
Striver: Stream Runtime Verification
for Real-Time Event-Streams ?

Felipe Gorostiaga and César Sánchez

IMDEA Software Institute, Spain
{felipe.gorostiaga,cesar.sanchez}@imdea.org

Abstract. We study the problem of monitoring rich properties of real-
time event streams, and propose a solution based on Stream Runtime
Verification (SRV), where observations are described as output streams
of data computed from input streams of data. SRV allows a clean sepa-
ration between the temporal dependencies among incoming events, and
the concrete operations that are performed during the monitoring.

SRV specification languages typically assume that all streams share a
global synchronous clock and input events arrive in a synchronous man-
ner. In this paper we generalize the time assumption to cover real-time
event streams, but keep the essential explicit time dependencies present
in synchronous SRV languages. We introduce Striver, which shares with
SRV the simplicity, and the separation between the timing reasoning
and the data domain. Striver is a general language that allows to express
other real-time monitoring languages. We show in this paper translations
from other formalisms for (piece-wise constant) signals and timed event
streams. Finally, we report an empirical evaluation of an implementation
of Striver.

This is a post-peer-review, pre-copyedit version of an article published at LNCS
vol 11237, Springer (2018).The final authenticated version is available online
at: https://doi.org/10.1007/978-3-030-03769-7_16.

1 Introduction

Runtime verification (RV) is a lightweight formal method that studies the prob-
lem of whether a single trace from the system under analysis satisfies a formal
specification. From the point of view of coverage, static verification must consider
all possible executions of the system while RV only considers the traces observed.
In this manner, RV sacrifices completeness but offers a readily applicable formal
method that can be combined with testing or debugging. See [16,20] for surveys
on RV, and the recent book [2]. Early specification languages proposed in RV

? This research has been partially supported by: the EU H2020 project Elastest (num.
731535), by the Spanish MINECO Project “RISCO (TIN2015-71819-P)” and by the
EU ICT COST Action IC1402 ARVI (Runtime Verification beyond Monitoring).

https://doi.org/10.1007/978-3-030-03769-7_16

were based on temporal logics [17,12,7], regular expressions [25], timed regular
expressions [3], rules [5], or rewriting [24].

Stream runtime verification (SRV), pioneered by Lola [11] defines monitors by
declaring the dependencies between output streams (results) and input streams
(observations). The main idea of SRV is that the same sequence of operations
performed during the monitoring of a temporal logic formula can be followed to
compute statistics of the input trace, if the data type and the operations are
changed. The generalization of the outcome of the monitoring process to richer
verdict values brings runtime verification closer to monitoring and data stream-
processing. See [22,15,8] for further works on SRV. Temporal testers [23] were
later proposed as a monitoring technique for LTL based on Boolean streams. SRV
was initially conceived for monitoring synchronous systems, where all observa-
tions proceed in cycles. In this paper we present a specification formalism for
timed asynchronous observations, where streams are sequences of timed events,
not necessarily happening at the same time in all input streams, but where
all time-stamps are totally ordered according to a global clock (following the
timed asynchronous model of distributed systems [10]). The formalism that we
propose in this paper targets the outline, non-intrusive monitoring (see [18] for
definitions), where the model of time is that of timed asynchronous distributed
systems. Our target application is the monitoring and testing of cloud systems
and multi-core hardware monitoring, where this assumption is reasonable.

Related work The work [19] presents an asynchronous evaluation engine for a
simple event stream language for timed events, based on a collection of language
constructs that compute aggregations. This language does not allow explicit
time references and offsets. Moreover, recursion is not permitted and all recursive
computations are encapsulated implicitly in the language constructs. A successor
work of [19] is TeSSLa [9] which allows recursion and offers a smaller collection
of language constructs. Still, TeSSLa precludes explicit offset dependencies, and
the target application domain is hardware based monitoring. We sketched that
Striver subsumes TeSSLa. Another similar work is RTLola [14], which also aims to
extend SRV from the synchronous domain to timed streams. However, in RTLola
defined streams are computed at predefined periodic instants of time, collecting
aggregations between these predefined instants using language constructs. In this
manner, the output streams in RTLola are isochronous1, while in Striver defined
streams are computed at the specific real-time instants where they are required,
resulting in a completely asynchronous SRV system (in the sense that streams
can tick at arbitrary time points). Striver can be used as a low level language to
compile TeSSLa, RTLola and similar specifications.

The rest of the paper is organized as follows. Section 2 describes the Striver
specification language. Section 3 presents a trace-lenght independent online al-
gorithm. Section 4 shows some extensions of Striver. Section 5 reports on an
empirical evaluation and Section 6 concludes the paper.

1 We borrow this term from telecomunications and signal processing where an
isochronous signal is one in which events happen at regular intervals.

2 The Striver Specification Language

In this section we introduce Striver, a specification language that allows defining
efficiently monitorable specifications [11], those for which all streams can be
resolved immediately. We show in Section 3 an online monitoring algorithm and
prove that this algorithm is also trace length independent.

2.1 Preliminaries

The main idea behind SRV is to separate two concerns: the temporal dependen-
cies and the data manipulated, for which we use data domains.

Data Domains. We use many-sorted first order logic to describe data domains.
A simple theory, Booleans, has only one sort2, Bool, two constants true and
false, binary functions ∧ and ∨, unary function ¬, etc. A more sophisticated
signature is Naturals that consists of two sorts (Nat and Bool), with constant
symbols 0, 1, 2. . . of sort Nat , binary symbols +, ∗, etc (of sort Nat×Nat→ Nat)
as well as predicates <, ≤, etc of sort Nat×Nat→ Bool, with their usual inter-
pretation. All theories have equality and are typically (e.g. Naturals, Booleans,
Queues, Stacks, etc) equipped with a ternary symbol if · then · else·. In the
case of Naturals, the if · then · else· symbol has sort Bool×Nat×Nat→ Nat.

Our theories are interpreted, so each sort S is associated with a domain DS

(a concrete set of values), and each function symbol f is interpreted as a total
computable function f , with the given arity and that produces values of the
domain of the result given elements of the arguments’ domains. For simplicity,
we omit the sort S from DS .

We will use stream variables with an associated sort, but from the point of
view of the theories, these stream variables are atoms. As usual, given a set of
sorted atoms A and a theory, the set of terms is the smallest set containing A
and closed under the use of function symbols in the theory as a constructors
(respecting sorts).

We consider a special time domain T, whose interpretation is a (possibly
infinite, possibly dense) set with a total order and a minimal element 0, and a
binary addition symbol +. Examples of time domains are R+

0 , Q+
0 and N0 with

their usual order. Given ta, tb ∈ T we use [ta, tb] = {t ∈ T | ta ≤ t ≤ tb}, and
also (ta, tb), [ta, tb) and (ta, tb] with the usual meaning. We say that a set of
time points S ⊆ T does not contain bounded infinite subsets, whenever for every
ta, tb ∈ T, the set S ∩ [ta, tb] is finite, in which case we say that S is a non-Zeno
set.

We extend every domain D into D⊥ that includes two special fresh symbols
⊥Dnotick and ⊥Doutside. These new symbols allow capturing when a stream does not
generate an event, and when the time offset falls off the beginning and the end
of the trace.

2 We use sort and type interchangeably in the rest of the paper.

Streams. Monitors observe sequences of events as inputs, where each event is
time-stamped and contains a data value from its domain.

Definition 1 (Event stream). An event stream of sort D is a partial function
η : T ⇁ D such that dom(η) does not contain bounded infinite subsets, where
dom(η) is the subset of T where η is defined.

The set dom(η) is called the set of event points of η. An event stream η can be
naturally represented as a timed word : sη = (t0, η(t0))(t1, η(t1)) · · · ∈ (dom(η)×
D)∗, or as an ω-timed word sη = (t0, η(t0))(t1, η(t1)) · · · ∈ (dom(η) × D)ω for
infinite streams, such that:

(1) sη is ordered by time (ti < ti+1); and
(2) for every ta, tb ∈ T the set {(t, d) ∈ sη | t ∈ [ta, tb]} is finite.

The set of all event streams over D is denoted by ED.

We introduce some notation for event streams. The functions prev< and
prev≤ with type ED × T → T⊥ are defined as follows. Note that the functions

can return a value in T⊥ because sup can return ⊥T
outside when the stream has

no event in the interval provided.

prev<(σ, t)
def
= sup(dom(σ) ∩ [0, t))

prev≤(σ, t)
def
= sup(dom(σ) ∩ [0, t])

sup(S)
def
=

{
max (S) if S 6= ∅
⊥T

outside otherwise

Essentially, given a stream σ and a time instant t ∈ T, the expression prev<(σ, t)
provides the nearest time instant in the past of t at which σ is defined. Similarly,
prev≤(σ, t) returns t if t ∈ dom(σ), otherwise it behaves as prev<.

Synchronous SRV In synchronous SRV, specifications are given by associating
every output stream variable y with a defining equation that, once the input
streams are known, associates y to an output stream. For example:

define bool always_p := p /\ always_p[-1,true]

define int count_p := (count_p[-1,0]) + if p then 1 else 0

defines two output streams: always_p, which calculates whether Boolean in-
put stream p was true at every point in the past (that is, p) and count_p,
which counts the number of times p was true in the past. Offset expressions like
count_p[-1,0] allow referring to streams in a different position (in this case
in the previous position) with a default value when there is no previous posi-
tion (the beginning of the trace). In this paper we introduce a similar formalism
for timed event streams. Our goal is to provide a simple language with few
constructs including explicit references to the previous position at which some
stream contains an event, contrary to other stream languages like TeSSLa [9]
and RTLola [14] which preclude to reason about real-time instants. We say that
Striver is an explicit time SRV formalism.

2.2 Syntax of Striver

A Striver specification describes the relation between input event-streams and
output event-streams, where an input stream is a sequence of observations from
the system under analysis.

The key idea in Striver is to associate each defined stream variable with:
– a ticking expression that captures when the stream may contain an event;
– a value expression that defines the value contained in the event.

Note that in synchronous SRV, only a value expression is necessary because
every stream has a value at every clock tick.

Formally, a Striver specification ϕ : 〈I,O,V ,T 〉 consists of input stream vari-
ables I = {x1, . . . , xn}, output stream variables O = {y1, . . . , ym}, a collection
of ticking expressions T = {T1, . . . , Tm} and a collection of value expressions
V = {V1, . . . , Vm}. For output variable y, Ty captures when stream y ticks and
Vy what the value is when y ticks. All input and output streams are associ-
ated with a sort. It is sometimes convenient to partition output streams into
proper outputs and intermediate streams, that are introduced only to simplify
specifications.

In practice, it is very useful that Ty defines an over-approximation of the
set of instants at which y ticks, and then allow the value expression to evaluate
to ⊥Dnotick. The stream associated with y does not contain an event at t if Vy
evaluates to ⊥Dnotick at t, even if t is in Ty. For example, if one wishes y to filter
out events from a given stream x it is simple to define in Ty that y ticks whenever
x does, and delegate to Vy to decide whether an event is relevant of should be
filtered out.

Expressions. We fix a set of stream variables Z = I∪O. Apart from ticking ex-
pressions and value expressions, offset expressions (used inside value expressions)
allow defining temporal dependencies between ticking instants.

– Ticking Expressions:

α := {c}
∣∣ v.ticks ∣∣ α U α

∣∣ delay w
where c ∈ T is a time constant, v is an arbitrary stream variable, and w is a
stream variable of type Tε, and U is used for the union of sets of ticks. The
type Tε is defined as Tε = {t | t ≥ ε} for a given ε > 0. This restriction on
the argument of delay guarantees that the ticking instants are non-zeno if
all their inputs are non-zeno (see Section 3).

– Offset Expressions, which allow fetching previous events from streams:

τx ::= x <~ τ ′
∣∣ x << τ ′ τ ′ ::= t

∣∣ τz for z ∈ Z

Offset expressions have sort T. Here, t represents the current value of the
clock. The intended meaning of x << τ ′ is to refer to the previous instant

strictly in the past of τ ′ where x ticks (or ⊥Doutside if there is not such an
instant). The expression x <~ τ ′ also considers the present as a candidate.

– Value Expressions, which give the value of a defined stream at a given ticking
point candidate:

E ::= d
∣∣ x(τx) ∣∣ f(E1, . . . , Ek)

∣∣ t ∣∣ τx ∣∣ outsideD ∣∣ notickD
where d is a constant of type D, x ∈ Z is a stream variable of type D and
f is a function symbol of return type D. Note that in x(τx) the value of
stream x is fetched at an offset expression indexed by x, which captures the
ticking points of x and guarantees the existence of an event. Expressions t

and τx build expressions of sort T. The two additional constants outsideD
and notickD allow to reason about accessing the end of the streams, or not
generating an event at ticking candidate instant.

We also use the following syntactic sugar:

x(~e)
def
= x(x<~ e) x(~e, d)

def
= if (x <~ e)==outside then d else x(~e)

x(<e)
def
= x(x << e) x(<e, d)

def
= if (x << e)==outside then d else x(<e)

Essentially, x(~t) provides the value of x at the previous ticking instant of x
(including the present) and x(<t) is similar but not including the present. Also,
x(<t, d) is the analogous to x[−1, d] in synchronous SRV allowing to fetch the
value in the previous event in stream x, or d if there is not such previous event.

Example 1. Consider two input event streams: sale that represents sales of a
certain product, and arrival which represents the arrivals to the store:

input int sale , int arrival

ticks stock := sale.ticks U arrival.ticks

define int stock := stock(<t,0) +

(if isticking(arrival) then arrival (~t) else 0) -

(if isticking(sale) then sale(~t) else 0)

where isticking(sale) is defined as (sale<~t)==t. Note that stock is defined
to tick when either sale or arrival (or both) tick. ut

Example 2. To illustrate the use of delay consider the following specification:

ticks clock := {0} U delay clock

define Time _eps clock := 1sec

The stream clock emits an event every second since time 0. ut

2.3 Semantics

As common in SRV, the semantics is defined denotationally first. This semantics
establishes whether a given input and a given output satisfy the specification,
which is defined in terms of valuations. Given a set of variables Z, a valuation

σ is a map that associates every x in Z of sort D with an event stream from
ED. Given a valuation σ we define the result of evaluating an expression for σ.
We define three evaluation maps J.Kσ, J.Kσ, J.Kσ depending on the type of the
expression3:

– Ticking Expressions. The semantic map J.Kσ assigns a set of time instants to
each ticking expression as follows:

J{c}Kσ
def
= {c}

Jv.ticksKσ
def
= dom(σv)

Ja U bKσ
def
= JaKσ ∪ JbKσ

Jdelay(w)Kσ
def
= {t′ | there is a t ∈ dom(σw) such that t+ σw(t) = t′

and dom(σw) ∩ (t, t′) = ∅ }

– Offset Expressions. For offset expressions J.Kσ provides, given a time instant
t, another time instant:

JtKσ(t)
def
= t

Jx << eKσ(t)
def
=

{
⊥T

outside if JeKσ(t) = ⊥T
outside

prev<(σx, JeKσ(t)) otherwise

Jx <~ eKσ(t)
def
=

{
⊥T

outside if JeKσ(t) = ⊥T
outside

prev≤(σx, JeKσ(t)) otherwise

– Value Expressions. Finally, value expressions are evaluated into event streams
of the appropriate type. For a given instant t:

JdKσ(t)
def
= d

Jx(e)Kσ(t)
def
=

{
⊥Doutside if JeKσ(t) = ⊥T

outside

v if JeKσ(t) = t′ and σx(t′) = v

Jf(E1, . . . , Ek)Kσ(t)
def
= f(JE1Kσ(t), . . . , JEkKσ(t))

JtKσ(t)
def
= t

JτxKσ(t)
def
= JτxKσ(t)

JoutsideDKσ(t)
def
= ⊥Doutside

JnotickDKσ(t)
def
= ⊥Dnotick

Note that Jx(e)Kσ includes the possibility that (1) the expression cannot be
evaluated because the time instant given by JeKσ(t) is outside the boundaries
of domain of the stream and (2) the expression is not defined because the
stream does not tick at t. It is easy to see that the cases for Jx(e)Kσ are
exhaustive because JeKσ(t) guarantees that σx(t′) is defined.

3 we use colors to better distinguish between semantic maps

For example, consider the following stream (1.0, 17), (2.5, 21), (3.5, 12) for
variable sale from Example 1. Then

Jsale(~t)Kσ(3.1) = Jsale(sale<~ t)Kσ(3.1) = JsaleKσ(2.5) = 21

Definition 2 (Evaluation Model). Given a valuation σ of variables I∪O the
evaluation of the equations for stream y ∈ O is:

JTy,VyKσ
def
= {(t, d) | t ∈ JTyKσ and d = JVyKσ(t) and d 6= ⊥Dnotick}

An evaluation model is a valuation σ such that for every y ∈ O: σy = JTy,VyKσ.

The goal of a Striver specification is to define a monitor, that intuitively
should be a computable function from input streams into output streams. The
following definition captures whether a specification indeed corresponds to such
a function.

Definition 3 (Well-defined). A specification ϕ is well-defined if for all σI ,
there is a unique σO, such that σI ∪ σO is an evaluation model of ϕ.

As with synchronous SRV, specifications can be ill-defined. For example, the
following specification (define bool a:= not a) admits no evaluation model,
and (define bool a:= a) admits many evaluation models. Additionally, a spec-
ification is efficiently monitorable if the output at time t only depends on the
input at time t, which enable the incremental computation of the output stream.

Definition 4 (Efficiently monitorable). A well-defined specification ϕ is ef-
ficiently monitorable whenever for every two input σI and σ′I with evaluation
models σO and σ′O, and for every time t, if σI |t = σ′I |t then σO|t = σ′O|t.

2.4 Well-formedness

The condition of well-definedness is a semantic condition, which is not easy to
check for a given specification (undecidable for expressive enough domains). We
present here a syntactic condition, called well-formedness, that is easy to check
on input specifications and guarantees that specifications are well-defined. Most
specifications encountered in practice are well-formed.

We first define a subset of the offset expressions, called the Present subset, as
the smallest subset that contains t and such that if e ∈ Present then (x <~ e) ∈
Present. We say that an output stream variable y directly depends on a stream
variable x (and we write x → y) if x appears in Ty or Vy. We say that y has a

present direct dependency on x (and write x
0−→ y) if x→ y and either

– x.ticks appears in Ty, or
– (x<~ e) appears in Vy and e ∈ Present.

A direct dependency captures whether in order to compute a value of a stream
variable y at position t, it is necessary to know the value of stream variable x up

to t. If x → y but x 6 0−→ y we say that y directly depends on x in the past (and

we write x
−−→ y).

Definition 5 (Dependency Graph). The dependency graph of a specification

ϕ is a graph (V,E) where V = I ∪O and E = V × V × { 0−→, −−→}.

The dependency graph of Example 1 is:

stock salearrival
0 0

−

The following definition captures whether an output stream variable cannot
depend on itself at the present moment.

Definition 6 (Well-Formed Specifications). A specification ϕ is well-formed

if every closed path in its dependency graph contains a past dependency edge
−−→.

Closed paths in the dependency graph correspond to dependencies between a
stream and itself in the specification ϕ. These closed paths do not create problems
if the path corresponds to accessing the strict past of the stream. Note that if

one removes
−−→ edges from the dependency graph of a well-formed specification,

the resulting graph is necessarily a DAG. In other words
0−→∗ is irreflexive. The

following lemma formally captures the information that is sufficient to determine
the value of a given stream at a given time instant.

Lemma 1. Let y be an output stream variable of a specification ϕ, σ, σ′ be two
evaluation models of ϕ, such that, for time instant t:

(i) For every variable x, σx(t′) = σ′x(t′) for every t′ < t, and
(ii) For every x, such that x

0−→∗ y, σx(t′) = σ′x(t′) for every t′ ≤ t
Then σy(t) = σ′y(t).

The proof proceeds by structural induction on expressions, with the observa-
tion that only values in the past are necessary, as in conditions (i) and (ii). We
are now ready to show that well-formed specifications cannot have two different
evaluation models.

Theorem 1. Every well-formed Striver specification is well-defined.

The proof proceeds by showing that for well-formed specifications two evaluation
models must be equal. This is shown by induction on the events in the traces to
prove that the i-th event must be identical. Lemma 1 guarantees that induction
can be applied.

3 Operational semantics

The semantics of Striver specifications introduced in the previous section are
denotational in the sense that these semantics associate for a given input stream
valuation exactly one output stream valuation, but does not provide a procedure
to compute the output streams, let alone do it incrementally. We provide in this
section an operational semantics that computes the output incrementally . We
fix a specification ϕ with dependency graph G and we let G= be its pruned

dependency graph (obtained from G by removing
0−→ edges). We also fix < to be

an arbitrary total order between stream variables that is a reverse topological
order of G=.

We first present an online monitoring algorithm that stores the full history
computed so far for every output stream variable. Later we will provide bounds
on the portion of the history that needs to be remembered by the monitor,
showing that only a bounded number of events needs to be recorded, and that
this bound depends only on the size of the specification (number of streams)
and not on the length of trace. This modified algorithm is a trace-length inde-
pendent monitor for efficiently monitorable Striver specifications. The algorithm
maintains the following state (H, tq):

– History: H is a finite event stream one for each output stream variable. We
use Hy for the event stream prefix for stream variable y.

– Quiescence time: tq is the time up to which all output streams have been
computed.

The monitor runs a main loop, calculating first the next relevant time tq
for the monitoring evaluation and then computing all outputs (if any) for time
tq. We show that no event exists in any stream in the interval between two
consecutive quiescence time instants. We assume that at time t, the next event
for every input stream is available to the monitor, even though knowing that
there is no event up-to some tq is sufficient.

The core observation follows from Lemma 1, which limits the information
that is necessary to compute whether stream y at instant t contains an event
(t, d). All this information is contained in H, so we write JTyKH and JVyKH to
remark that only H is needed to compute JTyKσ and JVyKσ.

The main algorithm, Monitor, is shown in Algorithm 1. Lines 2 and 3 set
the history and initial quiescence time. The main loop continues until no more
events can be generated. Line 5 computes the next quiescence time, by taking
the minimum instant after the last quiescence time at which some output stream
may tick. A stream y “votes” (see Algorithm 2) for the next possible instant at
which its ticking equation Ty can possibly contain a value. Consequently, if no
input stream votes for an earlier time it is guaranteed that no ticking equation
will contain a value t lower than the lowest vote. Note that recursive calls at
line 28 terminate because the graph G= is acyclic (recall that the specification
is well-formed).

The algorithm follows a topological order over the G=, so the information
about the past required in Lemma 1 is contained in H. The following result
shows that, assuming that σI is non-zeno, the output is also non-zeno. Hence,
for every instant t, the algorithm eventually reaches tq > t in a finite number of
executions of the main loop.

Lemma 2. Monitor generates non-zeno output for a given non-zeno input.

The proof proceeds by contradiction assuming a t with non-zeno output, and
the minimum output stream in G= that has a non-zeno output, and then showing

Algorithm 1 monitor: Online Monitor

1: procedure Monitor
2: Hs ← 〈〉 for every s
3: tq ← −∞
4: loop . Step
5: tq ← min

s∈O
{t | t = vote(H,Ts, tq)}

6: if tq =∞ then break

7: for s in G= following < do
8: if tq ∈ JTsKH then
9: v ← JVsKH(tq)

10: if v 6= ⊥D
notick then

11: Hs ← Hs ++ (tq, v) . Updates history H
12: emit(tq, v, s)

13: end for
14: end loop

Algorithm 2 vote: Compute the next ticking instant

15: function vote(H, expr, t)
16: switch expr do
17: case delay(s)
18: if (t′ + v) > t (where (t′, v) = last(Hs)) then return t′ + v
19: else return ∞
20: case {c}
21: if c > t then return c
22: else return ∞
23: case a ∪ b
24: return min(vote(H, a, t),vote(H, b, t))

25: case y.ticks with y ∈ O
26: return vote(H,Ty, t)

27: case s.ticks with s ∈ I
28: return succ>(σs, tq)

that there must be a non-zeno output for t− ε. This can be applied t
ε times to

conclude that there is non-zeno output before 0 which is a contradiction.

We finally show that the output of Monitor is an evaluation model. We use
Hi
s(σI) for the history of events Hs after the i-th execution of the loop body,

and H∗s (σI) for the sequence of events generated after a continuous execution of
the monitor. Note that H∗s (σI) can be a finite sequence of events (if the input
is bounded and no repetition is introduced in the specification using delay) or
an infinite sequence of events. In the first case, the vote is eventually ∞ and the
monitoring algorithm halts.

Theorem 2. Let σI be an input event stream, and let σO consist of σx = H∗x(σI)
for every output stream x. Then (σI , σO) is an evaluation model of ϕ.

The proof proceeds by induction on the number of rounds in the loop, show-
ing that the output is an evaluation model up-to the quiescence time. Putting
together Theorem 2, Lemma 1 and Lemma 2 we obtain the following result.

Corollary 1. Let ϕ be a well-formed specification, σI a non-zeno input stream
and H∗ the result of Monitor. Then, H∗ is the only evaluation model for input
σI , and H∗ is non-zeno.

Trace Length Independent Monitoring The algorithm Monitor shown
above computes incrementally the only possible evaluation model for a given in-
put stream, but this algorithm stores the whole prefix Hy for every output stream
variable y. We show now a modification of the algorithm that is trace length in-
dependent, based on flattening the specification. A specification is flat if every
occurrence of an offset expression in every Ty is either x(<~ t) or x(<< t). In other
words, there can be no nested term of the form x(<~ (y<~ t)) or x(<~ (y<< t))
or x(<< (y<~ t)) or x(<< (y<< t)). We first show that every specification can
be transformed into a flat specification. The flattening applies incrementally the
following steps to every nested term x(E(y<< t)), where E is an arbitrary offset
term:
1. introduce a fresh stream s with equations Ts = y.ticks and Vs = x(E(t))
2. replace every occurrence of x(E(y << t)) by s(<t).

Example 3. Consider the following specification of a continuous integration pro-
cess in software engineering. The intended meaning is to report in faulty those
commits to a repository that fail the unit tests.

input commit_id commits , unit push , bool tests

ticks faulty := tests.ticks

define commit_id faulty := if tests (~t) then notick

else commits(<push <<t)

After applying the flattening process the specification becomes:

define commit_id faulty := if tests (~t) then notick else s(<t)

ticks s := push.ticks

define commit_id s := commits(<t)

Here, s stores the commit_id of the last commit at the point of a push, which
is precisely the information to report at the time of a faulty commit. ut

Lemma 3. Let ϕ be a specification. There is an equivalent flat specification ϕ′

that is linear in the size of ϕ.

Now, let ϕ′ be the flat specification obtained from ϕ and let y be an output
stream variable. Consider the cases for offset sub-expressions in the computation
of JVyKH(t) in line 9 of Monitor:
– s<~ t: the evaluation fetches the value Hs at time t (if s ticks at t) of at the

previous ticking time (if s does not tick at t).
– s<< t: the evaluation fetches the value Hs at the previous ticking time of s.

In either case, only the last two elements of Hs are needed. The similar argu-
ment can be made to compute Ty because only the last event of s is needed for
delay(s). Hence, to evaluate Monitor on flat specifications, the algorithm only
needs to maintain the last two elements in the history for every output stream
variable to compute the next value of every value and ticking equation.

Theorem 3. Every flat specification ϕ can be monitored online with linear mem-
ory in the size of the specification and independently of the length of the trace.
Moreover, every step can be computed in linear time on the size ϕ.

4 Extensions and Comparison

We first sketch how to define the most complex operator4 of TeSSLa: x =
delay〈s0, s1〉, which creates an event stream x whick will tick at an instant t
if there is an event (t′, v) in s0 such that t′+ v = t and also dom(s1)∩ (t′, t) = ∅
TeSSLa does not handle explicit time and offsets but builds specifications from
building blocks like delay. Given inputs s0 and s1 the Striver specification is:

ticks aux := s0.ticks U s1.ticks

define Time _eps aux := if isticking(s1) then infty

else if aux(<t,infty) = infty || aux(<t) + aux <<t <= t

then s0(~t) else notick

ticks x := delay x_aux

define unit x := ()

We now present three extensions to the basic Striver introduced previously.

Accessing successors. The first extension allows accessing future events, via
the dual of the offset operators x >~ e and x >> e, and the syntactic sugar to
access the successor value x(e>), x(e~), x(e, d>) and x(e, d~). As for Lola,
well-formedness can be guaranteed as long as all strongly connected components

in the dependency graph contain only
−−→ and

0−→ edges, or only
+−→ and

0−→
edges, and additionally, there is no cycle with only

0−→ edges. For example, this
guarantees that there is no cyclic dependency, as every stream either depends
on itself in the future or in the past (or none at all).

All Delays. This allows defining tick sets that consider all delays. The ticking
expressions are extended with an operator delayall with the following seman-
tics:

Jdelayall(w)Kσ
def
= {t′ | there is a t ∈ dom(σw) such that t+ σw(t) = t′}

This extension requires only to change vote to accommodate for a set of pos-
sible pending delays and not just a single delay. In general, this cannot be im-
plemented in finite memory for arbitrary event rates and delays, but Monitor
works directly for the online monitoring this construct.

4 Due to limitations a full comparison against TeSSLa and STL is not presented here.

Windows. The last extension allows implementing computations over precise
windows, like “count the number of events in every window of one second”. This
cannot be described in TeSSLa [9], which is limited to finite memory monitors,
or in RTLola [14] because this specification is not isochronous. Note that this
property cannot be monitored by splitting the time in intervals of one second
and counting the events in each of the intervals obtained (as in RTLola) as this
approach misses the case of counting the events in part of one window and the
remaining time in the adjacent window. The main idea of this extension is to
enrich time expressions with a tag, in such a way that every tick carries an
additional value (we called this extension dependent time). Then, delay and
delayall are enriched with the ability to use tagged time streams, with the
caveat that the U combinator must now indicate how to combine tags. Consider
the following example with input int s:

ticks wcount := (const 1 s) U delay all (const (-1,5) s)

define int wcount t aux := wcount(<t,0) + aux

The stream wcount must only be computed when a new event arrives in
s (adding 1) or when an event leaves the window (substracting 1), which is
monitored with a constant number of operations per event, but requires storing
a number of events that depends on the event rate.

The Signal Temporal Logic STL [21,1]—when interpreted over piecewise-
constant signals—is subsumed by Striver. First note that event streams have a
dual interpretation as piece-wise constant signals, where the signal only changes
at the point where events are produced. The translation to Striver opens the door
to a quantitative computation of STL by enriching the data types of expressions
and verdicts. We show the operator x U[0,b] y:

ticks v := x U y U delay all -b x U delay all -b y

define bool v t := if y(~t,false) then true else

if !x(~t,false) then false else

let t’ := yT(t~) in

if t’== outside || t’ > t+b then false else t’ <= xF(t~)

5 Empirical Evaluation

We report an empirical evaluation of a prototype sequential Striver implementa-
tion, written in the Go programming language5. We measure the memory usage
and time per event for two collections of specifications. The first collection, from
Example 1, computes the stocks of p independent products. These specifications
contain a number of streams proportional to p, where each defining equation is
of constant size. The second collection computes the average of the last k sales
of a fixed product, via streams that tick at the selling instants and compute the
sum of the last k sales (see the appendix for the concrete specs). The resulting
specifications has depth proportional to k. We instantiate k and p from 10 to
500 and run each resulting specification with a set of generated input traces. We
run the experiments on a virtual machine on top of an Intel Xeon at 3GHz with

5 Striver is available at http://github.com/imdea-software/striver

http://github.com/imdea-software/striver

(a) Memory wrt trace length (b) Event ratio wrt trace length length

105 106 107 108

5,000

10,000

15,000

20,000

25,000

30,000

Number of events

K
B
s

105 106 107 108
0

20,000

40,000

60,000

80,000

100,000

120,000

Number of events

E
ve
n
ts

p
er

se
co
n
d

avg 10
avg 50
avg 100
avg 500
stock 10
stock 50
stock 100
stock 500

(c) Memory wrt k or p (d) Event ratio wrt k or p

250 300 350 400 450 500 550

10,000

15,000

20,000

25,000

30,000

35,000

k and p

K
B
s

250 300 350 400 450 500 550

10,000

20,000

30,000

k and p

E
ve
n
ts

p
er

se
co
n
d

avg k
stock p

Fig. 1. Empirical evaluation

32GB of RAM, and measure the average memory usage (using the OS) and the
number of events processed per second.

In the first experiment, we run the synthesized monitors with traces of vary-
ing length (top two plots in Figure 1). The results illustrate that the memory
needed to monitor each specification is independent of the length of the trace
(the curves are roughly constant). Also, the ratio of events processed is inde-
pendent of the length of the trace. In the second experiment, we fix a trace of
1 million events and run the specifications with k and p ranging from 250 to
550. The results (lower diagrams) indicate that the memory needed to monitor
stock p is independent of the number of products while the memory needed
to monitor each avg k specification grows linearly with k. Recall that theoreti-
cally all specifications can be monitored with memory linearly on the size of the
specification.

6 Conclusion and Future Work

We have introduced Striver, a specification language with explicit time and off-
set reference for the stream runtime verification of timed event streams. We
have presented a trace-length independent online monitoring algorithm for the
efficiently monitorable fragment. Future work includes the extension of the lan-
guage with parametrization, (like in QEA [4], MFOTL [6] and Lola2.0 [13]), to
dynamically instantiate monitors for observed data items. We are also study-
ing offline evaluation algorithms, and algorithms that tolerate deviations in the
time-stamps and asynchronous arrival of events from the different input streams.

References

1. Lectures on Runtime Verification, volume 10457 of LNCS, chapter Specification-
Based Monitoring of Cyber-Physical Systems: A Survey on Theory, Tools and
Applications, pages 135–175. Springer, 2018.

2. Lectures on Runtime Verification - Introductory and Advanced Topics, volume
10457 of LNCS. Springer, 2018.

3. Eugene Asarin, Paul Caspi, and Oded Maler. Timed regular expressions. J. ACM,
49(2):172–206, 2002.

4. Howard Barringer, Yliès Falcone, Klaus Havelund, Giles Reger, and David Ry-
deheard. Quantified event automata: Towards expressive and efficient runtime
monitors. In Proc of the 18th Int’l Symp. on Formal Methods (FM’12), volume
7436 of LNCS, pages 68–84. Springer, 2012.

5. Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. Rule-based
runtime verification. In Proc. of VMCAI’04, LNCS 2937, pages 44–57. Springer,
2004.

6. David A. Basin, Felix Klaedtke, Samuel Mller, and Eugen Zalinescu. Monitoring
metric first-order temporal properties. Journal of the ACM, 62(2), 2015.

7. Andreas Bauer, Martin Leucker, and Chrisitan Schallhart. Runtime verification
for LTL and TLTL. ACM T. Softw. Eng. Meth., 20(4):14, 2011.

8. Laura Bozelli and César Sánchez. Foundations of Boolean stream runtime verifi-
cation. In In Proc. RV’14, volume 8734 of LNCS, pages 64–79. Springer, 2014.

9. Lukas Convent, Sebastian Hungerecker, Martin Leucker, Torben Scheffel, Malte
Schmitz, and Daniel Thoma. TeSSLa: Temporal stream-based specification lan-
guage. In Proc. of the 21st. Brazilian Symp. on Formal Methods (SBMF’18),
volume 11254 of LNCS. Springer, 2018.

10. Flaviu Cristian and Christof Fetzer. The timed asynchronous distributed system
model. IEEE Transactions on Parallel and Distributed Systems, 10(6):642–657,
1999.

11. Ben D’Angelo, Sriram Sankaranarayanan, César Sánchez, Will Robinson, Bernd
Finkbeiner, Henny B. Sipma, Sandeep Mehrotra, and Zohar Manna. LOLA: run-
time monitoring of synchronous systems. In Proc. of TIME’05, pages 166–174.
IEEE, 2005.

12. Cindy Eisner, Dana Fisman, John Havlicek, Yoad Lustig, Anthony McIsaac, and
David Van Campenhout. Reasoning with temporal logic on truncated paths. In
Proc. of CAV’03, volume 2725 of LNCS 2725, pages 27–39. Springer, 2003.

13. Peter Faymonville, Bernd Finkbeiner, Sebastian Schirmer, and Hazem Torfah. A
stream-based specification language for network monitoring. In Proc. of the 16th
Int’l Conf. on Runtime Verification (RV’16), volume 10012 of LNCS, pages 152–
168. Springer, 2016.

14. Peter Faymonville, Bernd Finkbeiner, Maximilian Schwenger, and Hazem Torfah.
Real-time stream-based monitoring. CoRR, abs/1711.03829, 2017.

15. Alwyn E. Goodloe and Lee Pike. Monitoring distributed real-time systems: A
survey and future directions. Technical report, NASA Langley Research Center,
2010.

16. Klaus Havelund and Allen Goldberg. Verify your runs. In Proc. of VSTTE’05,
LNCS 4171, pages 374–383. Springer, 2005.

17. Klaus Havelund and Grigore Roşu. Synthesizing monitors for safety properties. In
Proc. of TACAS’02, LNCS 2280, pages 342–356. Springer, 2002.

18. Martin Leucker. Teaching runtime verification. In Proc. of RV’11, number 7186
in LNCS, pages 34–48. Springer, 2011.

19. Martin Leucker, César Sánchez, Torben Scheffel, Malte Schmitz, and Alexander
Schramm. TeSSLa: Runtime verification of non-synchronized real-time streams.
In Proc. of the 33rd Symposium on Applied Computing (SAC’18). ACM, 2018.

20. Martin Leucker and Christian Schallhart. A brief account of runtime verification.
J. Logic Algebr. Progr., 78(5):293–303, 2009.

21. Oded Maler and Dejan Nickovic. Monitoring temporal properties of continuous
signals. In Proc. of FORMATS/FTRTFT 2004, volume 3253 of LNCS, pages 152–
166. Springer, 2004.

22. Lee Pike, Alwyn Goodloe, Robin Morisset, and Sebastian Niller. Copilot: A hard
real-time runtime monitor. In Proc. of RV’10, LNCS 6418. Springer, 2010.

23. Amir Pnueli and Aleksandr Zaks. PSL model checking and run-time verification
via testers. In Proc. of FM’06, LNCS 4085, pages 573–586. Springer, 2006.

24. Grigore Roşu and Klaus Havelund. Rewriting-based techniques for runtime verifi-
cation. Automated Software Engineering, 12(2):151–197, 2005.

25. Koushik Sen and Grigore Roşu. Generating optimal monitors for extended regular
expressions. ENTCS, 89(2):226–245, 2003.

A Missing Proofs

Lemma 1. Let y be an output stream variable of a specification ϕ, σ, σ′ be two
evaluation models of ϕ, such that, for time instant t:

(i) For every variable x, σx(t′) = σ′x(t′) for every t′ < t, and
(ii) For every x, such that x

0−→∗ y, σx(t′) = σ′x(t′) for every t′ ≤ t
Then σy(t) = σ′y(t).

Proof. Note that since σy and σ′y must satisfy that Ty = JTyKσ and Ty = JTyKσ′ ,
and also VyJVyKσ and Vy = JVyKσ′ . It is easy to see that t ∈ JTyKσ if and only if
∈ JTyKσ′ , by structural induction on ticking expressions. The key observation is
that only values in the conditions of the lemma are needed for the evaluation,
which are assumed to be the same in σ and σ′. Similarly, it is easy to see that
JVyKσ = JVyKσ′ because again the values needed are the same in σ and σ′. ut

Theorem 4. Every well-formed Striver specification is well defined.

Proof. Let ϕ be a well-formed specification and σ and σ′ two evaluation models
for the same input (that is σI = σ′I). We show that σ = σ′. Since ϕ is well-

formed, the dependency graph removing
−−→ is acyclic. Let < be an arbitrary

total order between stream variables such that if x
0−→∗ y then x < y. Note that

< is simply a reverse topological order if this acyclic graph. Now we derive a total
order between the events occurring in streams in σ as follows. Let (t, d) ∈ σx
and (t′, d)′ ∈ σy be two such events. Then
– (t, d) ≺ (t′, d′) whenever t < t′, or
– (t, d) ≺ (t′, d′) whenever t = t′ and x < y.

Since < is a total order between variables, ≺ is also a total order between all
events in σ. We now show by induction in the total order that σ = σ′. Consider
the first event (t, d) in σ according to ≺. This event can be either:

– an input event. In this case, since σI = σ′I , (t, d) must also be the first input
event in σ′I . The only possibility for σ′ to differ in the first event is that
some output stream y has an event (t′d′) ≺ (t, d). But this is only possible
if the defining equations for y with no previous events make t′ ∈ JTyKσ and
d′ = JVyKσ, but by Lemma 1 (t′, d) is also an event in σy, which contradicts
that (t, d) was the first event.

– an event in an output stream y. In this case, again t ∈ JTyKσ if and only if
t ∈ JTyKσ′ and d = JVyKσ = JVyKσ′ .

Assume now the inductive hypothesis that both streams coincide up to the i-th
event and consider the i+1 event in σ. Again, if the event (t, d) is an input event
it must also by the following input event in σ′, and no output event can precede
it because it would also precede (t, d) in σ because the defining equations depend
on the i-th preceding events. Also, if the event (t, d) is an output events, since
the evaluations of the defining events are the same in σ and σ′, (t, d) will also
be an event in σ′ (and cannot be preceded by another event). This finishes the
proof. ut

Lemma 2. Monitor generates non-zeno output for a given non-zeno input.

Proof. Note that events are generated in strictly increasing time for every stream,
because the quiescent time tq decided in line 5 is greater than the current time.
However, that does not imply non-zenoness because some time domains (like the
reals and the rationals) accept infinite sequences of increasing time stamps do
not pass a given instant t.

Now, we first show that if the output generated by the monitor is zeno for
time t (that is, there is no bound on the executions of the loop body that make
tq > t) then the execution is also zeno for time t − ε. The lemma then follows
because, by repeating the result t

ε times we will obtain that there is a zeno
execution that does not pass t− ε tε = 0, but the second execution already passes
0.

Consider one such offending t. There must be an output stream variable
x that votes infinitely many times in the infinite sequence of increasing qui-
escence times that never pass t. Let x be the lowest such stream variable in
(G=, <). Consider the ticking expression for x. Since ∪ collects the votes for
its sub-expressions, it follows that some sub-expression votes for infinitely many
quiescent times in the sequence. The sub-expression cannot be s.ticks, because
s would be lower than x in < (contracting that x is minimal). Hence, the sub-
expression voting infinitely many times is of the form delay(s). Then, all these
votes are caused by different events in Hs that are ticks of s that happened
earlier than t− ε. ut

Theorem 2. Let σI be an input event stream, and let σO consist of σx = H∗x(σI)
for every output stream x. Then (σI , σO) is an evaluation model of ϕ.

Proof. Let σ be (σI , σO). By Lemma 2 the sequence of quiescent times is a non-
zeno sequence. We show by induction on the votes of Monitor that for every
quiescent time tq, σ is an evaluation model up-to tq, that is H∗x |tq = JTx, VxKσ|tq .

Consider a quiescent time tprevq and let ty = vote(H, y.ticks, tprevq). We first
show that for every output stream y, ty ∈ JTyKσ and for no t′ with tprevq < t′ < ty,
t′ ∈ JTyKσ. This results follows by induction on <, by Lemma 1 which guarantees
that only the past is necessary to evaluate JTyKσ, and by our assumption that σ
is an evaluation model up-to tprevq . Now, let tq be the next quiescence time after
tprevq chosen in line 5. We show, again by induction on <, that for every output
stream variable y, Hy contains an event (tq, v) if and only if tq ∈ JTyKσ (which
we showed above), and v = JVyKσ = JVyKH as computed in line 9. Hence, all
events in Hy satisfy that (tq, v) ∈ JTy, VyKσ and all events (tq, v) ∈ JTy, VyKσ are
added to Hy at quiescence time tq. Since only quiescent times can satisfy JTyKσ,
it follows that σ is an evaluation model up-to tq if σ is an evaluation model
up-to tprevq , as desired. Finally, since the set of quiescent times is non-zeno, for
every t there is a finite number n of executions of loop body after which tnq ≥ t.
Then, after n rounds σ is guaranteed to be an evaluation model up-to t. Since t
is arbitrary, it follows that σ is an evaluation model. ut

Consider two specifications ϕ(I,O) and ϕ′(I,O′) with the same set of input
stream variables, and with O ⊆ O′. We say that ϕ and ϕ′ are equivalent whenever

for every σI , the valuation models σO of ϕ and σO of ϕ′ coincide in O. The
following lemma expresses that the flattening construction preserves equivalence.

Lemma 1. Consider a specification ϕ and let ϕ′ be a resulting specification
obtained by applying the transformation once. Then ϕ and ϕ′ are equivalent.

B More examples

The following example illustrates a more complex specification.

Example 4. The following defines a Bool stream to monitor whether the stock
falls below a predefined threshold.

const threshold := 100

ticks low := stock.ticks

define bool low := stock (~t) < threshold

We can use the stream variable low_stock to inform the user that the stock
is low. Note that low_stock will compute a value every time the stock changes,
which could lead to too many alarms until the order is performed. To overcome
this issue, one can define a stream which only reports the changing points of
low_stock (the let clauses allow to cleanly define local values):

ticks new_low := low_stock.ticks

define bool new_low := let val := low(~t) in

let prev := low(<t) in

if val != prev then val else notick

Finally, the following specifications allows emitting an alarm (of type unit)
every time the stock is low for a certain length of time length:

const length := 2h

output unit long_low_stock

output T alarm

ticks alarm := new_low.ticks

define T alarm := if !new_low (~t) then infty

else length

ticks long_low_stock := at alarm

define unit long_low_stock := ()

We can define a stream variable to report when there is a long period of low
stock as defined by long low stock, but also to report if after a certain amount
of time report_time the stock is ok using the following specification:

const report_time := 8h

output T clock_reset

output bool report

ticks clock_reset := report.ticks U {0}

define T clock_reset := report_time

ticks report := at clock_reset U long_low_stock.ticks

define bool report := isticking(long_low_stock)

The dependency graph of the given example is the following:

stock

low stock

long

alarm

report

reset
arrival

sale

00 0 <

arrival

0

0 0 0

This finishes this example. ut

Example 5. We also allow to apply a unary operation to a given stream f(s),
which would result in the creation of an intermediate stream with the same ticks
as s but with f(s(t)) as the values. Given s :: SA and a function f :: A→ B :

output B s_f_aux

ticks s_f_aux := s.ticks

define B s_f_aux :=

f(s(~t))

Also, we ease the definition of delayed streams with a constant length with
a similar trick. Given s :: S and length :: Tε:

output T_eps s_del_aux

ticks s_del_aux := s.ticks

define T_eps s_del_aux :=

length

ut

Example 6. The following specification adds the value of the event stream s
within a window of 5 seconds:

ticks int waggr := s.ticks U delay all (pair 5sec -s)

define int waggr t aux := waggr(<<t,0) + aux

Example 7. Using this new extension, we can check STL properties by translat-
ing them to Striver specifications. To do so, we define a function translate(ϕ, x, v)
which will return a Striver specification with an output signal v and input signal
x such that v(t) = (x, t) � ϕ. The specification is constructed recursively over ϕ:

translate(T,, v):

output bool v

ticks v := {0}

define bool v t :=

true

translate(µf , x, v):

input D x

output bool v

ticks v := x.ticks

define bool v t :=

f(x_1(~t),...,x_n(~t)) > 0

translate(¬ϕ, x, v), where PHISPEC = translate(ϕ, x, vphi):

PHISPEC

output bool v

ticks v := vphi.ticks

define bool v t :=

!vphi(~t)

translate(ϕ∧ψ, x, v), where PHISPEC = translate(ϕ, x, vphi) and PSISPEC
= translate(ψ, x, vpsi)

PHISPEC

PSISPEC

output bool v

ticks v := vphi.ticks U vpsi.ticks

define bool v t :=

vphi(~t) && vpsi(~t)

translate(ϕU[a,b]ψ, x, v), where PHISPEC = translate(ϕ, x, vphi) and PSIS-
PEC = translate(ψ, x, vpsi)

PHISPEC

PSISPEC

output bool v

output bool phiF := filter (\v -> !v) vphi

output bool psiT := filter (\v -> v) vpsi

ticks v := delay -a vphi U delay -b vphi U delay -a vpsi U delay -b vpsi

define bool v t :=

if psiT <~t >= t+a then true else

if vpsi(~t) then true else

let psiNextT := psiT~>t in

if psiNextT == outside || psiNextT > t+b then false else

if phiF~>t <= psiNextT then false else

vphi(~t)

C TeSSLa operators

The equivalent Striver specifications of TeSSLa operators are defined as follows:

– nil: the stream x = nil is defined as:

ticks x := {0}

define void x t := notick

– unit: the stream x = unit is defined as:

ticks x := {0}

define unit x t := ()

– lift: the stream x = lift〈f, s0, . . . , sn〉 :

input A0 s0

...

input An sn

ticks x := s0.ticks U ... U sn.ticks

define B x t :=

if (s0 <~t == outside || ... || sn <~t == outside)

then notick else f(s0(~t),...,sn(~t))

– time: the stream x = time〈s〉 is defined as:

input A s

ticks x := s.ticks

define Time x t := t

– last: the stream x = last〈s0, s1〉 :

input A0 s0

input A1 s1

ticks x := s1.ticks

define A0 x t := s0<<t

– delay: the stream x = delay〈s0, s1〉 is defined as:

input Time _eps s0

input A s1

ticks x_aux := s0.ticks U s1.ticks

define Time _eps x_aux := if isticking(s1) then infty

else if x_aux(<t,infty) == infty || x_aux(<t) + x_aux <<t <= t

then s0(~t) else notick

ticks x := at x_aux

define unit x t := ()

Example 8. We consider the specification that allows to count events in a given
input stream, which is a built-in block in TeSSLa (or a recursive definition in
TeSSLa 2.0).

input A s

ticks event_count := s.ticks U {0}

define int x t :=

if isticking(s) then event_count(<t,0) + 1 else 0

D Empirical Evaluation

The specification for the stock of p products is:

input int sale_1

input int arrival_1

...

input int sale_p

input int arrival_p

ticks stock_1 := sale_1.ticks U arrival_1.ticks

define int stock_1 := stock_1(<t,0) +

(if isticking(arrival_1) then arrival_1 (~t) else 0) -

(if isticking(sale_1) then sale_1 (~t) else 0)

...

ticks stock_p := sale_p.ticks U arrival_p.ticks

define int stock_p := stock_p(<t,0) +

(if isticking(arrival_p) then arrival_p (~t) else 0) -

(if isticking(sale_p) then sale_p (~t) else 0)

To compute the average of the last k purchases we use the following specifi-
cation:

ticks denom := sale.ticks

define int denom := if denom(<t) == k

then k

else denom(<t,0)+1

ticks sumlastk := sale.ticks

define int sumlastk := sumlastk(<t,0) +

sale(~t) -

sale(<sale <<sale <<... <<t, 0)

ticks avgk := sale.ticks

define int avgk := sumlastk / denom

	Striver: Stream Runtime Verificationfor Real-Time Event-Streams

