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Summary

The ab initio quantum chemistry software GAMESS(US) (M. S. Gordon & Schmidt, 2005; M.
W. Schmidt et al., 1993) is capable of calculating a variety of molecular properties. One of
the many popular uses of GAMESS(US) is the prediction of properties of volatile and unstable
species that have not been experimentally characterized or quantified before by chemists, physi-
cists, astro-chemists and astro-physicists (Bennett, Ennis, & Kaiser, 2014; Burda, Pavelka, &
Šimánek, 2004; Hickman, Miles, Hayden, & Talbi, 2005; Pacifici, Verdicchio, Lago, Lombardi,
& Costantini, 2013). Applications of, and research done using, GAMESS(US) is not limited to
uncharacterized species; it’s also widely used in material characterization or material property
prediction research. Research utilizing these types of ab initio calculations typically require
calculations with multiple steps required to achieve each final result. For instance, a Raman
activity prediction first requires a geometry optimization and Hessian calculation be performed
on the molecule, making automation extremely beneficial. This leads to complicated and te-
dious workflows slowing a user’s research.
Oftentimes single calculations of molecular properties are not reliable, resulting in publications
requiring several calculations, each implementing either a different level of theory or basis set,
for each property be done on each molecule. This has brought about a demand for high
throughput data calculation packages which automate these ab initio calculations (Bhooras-
ingh, Slakman, Seyedzadeh Khanshan, Cain, & West, 2017; Kiran Mathew, 2017; Larsen et
al., 2017); as well as workflow management systems (Krogel, 2016) and data parsers (O’boyle,
Tenderholt, & Langner, 2008). Specific packages have also been developed to compliment
GAMESS(US) (Allouche, 2011; Bode & Gordon, 1998; DerMardirossian & Bokoch, 2005;
Schaftenaar & Noordik, 2000; J. Schmidt & Polik, 2013). However, because these programs
are largely visualization and graphical programs, there is still a need for packages that auto-
mate GAMESS(US) Raman calculations. Automation is essential to generate large databases
of Raman data, which could have further applications for machine learning of Raman data.
As it stands, the automation of Raman calculations is either not being done, or being imple-
mented individually by each research group utilizing the GAMESS(US) software. This slows
scientific progress down, and an automation software written in a language extremely simple
and well adopted by scientists, such as Python, is an attractive solution to the problem.
AutoGAMESS provides an open source, Python-based software for automating conversion
between optimization calculations to Hessian calculations and then to Raman calculations.
It also offers automation of data collection from the output files, for quick tabular data
readouts of each calculation. AutoGAMESS has currently been used for a study presented
at the 30th Annual Conference on Computation Physics CCP2018 that will be published
in the conference proceedings. AutoGAMESS is also currently being used in multiple other
computational chemistry projects, soon to be published by scientists at the University of
Central Florida.
AutoGAMESS provides the following public interfaces:
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• new_project: Builds a directory tree for housing input/output files with spreadsheets
for collected data.

• input_builder: Builds optimization input files based on text file specifications
• opt2hes: Converts optimization input files into Hessian input files
• hes2Raman: Converts Hessians input files into Raman input files
• sort_logs: Sorts GAMESS(US) output files
• fill_spreadsheet: Fills in Excel Spreadsheets with data collected from log files
• get_data: Collects data from output files
• make_plot: Makes a vibrational frequency vs. IR/Raman intensity line plot

Capabilities

AutoGAMESS is capable of initializing an entire directory with well-organized subdirectories
for housing all input and output files. This main directory will also contain spreadsheets that
AutoGAMESS is later capable of filling with the data collected from parsing the output files.
Once a main directory is initialized, input files can be generated for GAMESS(US) optimiza-
tion calculations. Requiring only a simple CSV file as input, AutoGAMESS’ input_builder
function can generate thousands of files with any form of internal GAMESS(US) level of theory
and both internal and external basis sets. External basis sets must be a part of EMSL Basis
Set Exchange (Benjamin P. Pritchard, 2019; Feller, 1996; Schuchardt et al., 2007). This
requirement is due to the integration of the EMSL basis set exchange Python package into
AutoGAMESS. After the user has run a geometry optimization calculation, AutoGAMESS is
able to quickly get the required data from the output to modify the geometry optimization
input file into a Hessian calculation input file. Similarly, after a Hessian calculation Auto-
GAMESS can use the output to quickly generate a Raman calculation input file. Once all
calculations a user desires to run have been completed, AutoGAMESS can sort the output
files, then parse files for specific molecular properties and fill in the spreadsheets that had
been generated initially. All Hessian and Raman data is pulled directly from output files,
while geometry optimization properties, such as bond lengths and angles, are calculated by
AutoGAMESS. Bond lengths are calculated by using the simple Euclidean distance formula,

D =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2,

while bond angles are calculated by first performing a translation on the Cartesian coordinates,
of the general form, P (x, y, z) → P ′(x−a, y− b, z− c), where (a, b, c) are the coordinates of
a central atom. Then the angle between two atoms with a third as the origin is found using
the equation

A = arccos (V̂1 · V̂2)

where A is the bond angle and V̂1 and V̂2 are the normalized position vectors for each atoms
location in relation to the modified origin.
AutoGAMESS is also capable of generating line plots of the vibrational frequency vs. IR/Raman
intensity. Generated plots will be titled with the molecule name in the file and the theory/basis
set used for the calculation. Each symmetry group will be plotted in a different color, from
either a default or user-specified color list. The spectral line (sum of line broadening) will also
be plotted in red with 50% transparency. Figure 1 shows an example line plot of H2O using
B3LYP/CCD for the calculation.
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Figure 1: Line Plots Example

AutoGAMESS can also generate scaling factors for vibrational frequencies using the least
squares method by Scott & Radom (1996). This method involves minimizing the residuals,
∆, given by

∆ =

all∑
i

(λωtheory
i − νexpti )2,

resulting in

λ =

∑all
i ωtheory

i νexpti∑all
i (ωtheory

i )2
,

where ωtheory
i and νexpti are the ith theoretical harmonic and ith experimental fundamental

frequencies (in cm−1) and λ is the scaling factor. The root mean square error is then given
by

rms = (

∑n
i ∆min

n
)

1
2 ,

where n is the number of frequency modes for the molecule and ∆min is the minimized residual
for each particular mode.

Use of AutoGAMESS

AutoGAMESS was developed to be versatile in its usability; several examples (in both shell
and Python scripts) can be found in the software’s GitHub repository.

Availability

This software is distributed under the MIT License and can be installed through Python’s pip
install command.
python -m pip install autogamess --user
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Dependencies

AutoGAMESS requires all the following Python packages:

• Python-3.x
• NumPy (T. E. Oliphant, 2006; Walt, Colbert, & Varoquaux, 2011)
• SciPy (Jones, Oliphant, Peterson, & others, 2001)
• Pandas (McKinney, 2010)
• basis_set_exchange
• PeriodicElements
• openpyxl
• Matplotlib (Hunter, 2007)
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