL on shared slots:

I Dependence on class size (10x from small to big class)
I Dependence on slot initialization

• Safe/optimized mode: degradation of 3.5x
• Inline mode: improvement by 2x

I Sometimes slower than local slots

30/36

Efficiency of
Instantiation

Didier Verna

Introduction

Experiments

C++

LISP
Structures

Classes

X-Comp

Conclusion

Perspectives

Thanks!

Cross-language comparison
5,000,000 objects, inline mode

1 slot 7 slots 49 slots
0

2.5

5

7.5

10

12.5

L
is

p
st

ru
ct

 (
fi

xn
um

)
L

is
p

st
ru

ct
 (

si
ng

le
-f

lo
at

)
C

++
 c

la
ss

C
++

 c
la

ss
 in

it’
ed

L
is

p
cl

as
s

L
is

p
cl

as
s

in
it’

ed

Local slots
Shared slots

32/36

Efficiency of
Instantiation

Didier Verna

Introduction

Experiments

C++

LISP
Structures

Classes

X-Comp

Conclusion

Perspectives

Thanks!

Cross-language behavior

LISP structures instantiate faster for smaller objects
LISP instantiation is faster than in C++ (1.2x)
Even more so with shared slots (30%)

33/36

Efficiency of
Instantiation

Didier Verna

Introduction

Experiments

C++

LISP
Structures

Classes

X-Comp

Conclusion

Perspectives

Thanks!

Conclusion

Safe mode: LISP and C++ behave differently
I C++ sensitive to class hierarchy
I LISP sensitive to slot type

Optimized mode:
I Convergence in both behavior and performance
I (make-instance ’class) !!
I faster instantiation in LISP

I Kudos to LISP implementers. . .
The dark side of the force:

I Type checking (has an impact on performance)
I COMMON-LISP standard underspecified

34/36

Efficiency of
Instantiation

Didier Verna

Introduction

Experiments

C++

LISP
Structures

Classes

X-Comp

Conclusion

Perspectives

Thanks!

Perspectives

Finish investigation
Other compilers
Other architectures
Regression surveillance
The rest of the path. . .

Dynamic OO

35/36

Efficiency of
Instantiation

Didier Verna

Introduction

Experiments

C++

LISP
Structures

Classes

X-Comp

Conclusion

Perspectives

Thanks!

Thanks!
Any quesλ ions?

Nikodemus Siivola
Raymond Toy
Duane Rettig

This is not a work of fiction. Any resemblance between the
characters and persons, living or dead, is purely intentional.

36/36

	Introduction
	The experiments
	C++ Grounding
	Lisp surprises
	Structures
	Classes

	Cross-language comparison
	Conclusion
	Perspectives
	Thanks!

