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The spin-orbital polarization of superconducting excitations in momentum space is shown to
provide distinctive marks of unconventional pairing in the presence of inversion symmetry breaking.
Taking the prototypical example of an electronic system with atomic spin-orbit and orbital-Rashba
couplings, we provide a general description of the spin-orbital textures and their most striking
changeover moving from the normal to the superconducting state. We find that the variation
of the spin-texture is strongly imprinted by the combination of the misalignment of spin-triplet
d-vector with the inversion asymmetry g-vector coupling and the occurrence of superconducting
nodal excitations. Remarkably, the multi-orbital character of the superconducting state allows to
unveil a unique type of topological transition for the spin-winding around the nodal points. This
finding indicates the fundamental topological relation between chiral and spin-winding in nodal
superconductors. By analogy between spin- and orbital-triplet pairing we point out how orbital
polarization patterns can be also employed to assess the character of the superconducting state.

Introduction. — The Rashba spin-orbit (SO) cou-
pling [1, 2] is the manifestation of a fundamental relativis-
tic effect due to structural inversion symmetry breaking
(ISB) that leads to spin-momentum locking with lifting
of spin degeneracy and remarkable phenomena such as
non-standard magnetic textures [3, 4], spin Hall [5] and
topological spin Hall [6], Edelstein effects [7], etc. [8].

Recently, it has been realized that spin-momentum
locking can also occur from the ISB driven orbital po-
larization of electrons in solids which is, then, linked
with the spin-sector by the atomic SO coupling. The
role of spin and orbital polarization in materials has
built a different view of the manifestation of ISB with
respect to the conventional spin-Rashba effect, leading
to the so-called orbital-driven Rashba coupling [9]. The
orbital Rashba (OR) effect can yield chiral orbital tex-
tures and orbital dependent spin-vector via the SO cou-
pling [9–15]. Evidences of anomalous energy splitting
and of a key role played by the orbital degree of freedom
have been demonstrated on a large variety of surfaces,
i.e. Au(111), Pb/Ag(111) [16], Bi/Ag(111) [17], etc. as
well as in transition metal oxides based interfaces, i.e.
LaAlO3-SrTiO3 [18, 19].

In superconductors without inversion symmetry [20,
21] the presence of non-degenerate spin- and orbital po-
larized electronic states is generally expected to lead
to unconventional pairing, with the occurrence of spin-
triplet order parameters and singlet-triplet spin mix-
ing [22–24], non-standard surface states [25, 26], as well
as topological phases [27–35].

Experimental direct probes by using angle- and spin-
orbital resolved photoemission spectroscopy in the nor-
mal [36–39] and superconducting (SC) phase [40] can
be extremely useful for establishing the nature of the SC
state and the underlying degree of spin-orbital entangle-
ment or the occurrence of competing orders. Along this
line it would be highly desirable to have distinctive de-

tectable signatures associated with the spin-orbital polar-
izations to single out the nature of the SC phase. Sym-
metry plays a relevant role in such identification. For
instance, skyrmionic patterns in the Brillouin zone (BZ)
have been suggested as marks to make the topological
order more accessible in ferromagnetic semiconductor/s-
wave superconductor heterostructure assuming that both
time- and inversion-symmetry are broken [41]. On the
other hand, the fundamental interrelation between chiral
spin-orbital textures in reciprocal space and unconven-
tional pairing solely due to ISB has not been yet fully
established.

In this Letter we focus on the class of low-dimensional
superconductors with time-reversal (TR) and broken in-
version symmetry. The aim is to assess how the spin-
orbital texture of the SC excitations can unveil the na-
ture of the SC state and, eventually, its topological char-
acter. We show that the spin-polarization pattern is
generally imprinted by the relative alignment of spin-
triplet d-vector with the inversion asymmetry g-vector
coupling. A fundamental issue emerges in nodal topo-
logical superconductors when considering the occurrence
of spin-winding around the nodal points. To face this
problem on a general ground we employ a prototypi-
cal electronic system with atomic SO and orbital-Rashba
coupling, whose spin-orbital textures can manifest de-
viations from the typical ones due to the spin-Rashba
coupling and can manifest topological SC phases with
orbital-driven pairing. We find that at the nodal points
topological transitions for the spin-winding can occur due
to the emergence of vanishing spin amplitude lines con-
necting the nodal points. This outcome sets the fun-
damental interplay between chiral and spin- or orbital
winding in nodal superconductors with ISB.

Topological spin-texture: single orbital model descrip-

tion. — We start by introducing a minimal model that
can describe the spin-texture of the SC state due to
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FIG. 1. (a) Schematic spin-space representation of the relative
orientations among the ISB g-vector, the spin-triplet pairing
d-vector, and the spin direction corresponding to an excited
state for k < kF, with kF being the Fermi wave vector. θd is
the polar angle between g- and d-vector and φd is the angle
of the spin vector measured with respect to the in-plane x
direction. (b) Sketch of the energy dispersion along a given
direction and of the spin orientation for excited states at given
momentum larger (electron-like) and smaller (hole-like) than
the Fermi vector in the SC state. |ψ+〉 (|ψ−

〉) corresponds to

the eigenstate for k ≥ kF (k < kF). Here, S̃e for k ≥ kF is
collinear to g. (c) Spin orientations of the excited states above
and below the Fermi level at θd = 0, π/4, π/2, 3π/4, and π. (d)
Orientation of the g-vector and spin-vector for a Rashba-type
spin-momentum coupling, and d-vector orientation for the B1

representation of the point group C4v on the Fermi surface
(black solid line). (e) Orientation of electron component of
the spin-polarization for the first excited state of the B1 phase
in the single-band model at Λ/t = 8.0 × 10−2 and µ/t =
0.25. Black solid line indicates the Fermi surface in the normal
state and white circle is for the position of the nodal point.
(f) Schematic illustration of the winding spin-texture of (e)
around the point node with spin-winding number WS = +1.

the interplay of inversion asymmetric SO coupling and
spin-triplet pairing. Due to ISB the pairing has mixture
of spin-triplet and singlet components. Since the spin-
singlet pairing does not affect the spin-texture, the cen-
tral focus is on the consequences of the spin-triplet pair
potential. Let us then consider a physical scenario where
the SC state is described by a d-vector for the spin-triplet
Cooper pairs with a generic orientation, compatible with
the crystal symmetry, with respect to the g-vector setting
the spin-momentum locking of the electronic states [Fig.
1(a)]. Then, the electronic description can be expressed
by the following Hamiltonian:

ĤBdG =

(

−µσ̂0 + ĥ(k) ∆̂(k)

∆̂†(k) µσ̂0 − ĥt(−k)

)

, (1)

where µ and ∆̂(k) = iσ̂y[ψ+σ̂ ·d(k)] denote the chemical
potential, and the singlet (ψ) and triplet order parame-

ters (d), and ĥ is the normal state term

ĥ(k) = ε(k)σ̂0 + Λg(k) · σ̂, (2)

g(k) = (gx(k), gy(k), gz(k)), (3)

with ε(k) and g being the kinetic energy and inversion
asymmetry coupling, while Λ denotes the strength of
the ISB potential, and σ̂i (i = 0, x, y, z) are the Pauli
matrices in spin space. Here, the d-vector has the usual
matrix form in terms of the components associated with
the spin-triplet configurations as ∆↑,↑−∆↓,↓ = −2dx(k),
∆↑,↑ + ∆↓,↓ = 2idy(k), and ∆↑,↓ + ∆↓,↑ = 2dz(k). If
the d- and g-vectors are misaligned by an angle θd [Fig.
1(a)], then the electron spin orientation corresponding to
the excitations close to the Fermi level (kF) will manifest
a distinctive pattern [Fig. 1(b)]. Indeed, by means of
perturbation theory, we can show (see Supplemental
Material [42]) that for k ≥ kF the spin orientation is
collinear to the g-vector while it gets rotated by an
angle 2θd for k < kF. Hence, a variation of the mismatch
angle between d- and g-vectors along the Fermi surface
can lead to a spin-texture with a general trend that is
marked by an asymmetric angular dependence in the
electron- and hole-branch of the low energy excitation
[Fig. 1(c)]. Taking into account the configuration in
Fig. 1(a), one can generally demonstrate [42] that
the spin orientation for the excited state |ψ+〉 at
k ≥ kF is collinear to the g-vector, while for |ψ−〉 at
k < kF it depends on the angles θd and φd. Indeed,
if we define ŝe−,γ ≡ 〈ψ−|S̃

e
γ |ψ−〉 with γ = x, y, z, the

spin-vector for k < kF is given by [ŝe−,x, ŝ
e
−,y, ŝ

e
−,z] ∼

[as cosφd sin 2θd, as sinφd sin 2θd, as cos 2θd], where
S̃e
i=x,y,z is the electron component of the spin operator

S̃e
i = 1

2 [1 + τ̂3] ⊗ Ŝi by projection via the particle-hole
operator τ̂3, and as is an amplitude depending on the
energy distance of the excited state from the Fermi level
and the strength of the superconducting pairing [42]. It
is then immediate to deduce that the spin orientation
is collinear to g with θd = 0 while for perpendicularly
oriented g- and d-vectors, i.e. θd = π/2, the spin
polarization is anti-parallel to g. In general, we obtain
that the spin polarization lies in the same plane of g and
d and it deviates of an angle 2θd from g.

We confirm such behavior by explicitly determining the
spin-polarization for various spin-triplet pairing states.
Then we look for the spin-windings in the xy-plane. In
order to obtain the spin-vector in the xy-plane, that is,
〈ψ±|S̃

e
z |ψ±〉 = 0, both d- and g-vectors are in the xy-

plane. Indeed, when computing the spin-texture for a
Rashba-type g-vector and a d-vector belonging to the B1

representation of the C4v point group that are given by
g = (− sin(ky), sin(kx), 0) and d = (sin(ky), sin(kx), 0)
[Fig. 1(d)], we obtain the orientation of the spin-
polarization [Fig. 1(e)] in the BZ and there is a two-
dimensional spin-winding around the nodal points along
the diagonal of the BZ [Fig. 1(f)]. Here, we define
the spin-winding number as WS = 1

2π

∮

C
dθSC1

S (k) with
the integral route C and the direction of spin-texture
θSC1
S (k) = arg[〈ψ+(−)|S̃

e
x|ψ+(−)〉+ i〈ψ+(−)|S̃

e
y |ψ+(−)〉] for

k ≥ kF(k < kF). Due to the angular relation of d-
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FIG. 2. (a) Schematic description of the spin-orbital texture
for the three-orbital model in the normal state as a function
of the band index, from lowest to the highest occupied, and in
terms of the OR (∆is) and atomic spin-orbit (λSO/t = 0.10)
couplings. θS(k), θL(k), θk denote the angle of the spin-,
orbital- vectors and momentum k measured with respect to
the x-axis. (b),(f),(h) denote the relative angle between the
spin and orbital polarization for the bands 1,3,5. (c),(g),(i)
indicate the relative angle between the spin orientation and
the momentum within the BZ. The lowest occupied bands (i.e.
1,2) exhibit a Rashba-type spin-momentum locking. The re-
maining bands are marked by spin-textures with higher than
the linear order in the effective g-vector coupling and with a
mixing of collinear and noncollinear configurations for the L

and S angular momentum. We report only the spin-orbital
pattern for the bands 1,3,5 because the others are linked to
these by TR symmetry.

and g-vectors at each k point as shown in Fig. 1(c),
the spin polarization can wind around the nodal point
with WS = +1 [Fig. 1(f)]. We note that the spin-
polarization also winds around the high symmetry points
in the BZ. At this stage, it is relevant to ask whether the
spin-winding always occurs around the nodal points. By
generalizing the single-band model to include higher or-
der terms in the inversion asymmetric coupling of the
type (sin k)3 or (sin k)5, we find that the spin-winding is
robust and it is not affected by the modification of the
g-vector [42]. Likewise, we also obtain the spin-windings
for the B2 representation with nodal points on the x and
y-axis.
Spin-orbital texture in multi-orbital electronic systems.

— In order to deepen the relation between spin-winding
and nodal excitations beyond the single orbital descrip-
tion, we consider a multi-orbital model that includes both
an OR term and the atomic SO coupling. The model
Hamiltonian in the normal state [43] can be generally
expressed in the basis [(↑, ↓)⊗ (dyz , dzx, dxy)] as:

Ĥ(k) = σ̂0 ⊗ [fx(k)L̂
2
x + fy(k)L̂

2
y + fz(k)L̂

2
z]

+ λSOσ̂ · L̂+∆isσ̂0 ⊗
[

gx(k)L̂x + gy(k)L̂y

]

, (4)

with fx(k) = 1
2 [−εyz(k) + εzx(k) + εxy(k)], while the

other components are obtained by permuting the (x, y, z)
indices, and εyz(k) = 2t1(1 − cos ky) + 2t3(1 − cos kx),
εzx = εyz(y → x), εxy(k) = 4t2−2t2(cos kx+cosky)+∆t.

Here, σ̂ and L̂ are matrices associated with spin 1/2 and
the effective L = 1 orbital angular momentum in the

projected (dyz, dzx, dxy) sector. We consider representa-
tive hopping amplitudes, i.e. t1 = t = 0.10, t2 = t, and
t3 = 0.10t and ∆t/t = −0.50 for the crystal field poten-
tial, which are typical values encountered in the atomistic
description of the electronic structure of 3d-bands in ox-
ides. A modification of the electronic amplitudes does
not qualitatively alter our conclusions. Then, in order to
evaluate the changeover of the spin-orbital texture we fix
λSO/t = 0.10 and vary ∆is/t [Fig. 2(a)] so to tune the hi-
erarchy of the two SO interactions. The character of the
spin- and orbital polarized states within the BZ depends
on which bands are taken at the Fermi level. In Fig. 2,
we summarize the two main features of the spin-orbital
textures concerning both the interrelation between the
spin and orbital orientations and the spin- or orbital mo-
mentum locking. Firstly, due to the symmetry of the
model Hamiltonian, the ISB leads to planar nonvanish-
ing spin and orbital polarizations at any given k except
for the high symmetry points [42] with a relative angle,
θL(k) − θS(k), that is about uniformly collinear in the
BZ for the lowest occupied bands (i.e. 1,2) [Fig. 2(b)].
Here, θS(k) (θL(k)) stands for the orientation of spin-
(orbital) vector. The highest energy bands (i.e. 3,4,5,6),
instead, exhibit a more intricate structure. Indeed, the
spin and orbital polarizations are not anymore collinear
near the high symmetry lines [Fig. 2(d)(f)]. Such be-
havior is also encountered in the relative orientation of
the spin polarization with respect to the direction of the
momentum k set by the angle θk. The spin is perpendic-
ular to the momentum (i.e. θS(k)− θk ∼ ±π/2) only for
the lowest occupied bands (i.e. 1,2) [Fig. 2(c)]. On the
contrary, the remaining electronic states exhibit a non-
isotropic spin-momentum pattern that can be accounted
by the presence of higher than linear order in the direct
g-vector spin-momentum coupling [Fig. 2(e)(g)]. This is
a general behavior which is characteristic of the interplay
between the OR and the atomic SO coupling.

Topological spin-winding in nodal topological supercon-

ductors. — We evaluate how the spin-texture changes in
the SC state by focusing on the occurrence and evolution
of spin-winding numbers WS around the nodal points.
Such feature sets the most striking changeover from the
normal to the superconducting phase because the nor-
mal state does not exhibit local spin-winding close to
the point nodes position. To do that we consider an
inter-orbital spin-triplet/orbital-singlet/s-wave SC state
belonging to the B1 representation of the C4v point group
symmetry [44]. The spin-winding can be defined because
the z-component of the spin-texture is zero for this B1

representation. Such configuration is well suited for our
purposes because it is known [44] to be energetically fa-
vorable in a wide range of parameters and that, for this
symmetry channel, the superconductor is topologically
nontrivial exhibiting nodal points along the diagonal of
the BZ [Fig. 3(a)]. Then, to single out the changeover
of the SC spin-texture from that in the normal state we
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FIG. 3. Spin-texture of the lowest excited states correspond-
ing to the inter-orbital B1 superconducting phase (a) and cor-
responding spin-pattern in the normal state including the hole
branch (b) at ∆is/t = 0.20 and λSO/t = 0.10. White cir-
cle indicates the nodal points. From (c) to (h) we zoom on
the spin-texture of the superconducting excitations around
the nodal points for the corresponding bands at the Fermi
level from the lowest to the highest energy. The bands 1,2
and 5 exhibit spin-winding numbers around the nodal points
(WS = ±1) while the excitations associated with the bands 3
and 4 have uniform spin orientation (WS = 0), and, finally,
the band 6 has an incomplete winding around the point node
thus WS = 0.

FIG. 4. (a)-(b) Demonstration of topological transition
of spin-winding numbers for the band 6 as a function of
the chemical potential for a representative excitation branch
around the nodal point. Small circle denotes the nodal point.
(c)-(e) schematically indicate the global rearrangement of the
spin-winding numbers WS with the occurrence at the criti-
cal amplitude of the chemical potential (µc) of lines of zero
spin-amplitude (green dotted line) connecting the TR corre-
sponding nodal points. The sum of the spin-winding numbers
around the nodal points and the center of the BZ is conserved
from (c) to (e).

determine both patterns as reported in Fig. 3(b). Re-
markably, its investigation for the multi-orbital topolog-
ical superconductor reveals that the spin-winding is not
tied to the nodal point. Indeed, for a representative set of
parameters, we demonstrate that not all the excitations
around the nodal position manifest a spin-winding.
The lowest occupied bands which are well described

by an effective single-band model with Rashba-type SO
coupling [42] have the same spin-winding numbers as
those in the single-orbital model [Fig. 3(c)-(d)]. On the

other hand, the highest occupied bands which mainly
arise from the (dyz , dzx)-orbitals and more significantly
deviate from a Rashba-type spin-momentum locking, can
be employed to prove the complex topological structure
of the spin-winding in the BZ [Fig. 3(e)-(h)]. The ob-
tained results clarify a fundamental question on the way
the spin-winding around the nodal points can vary un-
dergoing a topological transition and, in turn, affect the
overall spin-pattern of the excitations. We point out that,
if the superconductor manifests a Lifshitz-type electronic
transition by merging the nodal points having opposite
chiral winding numbers due to the chiral symmetry owed
by the SC Hamiltonian [32–34, 44], then these two nodal
points have opposite spin-winding numbers and the spin-
winding is also expected to disappear due to nodes anni-
hilation and gap formation in the spectrum. On the other
hand, it is less obvious to obtain a change of the spin-
winding number without any topological modification of
the nodal electronic spectrum. Hence, the investigated
multi-orbital superconductor allowed to uncover a novel
path for topological transition of the spin-winding. For
the band 6 corresponding to the highest occupied one, as
we demonstrate in Fig. 4, the spin-winding numbers for
a given branch of the excitation spectra can be removed
by tuning the chemical potential [see Figs. 4(a)-(b)] and
the transition occurs when a configuration with zero spin
amplitude can be obtained in the excitation states [Fig.
4(d)]. This type of local topological transition is basically
accompanied by a global change of the topological spin-
winding numbers as sketched in Fig. 4 (d). The presence
of multi-orbital components in the superconductor is a
fundamental requisite to achieve a quenching of the spin-
momentum amplitude due to contributions of inequiva-
lent orbital states. We point out that the orbital texture,
due to the orbital singlet nature of the superconducting
state, does not exhibit any orbital winding around the
nodal point. Although the analysis is focused on the role
of spin-triplet pairing, by analogy one would get simi-
lar signatures when considering orbital-triplet with spin-
singlet configurations.

Conclusions. —We demonstrated that the spin-orbital
texture of non-centrosymmetric superconductors with
TR symmetry can unveil fundamental aspects of the pair-
ing state. A mismatch of the spin (orbital) polarizations
from the normal to the superconducting state can set
the hallmarks of the presence of non-trivial spin- (or-
bital) triplet vectors. Remarkably, for pairing configu-
rations having nodal excitations we expect to observe a
local spin- (or orbital) winding which can undergo topo-
logical transitions without any change in the electronic
spectrum. Such behavior is fundamentally tied to the
degree of spin-orbital entanglement of the SC state and
to a spin-momentum coupling which deviates from the
Rashba-type. Our findings are experimentally accessi-
ble due to the recent advancements of the application of
circularly-polarized spin- and angle-resolved photoemis-
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sion spectroscopy. Indeed, the combination of orbital-
selectivity of circularly polarized light with spin detection
can allow for direct and independent access to the spin-
and orbital vectors throughout the BZ and consequently
assess the unconventional nature of low-dimensional non-
centrosymmetric SC states.

This work was supported by the JSPS Core-
to-Core program “Oxide Superspin” international
network, and a JSPS KAKENHI (Grants Nos.
JP15H05851, JP15H05853, JP15K21717, JP18H01176,
and JP18K03538), and the project Quantox of
QuantERA-NET Cofund in Quantum Technologies, im-
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In the Supplemental Material we provide the details of the determination via perturbation theory
of the general orientation of the spin-polarization for the lowest energy excitations in the supercon-
ducting state in terms of the relative alignment between the spin-triplet d-vector and the inversion
asymmetry g-vector coupling. Furthermore, we derive the single-orbital Rashba-type description
from the multi-orbital electronic model including the atomic spin-orbit and orbital Rashba cou-
plings. Finally, we determine the spin-texture for the single-orbital model with spin-triplet pairing
and cubic or fifth order terms in the spin-momentum coupling to assess the robustness of the spin-
winding around the nodal points of the superconducting spectrum.

I. SPIN POLARIZATION BY PERTURBATION

THEORY IN THE SINGLE ORBITAL MODEL

WITH SPIN-TRIPLET PAIRING AND

INVERSION SYMMETRY BREAKING

We investigate the electron component of the spin po-
larization of the superconducting excited states assum-
ing a single-orbital model in the presence of an inversion
asymmetric potential. The analyis is performed by means
of perturbation theory. In the normal state, the Hamil-
tonian with the inversion symmetry breaking along the
z-direction is given by

ĥ(k) = ε(k)σ̂0 + Λg · σ̂, (1)

g(k) = (gx(k), gy(k), gz(k)). (2)

Here, ε(k) and g(k) denote the kinetic energy of the
electron and the inversion asymmetric g-vector coupling
whose strength is Λ. Moreover, σ̂i (i = 0, x, y, z) are the
Pauli matrices in spin space.

We determine the spin polarization components by
evaluating the expectation values of the related spin op-
erators. In the normal state, we assume that g-vector
lies on xy-plane and gz(k) = 0. Then, the eigenvalues
and the corresponding eigenstates of the Hamiltonian are
given by

E± = ε(k)± Λ
√

g2x(k) + g2y(k),

|+〉 =
(

cos θ
2

eiφ sin θ
2

)

, |−〉 =
(

−e−iφ sin θ
2

cos θ
2

)

,

with θ = π/2, cosφ = gx(k)/
√

g2x(k) + g2y(k), and

sinφ = gy(k)/
√

g2x(k) + g2y(k). It is immediate to ver-

ify that the expectation values of the spin operators are

given by

〈±|Ŝx|±〉 = ± gx(k)
√

g2x(k) + g2y(k)
,

〈±|Ŝy|±〉 = ± gy(k)
√

g2x(k) + g2y(k)
,

〈±|Ŝz|±〉 = 0,

where Ŝi=x,y,z are the spin operators expressed in terms
of the Pauli matrices. Thus, the z-component of the
spin operator is zero (except that at the high symmetry
points) and the in-plane x and y-components are gen-
erally non-vanishing. The planar structure of the spin
polarization is a general consequence of the symmetry
property of the model Hamiltonian. If the transforma-
tion Ŝz → −Ŝz is a symmetry for the quantum system
upon examination, then, due the absence of degeneracy
at any (kx, ky) different from the time reversal invariant
momenta, the expectation value of the z-component of
the spin operator is identically zero. Thus, one can focus
the analysis only on the spin orientation in the xy-plane.

In the superconducting state we consider the
Bogoliubov-de Gennes (BdG) Hamiltonian constructed

from ĥ(k) and including both spin-singlet and triplet
pairings as follows

ĤBdG(k) =

(

−µσ̂0 + ĥ(k) ∆̂(k)

∆̂†(k) µσ̂0 − ĥt(−k)

)

, (3)

∆̂(k) = iσy[ψ(k) + σ̂ · d(k)], (4)

with the chemical potential µ. Here, for convenience and
clarity of computation we assume that g has a generic
orienation in the spin-space, ∆̂(k) denotes the gap func-
tion, with ψ(k) being the spin-singlet pairing, and d(k)
the spin-triplet order parameter. Starting from this BdG
Hamiltonian, one can introduce the electron component
of the spin polarization within the xy-plane for the m-th
excited state of the superconducting spectrum by means
of the following relation

θSCm
S = arg[〈Ψm|S̃e

x|Ψm〉+ i〈Ψm|S̃e
y|Ψm〉], (5)

http://arxiv.org/abs/1903.12379v1
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where |Ψm〉 is the m-th eigenstate of the spectrum of

the BdG Hamiltonian and S̃e
i=x,y,z are the spin operators

projected onto the electron space:

S̃e
i =

1

2
[1 + τ̂3]⊗ Ŝi, (6)

τ̂3 =

(

1 0
0 −1

)

, (7)

with the Pauli matrix τ̂3 in Nambu space.
In order to extract the general behavior of the spin po-

larization of the superconducting excited state, we em-
ploy a perturbation approach. We consider the BdG
Hamiltonian within the first order perturbation,

Ĥ = Ĥ0 + Ĥ ′, (8)

Ĥ|Ψn〉 = En|Ψn〉, (9)

Ĥ0|Ψ(0)
n 〉 = εn|Ψ(0)

n 〉. (10)

Here, Ĥ, Ĥ0, and Ĥ ′ correspond to the total, the un-
perturbed, and the perturbing Hamiltonian, respectively.

En and |Ψn〉 (εn and |Ψ(0)
n 〉) are the eigenvalue and the

corresponding eigenstate of the total Hamiltonian Ĥ (the

unperturbed Hamiltonian Ĥ0). We assume for conve-
nience of computation that the g-vector is parallel to
the z-axis (g(k) = (0, 0, gz(k))) and consider only the
spin-triplet pairing (ψ = 0). Then, the unperturbed and
perturbed terms of the Hamiltonian at a given k are ex-
pressed by

Ĥ0 = −µσ̂0 ⊗ τ̂3 +

(

ĥ(k) 0

0 −ĥt(−k)

)

,

ĥ(k) =

(

ε(k) + Λgz(k) 0
0 ε(k)− Λgz(k)

)

,

Ĥ ′ =

(

0 ∆̂(k)

∆̂†(k) 0

)

,

∆̂(k) =

(

∆↑,↑(k) ∆↑,↓(k)
∆↓,↑(k) ∆↓,↓(k)

)

.

The gap function components for the various spin-triplet
configurations are described by the d-vector,

∆↑,↑(k) = −dx(k) + idy(k),

∆↑,↓(k) = ∆↓,↑(k) = dz(k),

∆↓,↓(k) = dx(k) + idy(k).

For the spin-triplet pairing the d-vector is expressed
through the odd-function F (k) in the reciprocal space as

d(k) = (dx(k), dy(k), dz(k))

= n̂|∆0|F (k)
= (sin θd cosφd, sin θd sinφd, cos θd)|∆0|F (k), (11)

and the gap amplitude |∆0| sets the pairing strength.

The eigenstate |Ψ(0)
1 〉 (|Ψ(0)

3 〉) corresponds to |e, ↑〉 (|h, ↑

〉), and |Ψ(0)
2 〉 (|Ψ(0)

4 〉) is related to |e, ↓〉 (|h, ↓〉), respec-
tively. The eigenvalues and the corresponding eigenstates
of the unperturbed Hamiltonian Ĥ0 are given by

ε1(k) = −ε4(k) = ε(k) + Λgz(k),

ε2(k) = −ε3(k) = ε(k)− Λgz(k),

|Ψ(0)
1 〉 =

(

α̂+

0̂

)

, |Ψ(0)
2 〉 =

(

α̂−

0̂

)

,

|Ψ(0)
3 〉 =

(

0̂

β̂+

)

, |Ψ(0)
4 〉 =

(

0̂

β̂−

)

.

Here, α̂± and β̂± denote the eigenstates of ĥ(k) and

−ĥt(−k),

α̂+ = β̂+ =

(

1
0

)

, α̂− = β̂− =

(

0
1

)

.

For the electron-like band, the perturbation within the
first order is zero. It means that the spin polarization
for the electron-like band is not modified within the first
order perturbation in |∆0|. On the other hand, since
the eigenvalues and the corresponding eigenstates for the
hole-like band change within the first order correction,
the spin orientation of the excited state for the hole-like
band acquires a non-trivial pattern. Thus, we focus on
the hole-like branch of the excited state to investigate
the spin texture and we extract the electron component
of the spin-polarization for the first excited state of the
spectrum. Then, since the spin-singlet component is not
affecting the spin-polarization one can set ψ = 0 for con-
venience and clarity of the results presentation. The

eigenstates within the first order perturbation |Ψ(1)
n=3,4〉

(|Ψn〉 = |Ψ(0)
n 〉+ |Ψ(1)

n 〉+ · · · ) are given by

|Ψ(1)
3 〉 = − α̂†

+∆̂β̂+

2[−µ+ ε(k)]

(

α̂+

0

)

− α̂†
−∆̂β̂+

2[−µ+ ε(k)− Λgz(k)]

(

α̂−

0

)

= − ∆↑,↑

2[−µ+ ε(k)]

(

α̂+

0

)

− ∆↓,↑

2[−µ+ ε(k)− Λgz(k)]

(

α̂−

0

)

,

|Ψ(1)
4 〉 = − α̂†

+∆̂β̂−

2[−µ+ ε(k) + Λgz(k)]

(

α̂+

0

)

− α̂†
−∆̂β̂−

2[−µ+ ε(k)]

(

α̂−

0

)

= − ∆↑,↓

2[−µ+ ε(k) + Λgz(k)]

(

α̂+

0

)

− ∆↓,↓

2[−µ+ ε(k)]

(

α̂−

0

)

.

Then, we can calculate the expectation values of the spin
operators for the hole-branch of the first excited state of
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the BdG spectrum within the first order perturbation.
For |〈Ψ3〉 and |〈Ψ4〉 we have

〈Ψ3|S̃e
i |Ψ3〉

=
|∆↑,↑|2

4[−µ+ ε(k)]2
α̂†
+Ŝiα̂+

+
|∆↓,↑|2

4[−µ+ ε(k)− Λgz(k)]2
α̂†
−Ŝiα̂−

+
∆∗

↑,↑∆↓,↑

4[−µ+ ε(k)][−µ+ ε(k)− Λgz(k)]
α̂†
+Ŝiα̂−

+
∆↑,↑∆

∗
↓,↑

4[−µ+ ε(k)][−µ+ ε(k)− Λgz(k)]
α̂†
−Ŝiα̂+, (12)

〈Ψ4|S̃e
i |Ψ4〉

=
|∆↑,↓|2

4[−µ+ ε(k) + Λgz(k)]2
α̂†
+Ŝiα̂+

+
|∆↓,↓|2

4[−µ+ ε(k)]2
α̂†
−Ŝiα̂−

+
∆↓,↓∆

∗
↑,↓

4[−µ+ ε(k)][−µ+ ε(k) + Λgz(k)]
α̂†
+Ŝiα̂−

+
∆∗

↓,↓∆↑,↓

4[−µ+ ε(k)][−µ+ ε(k) + Λgz(k)]
α̂†
−Ŝiα̂+. (13)

Here, α̂†
+Ŝiα̂+ and related terms denote the expectation

values of the spin operators in the normal state,

α̂†
+Ŝxα̂+ = 0, α̂†

+Ŝyα̂+ = 0,

α̂†
+Ŝzα̂+ =

1

2
,

α̂†
−Ŝxα̂− = 0, α̂†

−Ŝyα̂− = 0,

α̂†
−Ŝzα̂− = −1

2
,

and for the terms of the type α̂†
+Ŝiα̂− we have

α̂†
+Ŝxα̂− =

1

2
, α̂†

+Ŝyα̂− = − i

2
,

α̂†
+Ŝzα̂− = 0, α̂†

−Ŝxα̂+ =
1

2
,

α̂†
−Ŝyα̂+ =

i

2
, α̂†

−Ŝzα̂+ = 0 .

Moreover, the d-vector given in Eq. (11) can be expressed
in terms of the relative angle with respect to the g-vector
providing the following quantities,

|∆↑,↑|2 = |∆↓,↓|2 = |∆0|2[F (k)]2 sin2 θd,
|∆↑,↓|2 = |∆↓,↑|2 = |∆0|2[F (k)]2 cos2 θd,

∆∗
↑,↑∆↓,↑ = −|∆0|2[F (k)]2eiφd sin θd cos θd,

∆∗
↓,↓∆↑,↓ = |∆0|2[F (k)]2e−iφd sin θd cos θd.

Hence, the expectation values of the spin operators pro-
jected onto the electron space for the hole-like branch of

the first excited state are given by

〈Ψ3|S̃e
x|Ψ3〉

= −|∆0|2[F (k)]2
2

cosφd sin θd cos θd
2[−µ+ ε(k)][−µ+ ε(k)− Λgz(k)]

,

(14)

〈Ψ3|S̃e
y|Ψ3〉

= −|∆0|2[F (k)]2
2

sinφd sin θd cos θd
2[−µ+ ε(k)][−µ+ ε(k)− Λgz(k)]

,

(15)

〈Ψ3|S̃e
z |Ψ3〉

=
|∆0|2[F (k)]2

2

×
[

sin2 θd
4[−µ+ ε(k)]2

− cos2 θd
4[−µ+ ε(k)− Λgz(k)]2

]

, (16)

〈Ψ4|S̃e
x|Ψ4〉

=
|∆0|2[F (k)]2

2

cosφd sin θd cos θd
2[−µ+ ε(k)][−µ+ ε(k) + Λgz(k)]

,

(17)

〈Ψ4|S̃e
y|Ψ4〉

=
|∆0|2[F (k)]2

2

sinφd sin θd cos θd
2[−µ+ ε(k)][−µ+ ε(k) + Λgz(k)]

,

(18)

〈Ψ4|S̃e
z |Ψ4〉

= −|∆0|2[F (k)]2
2

×
[

sin2 θd
4[−µ+ ε(k)]2

− cos2 θd
4[−µ+ ε(k) + Λgz(k)]2

]

. (19)

If |−µ+ε(k)| ≫ |Λgz(k)|, we can approximate the above
reported expectation values as

〈Ψ3|S̃e
x|Ψ3〉 ∼ −|∆0|2[F (k)]2

8

cosφd sin 2θd
[−µ+ ε(k)]2

, (20)

〈Ψ3|S̃e
y|Ψ3〉 ∼ −|∆0|2[F (k)]2

8

sinφd sin 2θd
[−µ+ ε(k)]2

, (21)

〈Ψ3|S̃e
z |Ψ3〉 ∼ −|∆0|2[F (k)]2

8

cos 2θd
[−µ+ ε(k)]2

, (22)

〈Ψ4|S̃e
x|Ψ4〉 ∼

|∆0|2[F (k)]2
8

cosφd sin 2θd
[−µ+ ε(k)]2

, (23)

〈Ψ4|S̃e
y|Ψ4〉 ∼

|∆0|2[F (k)]2
8

sinφd sin 2θd
[−µ+ ε(k)]2

, (24)

〈Ψ4|S̃e
z |Ψ4〉 ∼

|∆0|2[F (k)]2
8

cos 2θd
[−µ+ ε(k)]2

. (25)

At this stage, one can evaluate the character of the spin
texture from these expectation values of the spin opera-
tors. As pointed out in the main text, the relative direc-
tion of d-vector and g-vector is described by φd and θd,
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and the electron component of the spin polarization for
the hole-like branch of the excited state depends on φd
and 2θd. This result indicates that the spin texture for
the hole-like branch of the excited state lies in the plane
marked by the d- and g-vectors and its direction is de-
termined by the relative angle θd between d-vector and
g-vector. By a suitable rotation of the spin-coordinate,
we can deduce the spin texture where d-vector and g-
vector lies on xy-plane.

On the Fermi surface, |e, ↑〉 and |h, ↓〉 (|e, ↓〉 and |h, ↑〉)
are two-fold degenerate. We solve the BdG Hamiltonian
on the Fermi surface in the basis (|e ↑〉, |e ↓〉, |h ↑〉, |h ↓〉),

Ĥ(kF) =









0 0 ∆↑,↑ ∆↑,↓

0 ε2(kF) ∆↓,↑ ∆↓,↓

∆∗
↑,↑ ∆∗

↓,↑ −ε2(kF) 0
∆∗

↑,↓ ∆∗
↓,↓ 0 0









, (26)

where kF is the Fermi wave vector. We pick up the basis
(|e ↑〉, |h ↓〉) in this Hamiltonian and obtain the Hamilto-
nian projected onto the basis (|e ↑〉, |h ↓〉) near the Fermi
level,

H̃(kF) =

(

0 ∆↑,↓

∆∗
↑,↓ 0

)

, (27)

with ∆↑,↓ = |∆0| cos θd. Then the eigenvalues are given
by

E± = ±|∆0| cos θd, (28)

and the corresponding eigenstates in the basis (|e ↑〉, |e ↓
〉, |h ↑〉, |h ↓〉) are given by

|+〉 = |−〉 = 1√
2

(

â

b̂

)

, â =

(

1
0

)

, b̂ =

(

0
1

)

.

We can obtain the eigenvalues of the electron component
of the spin operator at kF point,

〈+|S̃e
i |+〉 = 1

2
â†+Ŝiâ+,

that is,

〈+|S̃e
x|+〉 = 〈+|S̃e

y|+〉 = 0,

〈+|S̃e
z |+〉 = 1

2
â†+Ŝzâ+ =

1

4
.

Thus, the spin texture on the Fermi surface has the same
direction as that in the normal state.

In the single orbital model with Rashba-type spin-orbit
coupling g(k) = (sin ky,− sin kx, 0), the spin texture in
the normal state rotates on the Fermi surface and it is de-
termined by the g-vector. In the superconducting state,
we obtain the spin texture projected onto the electron
space at the first excited state and it winds around the
point node with the winding number WS . We call this
behavior topological spin winding texture. This topolog-
ical spin winding texture does not always appear even if

there are point nodes in the bulk. Indeed, if the d-vector
is parallel to the g-vector on the Fermi surface like for a
superconducting state with dx2−y2 +f -wave pairing sym-
metry, that is, θd = 0, π, then, the spin texture for the
hole-like branch of the excited state has the same direc-
tion as that in the normal state. It means that the spin
texture projected onto the electron space does not wind
around the point node and the topological spin texture
does not appear for this pairing configuration. There-
fore, as a general remark, the presence of point nodes
does not guarantee the occurrence of a topological spin
texture that instead requires a θd amplitude that deviates
from 0 to π.

A. Spin polarization in the presence of spin-singlet

pairing

In the previous section, we have considered only spin-
triplet pairing. Here, we discuss the effects of introducing
a small amplitude of the spin-singlet pairing to study the
case where spin-singlet and spin-triplet pairing coexist.
We consider the following gap function,

∆̂ = rs∆̂S + (1− rs)∆̂T.

Here, rs denotes the relative ratio between spin-singlet
and spin-triplet pairing amplitudes, and the gap function
∆̂S (∆̂T) corresponds to the spin-singlet (spin-triplet)
pairing. One can easily verify that the spin texture pro-
jected onto the electron space in the superconducting
state also winds around the point node if the spin-singlet
pairing exists.

B. Spin-winding for the B2 representation in the

point group C4v

We have demonstrated the spin-winding for the B1 rep-
resentation in the point group C4v in the main text. In
this subsection, we mention the spin-winding for the B2

representation with nodal points on the kx and ky-axis.
The d-vector for the B2 representation is given by

d(k) = (sin kx,− sinky, 0).

Since this d-vector is obtained by the π/4-rotation of the
B1 representation d-vector at each k point, we obtain the
same spin-winding along the kx and ky-axis for the B2

representation.

II. DERIVATION OF SINGLE ORBITAL

EFFECTIVE DESCRIPTION FROM THE

THREE-ORBITAL MODEL WITH ATOMIC

SPIN-ORBIT AND ORBITAL RASHBA

COUPLINGS

In this section, we construct the effective single orbital
low-energy description near the Γ point starting from the
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three-orbital model which describes a two-dimensional
non-centrosymmetric electronic system with tetragonal
symmetry including the atomic spin-orbit and the orbital
Rashba coupling. The aim is to compare the spin polar-
ization obtained in the single orbital model with that of
the full multi-orbital model. The Hamiltonian in the ba-
sis [(↑, ↓)⊗ (dyz, dzx, dxy)] for the normal state1 is given
by

Ĥ(k) = −µσ̂0 ⊗ L̂0 + σ̂0 ⊗ ε̂(k)

+ λSO
∑

i=x,y,z

σ̂i ⊗ L̂i

+∆isσ̂0 ⊗
[

gx(k)L̂x + gy(k)L̂y

]

, (29)

with gx(k) = sin ky, and gy(k) = − sinkx. Here, ε̂(k)
denotes the matrix for the kinetic energy,

ε̂(k) =





εyz(k) 0 0
0 εzx(k) 0
0 0 εxy(k)



 ,

and the kinetic energy for each orbital is given by

εyz(k) = 2t1(1− cos ky) + 2t3(1− cos kx),

εzx(k) = 2t1(1− cos kx) + 2t3(1− cos ky),

εxy(k) = 4t2 − 2t2(cos kx + cos ky) + ∆t,

where t1 = t = 0.10, t2 = t, and t3 = 0.10t are the hop-
ping integral with representative amplitudes, ∆t is the
crystal field potential associated with the breaking of the
cubic symmetry. λSO and ∆is are the spin-orbit coupling
constant and the inversion symmetry breaking terms, re-
spectively. L̂i (i = x, y, z) in the basis (dyz, dzx, dxy)
denotes the orbital angular momentum operator which
is projection of the L = 2 angular momentum operator
onto the t2g subspace,

L̂x =





0 0 0
0 0 i
0 −i 0



 , L̂y =





0 0 −i
0 0 0
i 0 0



 , L̂z =





0 i 0
−i 0 0
0 0 0



 ,

and L̂0 is a 3 × 3 identity matrix. In this system, there
are six nondegenerated bands at λSO 6= 0 and ∆is 6= 0.
We define the index n of the bands labelling the configu-
rations from the lowest energy (i.e. n = 1) to the highest
one (i.e. n = 6).

In the superconducting state, the BdG Hamiltonian in
the three-orbital model is given by

ĤBdG =

(

Ĥ(k) ∆̂

∆̂† −Ĥt(−k)

)

. (30)

Here, the superconducting order parameter associated
with orbitals α and β can be classified as an isotropic
(s-wave) spin-triplet/orbital-singlet d(α,β)-vector and s-
wave spin-singlet/orbital-triplet with amplitude ψ(α,β) or

as a mixing of both configurations. With these assump-
tions, one can generally describe the isotropic order pa-
rameter with spin-singlet and triplet components as

∆̂α,β =

(

∆̂α↑,β↑ ∆̂α↑,β↓

∆̂α↓,β↑ ∆̂α↓,β↓

)

,

= iσ̂y

[

ψ(α,β) + σ̂ · d(α,β)
]

,

with α and β standing for the orbital index, and having
for each channel three possible orbital flavors. Further-
more, owing to the selected tetragonal crystal symmetry,
one can achieve three different types of inter-orbital pair-
ings. The spin-singlet configurations are orbital triplets
and can be described by a symmetric superposition of op-
posite spin states in different orbitals. On the other hand,
spin-triplet components can be expressed by means of the
following d-vectors:

d(xy,yz) =
(

d(xy,yz)x , d(xy,yz)y , d(xy,yz)z

)

,

d(xy,zx) =
(

d(xy,zx)x , d(xy,zx)y , d(xy,zx)z

)

,

d(yz,zx) =
(

d(yz,zx)x , d(yz,zx)y , d(yz,zx)z

)

.

In the Supplemental Material, we consider the interor-
bital local pairings for the A1 and B1 representations in
the point group C4v

2.
To obtain the effective single orbital model for the nor-

mal state electronic structure near the Γ-point from the
three-orbital model we employ the following perturbation
scheme separating the Hamiltonian in two parts,

Ĥ = Ĥ0 + Ĥ
′

, (31)

Ĥ0 = ε̂(k), (32)

Ĥ
′

= λSO
∑

i=x,y,z

σ̂i ⊗ L̂i (33)

+∆isσ̂0 ⊗
[

gx(k)L̂x + gy(k)L̂y

]

. (34)

Importantly, due to the two-dimensional confinement,
the dxy-orbital is generally well separated from the
(dzx, dyz)-orbitals by the crystal field potential ∆t. In

the normal state of Ĥ0, the dxy-orbital has the lowest
energy among the three orbitals and the energy of the
dxy-orbital is −∆t lower than dyz and dzx-orbitals. We
can consider the following process |xy, ↑〉 → |xy, ↓〉 within
the second order perturbation,

−〈xy, ↓ |Ĥ ′ |yz, ↑〉〈yz, ↑ |Ĥ ′ |xy, ↑〉
Eyz − Exy

=
iλSO∆is sin kx

∆t

,

−〈xy, ↓ |Ĥ ′ |yz, ↓〉〈yz, ↓ |Ĥ ′ |xy, ↑〉
Eyz − Exy

=
iλSO∆is sin kx

∆t

,

−〈xy, ↓ |Ĥ ′ |zx, ↑〉〈zx, ↑ |Ĥ ′ |xy, ↑〉
Ezx − Exy

= −λSO∆is sin ky
∆t

,

−〈xy, ↓ |Ĥ ′ |zx, ↓〉〈zx, ↓ |Ĥ ′ |xy, ↑〉
Ezx − Exy

= −λSO∆is sin ky
∆t

,
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with Eyz = −∆t and Eyz = 0. Likewise, we can consider
the following process |xy, ↓〉 → |xy, ↑〉 within the second
order perturbation,

−〈xy, ↑ |Ĥ ′ |yz, ↓〉〈yz, ↓ |Ĥ ′ |xy, ↓〉
Eyz − Exy

= − iλSO∆is sin kx
∆t

,

−〈xy, ↑ |Ĥ ′ |yz, ↑〉〈yz, ↑ |Ĥ ′ |xy, ↓〉
Eyz − Exy

= − iλSO∆is sin kx
∆t

,

−〈xy, ↑ |Ĥ ′ |zx, ↓〉〈zx, ↓ |Ĥ ′ |xy, ↓〉
Ezx − Exy

= −λSO∆is sin ky
∆t

,

−〈xy, ↑ |Ĥ ′ |zx, ↑〉〈zx, ↑ |Ĥ ′ |xy, ↓〉
Ezx − Exy

= −λSO∆is sin ky
∆t

,

then, in the subspace spanned by the states |xy, ↓〉, |xy, ↑〉
we obtain the effective low energy Hamiltonian in the
normal state,

h̃(k) =

(

ε↑,↑(k) ε↑,↓(k)
ε↓,↑(k) ε↓,↓(k)

)

,

= εxy(k)σ̂0 + ΛR[gx(k)σ̂x + gy(k)σ̂y],

g(k) = (sin ky,− sinkx, 0),

with ΛR = −2λSO∆is/∆t. Then, the elements of the
Hamiltonian in the effective model ε↓,↑(k) and ε↑,↓(k)
are derived as

ε↓,↑(k) = −
∑

l 6=xy,σ

〈xy, ↓ |Ĥ ′ |l, σ〉〈l, σ|Ĥ ′ |xy, ↑〉
El − Exy

= ΛR[sin ky − i sin kx],

ε↑,↓(k) = −
∑

l 6=xy,σ

〈xy, ↑ |Ĥ ′ |l, σ〉〈l, σ|Ĥ ′ |xy, ↓〉
El − Exy

= ΛR[sin ky + i sin kx],

where l = yz, zx, xy is the index of the d-orbital and
σ =↑, ↓ indicate the spin polarizations. On the other
hand, because there are no processes |xy, ↑〉 → |xy, ↑〉 and
|xy, ↓〉 → |xy, ↓〉 within the second order perturbation,
we obtain

ε↑,↑(k) = ε↓,↓(k) = εxy(k). (35)

The effective low energy description is then expressed
by a single-orbital model with a Rashba-type spin-orbit
coupling.

In a similar fashion, for the superconducting state one

consider the following perturbation scheme,

ĤBdG = Ĥ0
BdG + Ĥ

′

BdG,

Ĥ0
BdG =

(

ε̂(k) 0
0 −ε̂(−k)

)

,

Ĥ
′

BdG =

(

ĤSO 0

0 −Ĥt
SO

)

+

(

Ĥis(k) 0

0 −Ĥt
is(−k)

)

+

(

0 ∆̂

∆̂† 0

)

,

ĤSO = λSO
∑

i=x,y,z

σ̂i ⊗ L̂i,

Ĥis(k) = ∆isσ̂0 ⊗
[

gx(k)L̂x + gy(k)L̂y

]

.

The energy of |yz, σ, h〉 and |zx, σ, h〉 states is −∆t lower
than that of |xy, σ, h〉 state. Here σ =↑, ↓ denotes the spin
of the electron and hole. The effective BdG Hamiltonian
from the three-orbital model is given by

H̃BdG =

(

h̃(k) ∆̃

∆̃† −h̃t(−k)

)

,

∆̃(k) =

(

∆↑,↑ ∆↑,↓

∆↓,↑ ∆↓,↓

)

,

=

(

∆↑,↑ ∆S
↑,↓ +∆T

↑,↓

∆S
↓,↑ +∆T

↓,↑ ∆↓,↓

)

.

This effective Hamiltonian can be obtained by the fol-
lowing processes within the second order perturbation,

− 〈xy, ↑, e|Ĥ ′

BdG|yz, ↑, h〉〈yz, ↑, h|Ĥ
′

BdG|xy, ↑, h〉
Eyz,h − Exy

=
i∆is∆xy↑,yz↑ sin kx

∆t

,

− 〈xy, ↑, e|Ĥ ′

BdG|yz, ↑, e〉〈yz, ↑, e|Ĥ
′

BdG|xy, ↑, h〉
Eyz,e − Exy

=
i∆is∆xy↑,yz↑ sin kx

∆t

,

− 〈xy, ↑, e|Ĥ ′

BdG|zx, ↑, h〉〈zx, ↑, h|Ĥ
′

BdG|xy, ↑, h〉
Eyz,h − Exy

=
i∆is∆xy↑,zx↑ sin ky

∆t

,

− 〈xy, ↑, e|Ĥ ′

BdG|zx, ↑, e〉〈zx, ↑, e|Ĥ
′

BdG|xy, ↑, h〉
Eyz,e − Exy

=
i∆is∆xy↑,zx↑ sin ky

∆t

,
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− 〈xy, ↓, e|Ĥ ′

BdG|yz, ↓, h〉〈yz, ↓, h|Ĥ
′

BdG|xy, ↑, h〉
Eyz,h − Exy

=
−λSO∆xy↓,yz↓

∆t

,

− 〈xy, ↓, e|Ĥ ′

BdG|yz, ↓, e〉〈yz, ↓, e|Ĥ
′

BdG|xy, ↑, h〉
Eyz,e − Exy

=
λSO∆xy↑,yz↑

−∆t

,

− 〈xy, ↓, e|Ĥ ′

BdG|zx, ↓, h〉〈zx, ↓, h|Ĥ
′

BdG|xy, ↑, h〉
Ezx,h − Exy

=
iλSO∆xy↓,zx↓

∆t

,

− 〈xy, ↓, e|Ĥ ′

BdG|zx, ↓, e〉〈zx, ↓, e|Ĥ
′

BdG|xy, ↑, h〉
Ezx,e − Exy

= − iλSO∆xy↑,zx↑

∆t

,

− 〈xy, ↓, e|Ĥ ′

BdG|yz, ↓, e〉〈yz, ↓, e|Ĥ
′

BdG|xy, ↑, h〉
Eyz,e − Exy

=
−i∆is∆xy↑,yz↓ sin kx

∆t

,

− 〈xy, ↓, e|Ĥ ′

BdG|yz, ↑, h〉〈yz, ↑, h|Ĥ
′

BdG|xy, ↑, h〉
Eyz,h − Exy

=
i∆is∆xy↑,yz↓ sinkx

−∆t

,

− 〈xy, ↓, e|Ĥ ′

BdG|zx, ↓, e〉〈zx, ↓, e|Ĥ
′

BdG|xy, ↑, h〉
Ezx,e − Exy

=
−i∆is∆xy↑,zx↓ sin ky

∆t

,

− 〈xy, ↓, e|Ĥ ′

BdG|zx, ↑, h〉〈zx, ↑, h|Ĥ
′

BdG|xy, ↑, h〉
Ezx,h − Exy

= − i∆is∆xy↑,zx↓ sin ky
∆t

,

− 〈xy, ↑, e|Ĥ ′

BdG|yz, ↑, h〉〈yz, ↑, h|Ĥ
′

BdG|xy, ↓, h〉
Eyz,h − Exy

=
λSO∆xy↑,yz↑

∆t

,

− 〈xy, ↑, e|Ĥ ′

BdG|yz, ↓, e〉〈yz, ↓, e|Ĥ
′

BdG|xy, ↓, h〉
Eyz,e − Exy

=
−λSO∆xy↓,yz↓

−∆t

,

− 〈xy, ↑, e|Ĥ ′

BdG|zx, ↑, h〉〈zx, ↑, h|Ĥ
′

BdG|xy, ↓, h〉
Ezx,h − Exy

=
iλSO∆xy↑,zx↑

∆t

,

− 〈xy, ↑, e|Ĥ ′

BdG|zx, ↓, e〉〈zx, ↓, e|Ĥ
′

BdG|xy, ↓, h〉
Ezx,e − Exy

=
iλSO∆xy↓,yz↓

−∆t

,

− 〈xy, ↑, e|Ĥ ′

BdG|yz, ↑, e〉〈yz, ↑, e|Ĥ
′

BdG|xy, ↓, h〉
Eyz,e − Exy

= − i∆is∆xy↓,yz↑ sin kx
∆t

,

− 〈xy, ↑, e|Ĥ ′

BdG|yz, ↓, h〉〈yz, ↓, h|Ĥ
′

BdG|xy, ↓, h〉
Eyz,h − Exy

= − i∆is∆xy↓,yz↑ sin kx
∆t

,

− 〈xy, ↑, e|Ĥ ′

BdG|zx, ↑, e〉〈zx, ↑, e|Ĥ
′

BdG|xy, ↓, h〉
Ezx,e − Exy

= − i∆is∆xy↓,zx↑ sin kx
∆t

,

− 〈xy, ↑, e|Ĥ ′

BdG|zx, ↓, h〉〈zx, ↓, h|Ĥ
′

BdG|xy, ↓, h〉
Ezx,h − Exy

= − i∆is∆xy↓,zx↑ sin kx
∆t

,
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− 〈xy, ↓, e|Ĥ ′

BdG|yz, ↓, h〉〈yz, ↓, h|Ĥ
′

BdG|xy, ↓, h〉
Eyz,h − Exy

=
i∆is∆xy↓,yz↓ sinkx

∆t

,

− 〈xy, ↓, e|Ĥ ′

BdG|yz, ↓, e〉〈yz, ↓, e|Ĥ
′

BdG|xy, ↓, h〉
Eyz,e − Exy

=
i∆is∆xy↓,yz↓ sinkx

∆t

,

− 〈xy, ↓, e|Ĥ ′

BdG|zx, ↓, h〉〈zx, ↓, h|Ĥ
′

BdG|xy, ↓, h〉
Ezx,h − Exy

=
i∆is∆xy↓,zx↓ sin kx

∆t

,

− 〈xy, ↓, e|Ĥ ′

BdG|zx, ↓, e〉〈zx, ↓, e|Ĥ
′

BdG|xy, ↓, h〉
Ezx,e − Exy

=
i∆is∆xy↓,zx↓ sin kx

∆t

,

with Eyz,h = Ezx,h = ∆t and Eyz,e = Ezx,e = −∆t.
Then, we obtain the elements of the BdG Hamiltonian
in the effective single-orbital description for the dxy-band
∆↑,↑, ∆↑,↓, ∆↓,↑, and ∆↓,↓,

∆↑,↑

= −
∑

l 6=xy,σ,τ

〈xy, ↑, e|Ĥ ′

BdG|l, σ, τ〉〈l, σ, τ |Ĥ
′

BdG|xy, ↑, h〉
El,τ − Exy

=
2i∆is

∆t

[∆xy↑,yz↑ sinkx +∆xy↑,zx↑ sin ky] ,

∆↓,↑

= −
∑

l 6=xy,σ,τ

〈xy, ↓, e|Ĥ ′

BdG|l, σ, τ〉〈l, σ, τ |Ĥ
′

BdG|xy, ↑, h〉
El,τ − Exy

= ∆S
↓,↑ +∆T

↓,↑.

∆S
↓,↑ = − iλSO

∆t

[∆xy↑,yz↑ +∆xy↓,yz↓

+ i∆xy↑,zx↑ − i∆xy↓,zx↓],

∆T
↓,↑ = −2i∆is

∆t

[∆xy↑,yz↓ sinkx +∆xy↑,zx↓ sin ky] .

∆↑,↓

= −
∑

l 6=xy,σ,τ

〈xy, ↑, e|Ĥ ′

BdG|l, σ, τ〉〈l, σ, τ |Ĥ
′

BdG|xy, ↓, h〉
El,τ − Exy

= ∆S
↑,↓ +∆T

↑,↓,

∆S
↑,↓ =

iλSO
∆t

[∆xy↑,yz↑ +∆xy↓,yz↓

+ i∆xy↑,zx↑ − i∆xy↓,zx↓],

∆T
↑,↓ = −2i∆is

∆t

[∆xy↓,yz↑ sinkx +∆xy↓,zx↑ sin ky] ,

∆↓,↓

= −
∑

l 6=xy,σ,τ

〈xy, ↓, e|Ĥ ′

BdG|l, σ, τ〉〈l, σ, τ |Ĥ
′

BdG|xy, ↓, h〉
El,τ − Exy

=
2i∆is

∆t

[∆xy↓,yz↓ sin kx +∆xy↓,zx↓ sinky ] ,

where τ = e, h is the index of electron and hole space
and superscript S and T are the spin-singlet and spin-
triplet pairing in the (↑, ↓) sector of the gap function,
respectively.

For the B1 representation in the point group C4v,
the interorbital pairing in the three-orbital model is de-
scribed by

ψ(xy,yz) = ψ(xy,zx) = ψ(yz,zx) = 0,

d(yz,zx) = 0,

d(xy,yz)z = d(xy,zx)z = d(xy,zx)y = d(xy,yz)x = 0,

d(xy,zx)x = d(xy,yz)y .

Then, the gap function in the effective model is

∆↑,↑ = |∆T
0 |(− sin ky + i sinkx),

∆↑,↓ = ∆↓,↑ = 0,

∆↓,↓ = |∆T
0 |(sin ky + i sinkx),

with |∆T
0 | = |2i∆0|d(xy,yz)y |/∆t. Hence, we can obtain

the d-vector for the B1 representation in the effective
model:

dx(k) =
1

2
[∆↓,↓ −∆↑,↑] = |∆T

0 | sin ky,

dy(k) =
1

2i
[∆↑,↑ +∆↓,↓] = |∆T

0 | sinkx,

dz(k) = ∆T
↑,↓ = 0.

It corresponds to the base functions of the spin-triplet
pairing for the B1 representation in the C4v point group.
On the other hand, we obtain the gap function in the
effective model for the A1 representation,

∆↑,↑ = |∆T
0 |(sin ky + i sinkx),

∆T
↑,↓ = ∆T

↓,↑ = 0,

∆S
↑,↓ = −∆S

↓,↑ = |∆S
0 |,

∆↓,↓ = |∆T
0 |(− sin ky + i sinkx),

|∆S
0 | = −4λSOd

(xy,yz)
y

∆t

,

from the following interorbital pairing,

ψ(xy,yz) = ψ(xy,zx) = ψ(yz,zx) = 0,

d(yz,zx)x = d(yz,zx)y = 0,

d(xy,yz)z = d(xy,zx)z = d(xy,zx)y = d(xy,yz)x = 0,

d(yz,zx)z = −d(zx,yz)z ,

d(xy,zx)x = −d(xy,yz)y .
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Therefore, the pairings for the A1 representation in the
effective single-orbital model are

ψ = ∆S
↑,↓ = |∆S

0 |,

dx(k) =
1

2
[∆↓,↓ −∆↑,↑] = −|∆T

0 | sin ky,

dy(k) =
1

2i
[∆↑,↑ +∆↓,↓] = |∆T

0 | sin kx,

dz(k) = ∆T
↑,↓ = 0.

This d-vector corresponds to the s + p-wave for the A1

representation in the C4v point group and it is parallel
to g-vector in the Brillouin zone (BZ).

For the B1 representation with point nodes in the diag-
onal direction, the spin texture lies in the xy-plane and
the topological spin texture appears around the point
node in the effective single orbital model. It means that
the topological spin winding texture for the lowest bands
1 and 2 in the three-orbital model can be well described
by the single orbital model. On the other hand, for the
A1 representation with the fully gapped state, the spin
texture is defined in xy-plane, however, topological spin
texture does not appear because d-vector is parallel to
g-vector in the BZ.

III. SPIN-ORBITAL TEXTURE IN THE

THREE-ORBITAL MODEL

In this section, we study the spin-orbital texture in
the normal state and the electron projection of the spin
polarization in the superconducting state for the three-
orbital model in the reciprocal space. Similar to the spin
texture, we define the orbital texture by the expectation
values of the angular momentum operators.

From the diagonalization of the Hamiltonian in the
three-orbital model in the normal state, we obtain the
six energy bands and the six corresponding eigenstates.
Then, in order to determine the spin-orbital polariza-
tions, we calculate the six expectation values of the or-
bital angular momentum operator L̂i and the spin opera-
tor Ŝi for the corresponding eigenstates. The spin-orbital
polarization can be expressed in a compact notation as

〈Â〉n,k ≡ 〈φn(k)|Â|φn(k)〉,
Â = L̂x, L̂y, L̂z, Ŝx, Ŝy, Ŝz,

where |φn(k)〉 (n = 1 ∼ 6) denotes the eigenstate which
corresponds to the n−th energy band. We can define
the spin-orbital texture when λSO 6= 0 and ∆is 6= 0 be-
cause the finite values of λSO and ∆is lift spin degener-
acy. In addition, owing to the crystal symmetry which is
described by the point group C4v and the time-reversal
symmetry, which is similar to the single orbital model,
〈Ŝz〉n,k and 〈L̂z〉n,k become zero in the normal state.
Hence, we can consider the in-plane spin (orbital) tex-
ture in the normal state through the direction of the spin

(orbital) polarization in xy-plane θ
(n)
S (k) (θ

(n)
L (k)),

θ
(n)
S (k) = arg[〈Ŝx〉n,k + i〈Ŝy〉n,k], (36)

θ
(n)
L (k) = arg[〈L̂x〉n,k + i〈L̂y〉n,k]. (37)

Moreover, we define the direction of the momentum k as
θk = arg[kx + iky].

In the superconducting state, we focus on the spin tex-
ture projected onto the electron space in the first excited
state. We define the electron component of the spin op-
erator in the three-orbital model as S̃e

i=x,y,z as

S̃e
i =

1

2
[1 + τ̂3]⊗ Ŝi ⊗ L̂0, (38)

where L̂0 is the unit matrix in orbital space. We then
introduce the angle θSC1

S (k) representing the direction of
the spin oprator in the xy-plane as

θSC1
S (k) = arg[〈Ψ1(k)|S̃e

x|Ψ1(k)〉+ i〈Ψ1(k)|S̃e
y |Ψ1(k)〉],

where |Ψ1(k)〉 is the eigenstate of the first excited state
in the BdG Hamiltonian.

FIG. 1. The direction of the electron component of the spin
polarization in the superconducting state for (a)(b)(c) B1 and
(e) A1 pairing symmetry representations in the three-orbital
model. The z-component of expectation value of spin in the
three-orbital model for the A1 representation is reported in
(d). We set the gap amplitude |∆0|/t = 1.0 × 10

−3 for (a)
and (e), |∆0|/t = 4.0× 10

−2 for (b), and |∆0|/t = 0.10 for(c).
(f) The direction of the spin texture corresponding to the
first excited state in the normal state with λSO/t = 0.10 and
∆is/t = 0.20.

In Figs. 1 (a), (b) and (c), we show how the electron
component of the spin polarization pattern evolves by
tuning the number of point nodes through a variation of
the chemical potential for the superconducting configu-
ration belonging to the B1 representation. In Fig. 1 (e),
the spin texture does not exhibit a topological structure.
We can compare these spin textures with those of the
normal state in Fig. 1 (f). Fig. 1 (d) is the z-component
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FIG. 2. The direction of the spin texture projected onto the
electron space in the superconducting state in the single band
model (a) with g and d3B1

-vectors and (b)(c) with g, g3, g5,
d1B1

, and d3B1
-vectors at ΛR = 8.0×10

−2, and |∆0|/t = 1.0×
10

−3. Black dotted line is Fermi surface at (a) µ/t = −0.25
and (b)(c) µ/t = 0.35. (b)((c)) is a magnified view around
the point node on the outer (inner) Fermi surface. We set the
parameters at Λ3R = Λ5R = 0.0, rs = 0.0, and f = 1.0 for
(a) and Λ3R = 0.70, a1 = 1.0, a2 = −1.0, Λ5R = 1.0, and
f = 0.99 for (b) and (c).

of expectation values of spin in the three-orbital model
for the A1 representation. It becomes nonzero in the BZ
owing to the spin-triplet/orbital-singlet(dyz ↑, dzx ↓) s-
wave pairing. Hence, one can define the topological spin
winding texture for the A1 representation only by speci-
fying the axis with respect to which the spin is winding.
On the other hand, we can uniquely define the in-plane
spin winding in the effective single orbital model because
both of d-vector and g-vector lies on xy-plane as shown
in Sect. II.

IV. SINGLE ORBITAL MODEL WITH HIGHER

ORDER G-VECTOR AND D-VECTOR WITH B1

SYMMETRY

In this section, we demonstrate the consequences of
higher order g and d-vectors in the single orbital model
and compare the obtained spin polarization pattern with
the spin texture arising in the three-orbital model. We
adopt the third and fifth order g-vectors g3 and g5, and
the third order d-vector for the B1 representation d3B1

.
Then the BdG Hamiltonian in the single orbital model is
given by

ĤBdG(k) = ε(k)σ̂0

+ [ΛRg(k) + Λ3Rg3(k) + Λ5Rg5(k)] · σ̂
+ iσ̂yσ̂ · [(1− f)dB1

(k) + fd3B1
(k)], (39)

and g-vectors and d-vectors are defined as

g(k) = (sin ky,− sinkx, 0),

g3(k) = g
(1)
3 (k) + g

(2)
3 (k),

g
(1)
3 (k) = a1((1 − cos kx) sin ky,−(1− cos ky) sin kx, 0),

g
(2)
3 (k) = a2((1 − cos ky) sin ky,−(1− cos kx) sin kx, 0),

g5(k) = (cos kx − cos ky)

× ((cos kx − 1) sinky, (cos ky − 1) sin kx, 0),

dB1
(k) = |∆0|(sin ky, sin kx, 0),

d3B1
(k) = |∆0|(cos kx − cos ky)g.

Here, we neglect z-components of d-vector and g-vector
since we are considering the C4v point group.

Fig. 2 (a) reports the angular dependence of the elec-
tron component of the spin polarization for the first ex-
cited state of the superconducting spectrum in the single
band model assuming g and d3B1

-vectors. Here, we can-
not define the spin polarization for the hole-like branch
of the excited state due to d3B1

= (0, 0, 0) in the diagonal
direction. In addition, the spin orientation for the hole-
like band has the same direction as that for the electron-
like band because d3B1

-vector is parallel to g-vector in
the BZ. In Figs 2 (b) and (c), we show explicitly the re-
sulting spin texture pattern in the superconducting state
with g, g3, g5, d1B1

, and d3B1
-vectors. In these figures,

we set the ratio of dB1
and d3B1

-vector as f = 0.99. The
result indicates that the spin polarization winds around
the point node only when f is not equal to 1.
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