
Information and controlling system

67

 N. Vinogradov, M. Stepanov, Ya. Toroshanko, V. Cherevyk, A. Savchenko, V. Hladkykh, O. Toroshanko, T. Uvarova, 2019

DEVELOPMENT OF THE 
METHOD TO CONTROL  
TELECOMMUNICATION 

NETWORK CONGESTION 
BASED ON A NEURAL 

MODEL

N .   V i n o g r a d o v
Doctor of Technical Sciences, Professor*

M .   S t e p a n o v
Doctor of Technical Sciences, Senior Researcher

Department of Radio Reception and Signal Processing
National Technical University of Ukraine 	

«Igor Sikorsky Kyiv Polytechnic Institute»
Peremohy ave., 37, Kyiv, Ukraine, 03056

Y a .   T o r o s h a n k o
PhD, Senior Researcher**

E-mail: toroshanko.ya@gmail.com
V .   C h e r e v y k

PhD, Associate Professor**
A .   S a v c h e n k o

PhD, Associate Professor*
V .   H l a d k y k h

PhD***
O .   T o r o s h a n k o

Lecturer***
T .   U v a r o v a

PhD
Center of Military and Strategic Studies

Ivan Chernyakhovsky National Defense University of Ukraine
Povitroflotskyi ave., 28, Kyiv, Ukraine, 03049

*Department of Computer Information Technologies
National Aviation University

Kosmonavta Komarova ave., 1, Kyiv, Ukraine, 03680
**Department of Computer Sciences

State University of Telecommunications
Solomianska str., 7, Kyiv, Ukraine, 03110

***Department of Telecommunication
O. S. Popov Odessa National Academy of Telecommunications

Kovalska str., 1, Odessa, Ukraine, 65029

Розглянута схема контролю переванта­
жень з використанням зворотного зв’язку по 
знаку функції чутливості продуктивності 
телекомунікаційної мережі. Для визначення 
даної функції запропоновано використання 
простої нейронної мережної моделі динаміч­
ної системи. Контроль наявності або загро­
зи перевантаження здійснюється на основі 
аналізу довжини черги на стороні приймача 
інформації. Для аналізу системи визначена 
функція вартості як цільова функція наявнос­
ті перевантаження. Запропонований алго­
ритм оптимального управління забезпечує 
формування керуючого сигналу таким чином, 
щоб вихід системи відповідав як можна ближ­
че заздалегідь встановленим характеристи­
кам – ключовим показникам ефективності 
мережі. Розроблена схема контролю пере­
вантаження зі зворотним зв’язком по знаку 
чутливості функції продуктивності системи. 
Знак чутливості продуктивності надає опти­
мальний напрям для налаштування швидкос­
ті джерела даних.

Запропонована нейронна модель для бага­
токрокового передбачення стану черги на сто­
роні приймача телекомунікаційної мережі. 
Якщо нейронна мережа налаштована на від­
слідковування динаміки системи і показує, що 
квадратична помилка є незначною, вважа­
ється, що виконаний крок відповідає наперед 
передбаченому виходу системи.

Запропонований алгоритм адитивного  
збільшення/множинного зменшення, який ви- 
значає зміну швидкості джерела даних в залеж­
ності від знаку функції чутливості показника 
продуктивності. Даний алгоритм є альтерна­
тивою системи прогнозування перевантажен­
ня і керування потоком, заснованої на порого­
вому заповненні черги.

Проведено порівняльний аналіз ефектив­
ності керуючих схем виявлення переванта­
ження на основі черг і на основі функції чут­
ливості продуктивності телекомунікаційної 
мережі. Показано, що величина черги і коли­
вання швидкості джерела менші для схеми 
на основі чутливості, ніж для схеми на осно­
ві черги.

Результати моделювання продуктивнос­
ті запропонованої схеми показують, що схема 
на основі функції чутливості має кращі клю­
чові показники ефективності в порівнянні зі 
звичайною схемою вибору порога черги

Ключові слова: телекомунікаційна мере­
жа, функція чутливості, нейронна мережа, 
динамічна система, управління чергою
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1. Introduction

The quality of services in the telecommunication 
network is largely determined by algorithms of rou
ting, data flow control and functioning under congestion 
conditions. Different routing methods, static or dyna

mic, local or centralized, deterministic or stochastic, try 
to direct messages from the source to the destination,  
so that:

– data delay in the network should be minimal; 
– data traffic control should ensure avoidance or mini-

mizing the appearance of congestion.
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A telecommunication network is a totality of resources 
that are used by competing users [1–3]. Resources of such 
networks can be divided into two main classes:

– main: buffer memory, throughput, processing time;
– side: name space, table entries, logical channels, etc.
The totality of resources has limited (finite) capabili-

ties that cause appearance of conflicts between the users of  
a system. These conflicts can cause a decrease in system per-
formance to such a point when a system becomes «noisy». 
The reason for this «noisiness» is repeated duplication of data 
and a sharp increase in technological controlling information. 
As a result of it, the throughput decreases significantly, per-
haps, to the zero mark. This is a typical behavior of «compe
ting» system [3–6]. Such a situation can lead to the collapse 
of a network.

Networks cannot service the entire proposed traffic 
without some control. There should be the rules that govern 
external traffic and flow coordination within a network. 

There are several definitions of congestion, which, how-
ever, do not contradict one another. We will use the following 
definition [7–9]: «congestion is a data loss by a user, caused 
by an increase in load in the network». 

Therefore, congestion control can be determined as a set 
of the mechanisms that prevent or reduce such decline. If  
a network does not prevent a loss of user’s data, you need to 
try to maximally limit the losses, and, in the future, try to be 
fair to all users who suffered.

Congestion has a significant impact on key performance 
indicators of a telecommunication network and users’ service 
quality. The above determines the relevance and the need for 
research in this direction.

2. Literature review and problem statement 

Papers [10, 11] considered the RED method of dealing 
with congestion, which is used in the TCP (Transmission 
Control Protocol) of the Internet. The expanded classifica-
tion of the methods and algorithms for dealing with conges-
tion that are used today was proposed. The characteristics 
of algorithms were described, advantages and disadvantages  
of their use under certain conditions of network operation 
were determined. However, the mentioned papers [10, 11] 
are, to a certain extent, reviewing in nature. They do not pre
sent quantitative comparative estimates of efficiency/com-
plexity of the RED method and other techniques, including 
Tail Drop, WRED (weighted random early detection), etc. 
In addition, the analytical materials concerning the traffic 
distribution by the types of packets are not given.

Articles [8, 12] studied the TCP Veno algorithm. The 
algorithm is quite common for fighting congestion and is able 
to work effectively in both wired and wireless networks. It is 
known that the algorithm of TCP Veno was created for wire-
less networks with a high share of lost packets. It tries to sep-
arate the losses, not related to the congestion so as not to in-
clude the algorithms of combating congestion where it is not 
required. Meanwhile, the method of recognition of the nature 
of losses by the algorithm TCP Veno, in fact, is quite trivial 
(a linear classifier). It is not mentioned in articles [8, 12],  
obviously, because of the impossibility of detailed analysis 
due to the lack of sufficient statistics of large volume.

Paper [4] deals with the method to prevent congestion by 
increasing the amount of memory of input buffers. However, 
the problem of Bufferbloat was not analyzed in this paper. 

At an increase in the amount of buffer memory, the number 
of unprocessed packets increases, and, what is more, so does 
waiting time for their processing. This can lead to exceeding 
the permissible norm of timeout duration, leading to a further 
decrease in useful throughput of a network. Usually, this can 
cause the avalanche process: bufferbloat causes the loss of 
packets that will have to be transmitted again or even sev-
eral times. Thus, the computation node of the router-sender 
receives the excessive parasitic load, which can lead to an in-
crease in negative consequences associated with congestion.

An important role in data flow control and congestion 
prediction, as well as in evaluating and optimizing key 
performance indicators of telecommunication networks is 
played by the indicators of sensitivity of complex systems. 
In the fundamental research [13], the category of sensitivity 
of a complex system as a mathematical indicator was deter-
mined and logarithmic sensitivity functions were proposed. 
However, at a high degree of abstraction and strictness of 
the mathematical apparatus, paper [13] does not provide the 
approaches to use of sensitivity function as a tool for applied 
analysis of technical systems.

In articles [14, 15], the advisability of using the ma
thematical apparatus for analysis of sensitivity of complex 
systems in the problems of congestion control in computer 
telecommunication networks was substantiated. The results, 
presented in publications [14, 15], act as recommendations 
of a general nature. Following them, of course, it is possible 
to develop specific methods of dealing with congestion, but 
it requires new unconventional approaches to the solution of 
the problem as a whole. One of such approaches is the use of 
artificial intelligence methods. First of all, these are neural 
networks of improved architecture with explicit and hidden 
layers and current optimization of parameters by results of 
learning through back error propagation.

Article [16] examined the ways and methods for deter-
mining sensitivity of output characteristics of telecommuni-
cation networks as systems of mass service. These methods 
are based on the models of queue control for the adaptation of 
the controlled access of external traffic to the system in order 
to obtain the expected limits of performance. 

Papers [14, 15] do not specify the definitions of the func-
tions of sensitivity of a telecommunication network and the 
methods of their identification in network control systems 
with explicit or indirect feedback.

In article [16], models and methods for queue control are 
based on the functions of sensitivity of output characteristics 
of telecommunication networks as systems of mass servi
cing. However, the asymptotic characteristics of sensitivity 
functions are not determined. In addition, the expression 
in a closed form for the functional or statistical connection 
of parameters of sensitivity functions and corresponding 
parameters of the queue control system were not obtained.

Study [17], focusing on the control of the telecommuni-
cation network congestion, proposed the algorithm of active 
distribution of attempts of simultaneous access to a slot 
with a uniform time distribution. This approach is fair for 
the Least Favorable Distribution (LFD) of a request flow. 
In modern telecommunication networks, distributions of 
request flows are far from uniform, so obtained asymptotic 
estimates will lead to unrealistically optimistic conclusions. 
Realistic estimates can be obtained when applying neural 
network models, which must adapt to load jumps and varia
tions of probabilistic distributions of request flows. In this 
work, an attempt to solve these problems was made.
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3. The aim and objectives of the study

The aim of this study is to improve and to develop the 
method for control and prediction of congestion in the tele-
communication network with the use of explicit feedback by 
the sign of the function of sensitivity of 
network performance.

To achieve the set aim, the fol
lowing tasks were solved:

– to analyze the methods for con-
gestion detection based on the control 
of quantitative value of the length of 
a queue on the side of the receiver, to 
identify their advantages and disad-
vantages; 

– to develop and substantiate the 
circuit multi-step prediction of the 
queue state and congestion threat 
based on the neural model; 

– to develop the algorithm of neu-
ral network learning and of the for-
mation of the feature of network con-
gestion.

4. Control of congestion and multi-step prediction  
of the state of telecommunication network

4. 1. Congestion control based on a queue length in-
dicator 

The most effective methods and algorithms for conges-
tion control are implemented based on the explicit feedback 
principle [1, 2, 16]. 

One of the most common ways of data flow control by the 
feedback principle is binary bit control [18, 19]. Feedback is 
implemented between the nodes, through which each sepa-
rate session of information exchange is performed. We will 
note that the feedback circuit can be implemented between 
two adjacent nodes or between two end nodes, between 
which there are some transit nodes along the information 
exchange route (end-to-end control).

The network provides binary indication about whether 
there were congestions or the threats of their occurrence 
during connection. The value of «0» of the congestion indi-
cator is set in the header of the packet by a data source, that 
is, on the side of the node-sender. Any node along the path 
can set (or prove) the value of congestion bit in a packet as 
«1» to indicate the existence or a congestion threat in this 
node. The end system (node-receiver) controls the bits of 
congestion of received packets and returns a feedback mes-
sage to the source with the information about the existence 
of congestion. If a feedback message reports on the absence of 
congestion, the information source increases the input traffic 
(rate of packet receiving, data stream) – additive feedback.  
If the feedback message reports on the existence or the threat 
of congestion, the input traffic from the information sources 
decreases – multiple (multiplicative) feedback.

The detection and indication of congestion based on  
a queue length is a simple and commonly used feed-
back-based circuit of information flow control (Fig. 1).

At the simultaneous implementation of S of informa-
tion processes (datagram way of transmission), the pa- 
ckets D1…DS from source S arrive at appropriate service 
queues, from which enter the queue of destination node 

through the circuits of packet delivery SPD1…SPDS. The 
generator of congestion indicator (GCI), based on the infor-
mation about the state of queue N(t), provides the data on 
the existence or a threat of congestion J(t) to the end user or 
the transit node.

The congestion state is traditionally determined by the 
queue length G(t) in a transit communication node or at the 
destination of the final data recipient at moment t. When  
a queue length reaches a preliminarily determined boundary 
value Q, the packets that pass through the queue will have an 
indication bit that is set in the state «congestion confirmed».

The main advantage of the queue-based circuit is its 
low complexity, because the absolute queue length can be 
controlled using one counter. However, this method is not 
effective when using the method of control of network seg-
ments with transit nodes of information transmission. Using 
one congestion bit for the whole segment does not make it 
possible to localize the congestion place with the precision to 
a node. This method can create long queues in network nodes 
and cause a great delay of feedback information. Detection 
of the created congestion should be delayed for the time, 
required to create the queue. Similarly, the identification of 
the congestion decision is also delayed for some time needed 
to process the queue. To control «additive increase/multiple 
decrease» in the source rate, we have:
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where R is the rate of filling the queue at the entrance of 
destination node; F + > 0 is the factor of additive increase; 
0 < F – < 1 is the factor of multiple decrease; E(t–τ) = Q–G(t–τ) 
is the error function; td is the time of delay of transmission  
of the state of congestion queue to the source.

4. 2. Neural network model for congestion detection
Let us consider the circuit of congestion control with 

feedback by the sign of sensitivity of the function of system 
performance. A sign of sensitivity of performance provides 
the optimal direction to adjust the data source rate [15]. The 
proposed circuit for determining the sensitivity function uses 
a simple neural network model of dynamic system. 

Neural networks are mathematical structures, capable to 
self-learning on the basis of external information [20]. 
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Fig. 1. Establishment of congestion bit based on queue length
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Let the dynamics of a service system be expressed with 
the following input-output equation:

G t f
G t G t G t l R t

R t R t m
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− −
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τ τ
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where G(t) is the scalar output: the queue length or service 
delay at the moment of time t; R(t) is the scalar input: instan-
taneous rate of the queue at the input at moment t; f [.] is  
the unknown function, evaluated with the help of neural net-
work; l, m are, respectively, orders {N(t), R(t)}; τ is the period 
of time counts, period of clock frequency of the system.

The aim of the algorithm of optimal control is the selec-
tion of control signal R(t) so that the output of system G(t) 
should meet as much as possible the characteristics set 
beforehand Q(t) (as a rule, Q(t) = Q = const). Sequential- 
parallel neural network model [16] of the unknown sys-
tem (2) can be represented as:

G t i

f G t G t l R t R t m i L

∧

∧

+ =
= − − =

( )
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τ
τ τ 1 2 ,, 	 (3)

where G^(t+iτ) is the output of the neural network; f ^ is the 
evaluation of function f; L is the prediction horizon.

Fig. 2 shows the circuit of multi-step prediction of the 
queue state based on neural network.

.

.

.

.

.

.

G(t)

G(t-lτ)

R(t)

R(t-mτ)

G^(t+iτ)

Input layer Output layer

Hidden layers of 
neural network

Fig. 2. Neural model of queue state prediction

If the neural network is set up to track the dynamics of 
the system and shows that the quadratic error:

[ ( ) ( )]G t i G t i+ − + =∧τ τ ε2 	 (4)

is insignificant, it is considered that the і-th step corresponds 
to the system output predicted beforehand (2). As a result,  
a controlling signal can be selected so that G^(t+iτ) should  
be as close to Q as possible.

We will determine the cost function as objective function 
of existence of congestion as follows:

J e t i Q G t i= +( ) = − +( ) 
∧1

2
1
2

2 2
τ τ ,  i L= 1 2, ,..., . 	 (5)

Control signal R(t) (that is, the rate of data source) must 
be selected so as to minimize J. In the discreet case, the con-
trolling variable is updated according to the following rule of 
gradient descent:

R t R t R t R t
J

R t
( ) ( ) ( ) ( )

( )
,+ = + ∆ = −τ η

∂
∂

	 (6)

where η is the size of control pitch.
Obviously, the weakest assumption for characteristics of 

the loss function, which enables using these methods, is the 
unimodality of the loss function. For actual telecommunication 
systems and networks this assumption is fairly realistic [8, 22].

You can see that to determine the appropriate control 
signal, the process of minimizing (6) is based on the appro
ximation made by a neural network. Therefore, it is necessary 
that G^(t+iτ) should approximate to the output of the actual 
system G(t+iτ) asymptotically. This can be achieved by sup-
porting the neural network learning online. 

Differentiating (5) for function R(t), we obtain:
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where expression ∂G^(t+iτ)/∂R(t) is known as sensitivity or 
gradient of the system [7, 15].

Substituting (7) into (6), we obtain: 
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Gradient of the system can be analytically evaluated  
using the known structure of the neural network [20]. 

Expression (6) can be represented as:

R t R t J t( ) ( ) sgn[ ( )],+ = − ∆τ η 	 (9)

where sign [∆J(t)] denotes sign ∆J(t) (that can be positive or 
negative).

Thus, we can conclude that (7) implements the rule of con-
trol of additive increase/ multiple decrease in the source rate. 
Therefore an attractive alternative to the circuit of congestion 
indicator generation, based on the threshold queue filling is 
the algorithm of additive increase/multiple decrease. The al-
gorithm determines the change in the rate of data source R(t), 
depending on the sign of sensitivity of performance indicator 
∆J(t–td). That is, congestion indicator B(t) is formed depen
ding on the gradient of system ∆J(t) at time moment t:

B t J n

B t J n

( ) , ( ) ,
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= ∆ <
= ∆ ≥





0 0

1 0

if

if

The value of ∆J, computed using formula (7), gives the 
optimal direction to adjust the source rate. In short, only the 
sign, but not the value of ∆J matters in this case. The circuit 
of the regulation of the input data stream (packets reception 
rate) using the neural network for analyzing sensitivity is 
shown in Fig. 3.

Current values of the rates of regulated input flows 
R1(t)…RS(t) enter the input layer of the neural network НМ. 
Based on analysis of values R1(t)…RS(t) and the current va
lue of the length of network queue G(t), the output layer of 
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neural network tracks down the magnitude of deviation ∆J 
of objective controlled function J (exiыtence or congestion 
threat). The sign of deviation magnitude sgn∆J is taken into 
account by the destination node during formation of the 
feedback signal. 

For the algorithm of control of additive increase/multiple 
decrease in the source rate, we have: 

R t
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0
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4. 3. Algorithm of neural network learning and forma-
tion of congestion feature

Model of neural network learning can change over time, 
online learning is necessary in the controlling system of load 
prediction based on sensitivity function. Because of using an 
explicit feedback signal by sensitivity function, the chosen 
method for neural network learning based on inverse error 
distribution is applied in this work as the most accurate and 
statistically steady [22]. 

Neural network learning algorithm and the formation of 
congestion feature is as follows. 

Initial state: Time moment t.
Step 1: Obtained dimensions of the system at the inlet 

and outlet: R(t) and G(t).
Available history of the system:

R t R t m( ),..., ( );− −τ τ  G t G t l( ),..., ( ).− −τ τ

History of neural network:

G t t x ti
p

i
p∧ − −( ), ( ), ( ) ,( ) ( )δ τ τ

for all layers p and all nodes i.
Step 2: Computation of the predicted value by the neural 

network:

G t i∧ −( ).τ

Computation of  the feedback value by the neural network:
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Step 3: Computation of gradient function:
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Formation of congestion in-
dicator:
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Step 4: Using the expression:

G t G t∧ − ( ) ( )

to update the weights of the neu-
ral network, we perform compu-
tation:
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β is the rate of neural network learning; γ is the constant 
pulse of neural network.

Step 5: The following interval: t ← t+τ. Proceed to step 1.
Note: Steps 3 and 4 can be performed in parallel. 
We will determine the following performance indicators 

for modeling, where T is the time to perform modeling:
– Gmax = max{G(t): 0 ≤ t ≤ T}. Maximum value G(t) dis-

plays the buffer size, which is required in a narrow place to 
avoid the packet loss;

– average time ( )f  to reach the queue size and the sour- 
ce rate:

f
T

f t t
T

 = ∫
1

0
( ) ;d

– variance σ2(f) of the queue size and source rate:

σ2 2

0

1
( ) [ ( ) ] .f

T
f t f t

T
= −∫  d

Let us make a comparative analysis of efficiency of con-
trolling circuits for congestion detection based on the function 
of sensitivity of telecommunication network productivity. 
Consider one connection with the following set of parameters: 
peak rate of source Rmax = 100 packets/time unit, time unit 
time τ = 0,25 ms, minimum rate Rmin = 100 packets/time unit, 
coefficient of additive increase F + = Rmax/16, coefficient of 
multiple decrease F– = 15/16. Congestion threshold is set at 
Q = 500 packets. 

Consider the rounding delay from 6 time units – 6τ. Two 
bottlenecks can be taken into account in the study:

– sinusoidal integer [35(1+sin(2(πτ)) = 10] packets/time 
unit;

– random (maximum value of 80 packets/time unit). 
The architecture of the neural network is as follows: 

3-layer neural network (8 inputs, 8 input neurons, 8 hidden  

Fig. 3. Optimization circuit of congestion control
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neurons, 1 output neuron); the order of queue length l = 3; 
the order of the rate of queue filling m = 3. To determine the 
state of the bottleneck of the queue, two different prediction 
horizons are considered in this study: prediction step 1 and 3. 

A short list of modeling results is shown in Table 1, where 
Gav and Rav denote time average queue size and source rate.

Modeling results, presented in Table 1, show that the 
magnitude of the queue and fluctuations in the source rate are 
smaller for the circuit, which is controlled based on sensitivity 
function than for the circuit that is controlled based on the 
queue analysis. Sensitivity-based circuit with the three-step 
prediction of state provides better productivity than the cor-
responding circuit with one-step prediction. This is because 
for a three-step prediction, the delay of controlling feedback 
signals (that is, congestion indicators), received in the data 
source from a network queue, is insignificant. That is, the 
congestion indicator more closely reflects the network condi-
tions implying the process. In the feedback-based load control 
circuits with considerable delays in the distribution, control 
signals received in the sources can be out of date. For feedback 
control, they come into action within the network after some 
delay control. It means that it will be possible to predict more 
accurately the queue state with a significant delay.

Thus, the disadvantage of the queue state prediction is 
that with the more delay we make predictions, the harder it 
is to get predictions of admissible errors. 

The queue-based circuit is more sensitive to changes in 
the queue service rate than for the sensitivity-based circuit. 
It should be noted that in the queue-based circuit at a sig-
nificant decrease in the queue service rate within a certain 
period of time, the queue size grows extensively beyond 
previously observed values. An increase in the queue size is 
steadier under the same conditions for sensitivity-based cir-
cuits. The value of difference gives an idea of the magnitudes  
observed.

To minimize the errors in the network state prediction, it 
is necessary to follow the obvious rule: the delay in delivery 
of official and customer information must be of the same 
order with the time of reaction of a switching node. The 
problem of accurate determining of delays and the time of 
reaction, development of the methods for delay regulation, 
depending on the state of the network load and reaction 
time of switching nodes is by no means trivial. Its complete 
solution, specifically, with obtaining quantitative estimates, 
requires thorough research of theoretical and practical na-
ture. Certain aspects of this problem were considered in some 
previous research of the authors of [4, 15].

5. Discussion of results of studying the method of control 
and prediction of network congestion

In this work, the neural network was applied to control 
the congestion of the telecommunication network as a com-
plex system with random delays of service (management) 

and user information. Unlike the traditional sys-
tems of congestion control by the changes of state 
and parameters of queues, the proposed system 
operates by optimal algorithms of configurations 
of weight parameters. This increases the accuracy 
of determining control signals, decreases the in-
fluence of their delays and, as a result, minimizes 
average consumption of resource.

Examining the neural network as a system 
of control of telecommunication network, the 
assumption about the used neural network be-
longing to the class of dynamic neural networks 
is made by default. In fact, this is a static neural 
network, which introduces a feedback through 
an element of one-bit delay. This assumption for 
the packet telecommunication networks is rather 
logical.

In addition, gradient of functional is minimized by 
the vector of weight coefficients of a neural network. This 
gradient is considered as a set of gradients by matrices of 
weight coefficients of individual layers. In this case, it turns 
out that the results of calculation by the matrix of weights 
of the above lying layer can be essentially used to calculate 
the gradient by the matrix of weights of below lying layer. 
Thanks to the proposed architecture of the dynamic neural 
network, firstly, the current process of selection of optimal 
weight coefficients is accelerated considerably, and, secondly, 
the procedure of network self-learning using the method of 
back error propagation is simplified.

To construct the optimal algorithms of configuration of 
neural network parameters, it is necessary to calculate sepa-
rately both the gradient of vector output of neural network, 
and the gradient of functional by the vector of discrepancy. 
Calculation by the vector of discrepancy causes no especial 
difficulties. Calculation of the gradient of the vector output of 
the neural network can be made by using the method, which 
is close to the method of inverse error distribution. However, 
in this case, it is necessary to carefully control the values of 
the roots of characteristic polynomial of the dynamic neural 
network, which requires additional computation resource.

It is possible to show that the expression for the gradient 
of network output for the vector of weight coefficients of the 
i-th layer is represented in the form of a rectangular matrix. 
At the same time, it is known that gradient takes the simplest 
form in the case of a square matrix of weight coefficients.  
It is proposed to calculate the comparative estimates of 
the required calculation volume during rotation of square  
N ́  N matrix and at pseudo-rotation of square N ́  L matrix for 
asymptotic estimation of the tendency of increasing compu-
tational complexity at the deviation of the form of the matrix 
from the square one.  

Obtaining (through computation or by computer simula-
tion) of asymptotic estimates of computational complexity of 
the proposed method will make it possible to obtain potential 
characteristics of a control system. It offers good prospects 
of a systemic solution to the problem of optimal control of 
a telecommunication network. In this case, it is necessary to 
take into account that deriving expressions in a closed form 

Table 1
List of modeling results

Approach
Servicing 

type
Gmax Gav σ2(G) Index Gmax Rav σ2(R)

Queue- 
based

Random 1560 724.5 187569.3 757 45.1 1370.1

Sinusoidal 1556 713.8 179305.5 281 45.7 1211.4

Gradient: 
1-Step

Random 1293 666.2 108986.4 480, 481, 482 44.4 878.3

Sinusoidal 1428 653.3 86115.5 48 44.4 1066.9

Gradient: 
3-Step

Random 1307 622.9 88526.7 800 44.2 929.9

Sinusoidal 1443 628.7 89936.5 49 44.5 1139.7
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and corresponding calculation expressions can be associated 
with cumbersome, although quite simple calculations. In 
turn, the computer simulation requires significant compu-
tational capacities. It seems that this problem can be solved 
in a quite powerful computational center, for example, in the 
computational center of a leading communication operator.

6. Conclusions

1. The problem of congestion detection based on the con-
trol of the quantitative value of the queue length is that the 
congestion detector can indicate only the existence of con-
gestion by the connection, but not the location or the causes 
of congestion. In addition, an attempt to fight congestion by 
a simple increase in the buffer capacity does not lead to the 
solution of the problem, but vice versa, to bufferbloat and 
inadmissible increase in service delay.

2. As a result of the carried out research, a new method for 
optimal control of congestions of a telecommunication net-
work with the use of a neural network as a system of moni
toring and control was developed. The circuit of a multi-step 
prediction of the queue state was proposed and substantia

ted. The apparatus of the general theory of sensitivity with 
the indirect feedback and control of message source activity 
was used for prediction and early detection of congestion. 
The results of this theory were used to construct a control 
system with indirect feedback that allows saving channel and 
computing resources.

3. The algorithm of neural network learning and forma-
tion of the network congestion feature was used. The funda-
mental difference of the obtained results is the development 
of the multi-layer dynamic neural network with a combina-
tion of explicit and hidden layers. Thanks to the choice of 
this architecture, firstly, the procedure of finding the optimal 
weight coefficients is simplified, and secondly, the process of 
neural network learning by the classic method of back error 
propagation is accelerated. As result of verification of theo-
retical results through computer simulation, the quantitative 
comparative estimates of efficiency (accuracy and required 
computing resource) of the developed method and the me
thods that existed before were obtained. It can be argued that 
with the perfect architecture of a neural network suitable for 
modeling the dynamics of a system, it is possible to receive 
rather satisfactory performance of a telecommunication sys-
tem as a control object.
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