
Chapter 1

Introduction

1.1 Background

Human movement involves not only multiple joints and limbs for a specific task in a

determined environment but also external information processed through all of our

available senses and our prior experiences. Recent studies in human motion recognition

have revealed the possibility of estimating features from lower dimension signals to

distinguish differences between styles of movement, such as pedalling (Quintana-Duque,

2012, 2016) or walking (Frank et al., 2010; Samà et al., 2013). Similar approaches

have been applied to pattern recognition of physiological signals (speech and heart

pathologies or epilepsy) (Gómez-García et al., 2014).

Signals of lower dimension are generally time series of one-dimension in R which

commonly have high nonlinearity, complexity, and non-stationarity (Caballero et al.,

2014; Gómez-García et al., 2014; Huffaker et al., 2017). With that in mind, traditional

methods in time-domain or frequency-domain generally tend to fail when detecting

tiny modulations in frequency or phase (Marwan, 2011). This can mean that subtle

signatures of each individual’s movement could be missed using traditional methods.

However, methods of nonlinear time series analysis can quantify such subtleties in

1



Introduction

human movement variability (Frank et al., 2010; Gómez-García et al., 2014; Marwan,

2011; Packard et al., 1980; Quintana-Duque, 2012, 2016; Samà et al., 2013; Stergiou and

Decker, 2011). Recently, Bradley and Kantz (2015) reviewed methods for nonlinear time

series analysis, such as the reconstructed state space (RSS) (Takens, 1981), recurrence

plots (RP) (Eckmann et al., 1987) and recurrence quantification analysis (RQA) (Zbilut

and Webber, 1992). Such methods are implemented using embedding parameters (m

and τ). However, the computation of embedding parameters is still an open problem

since there is no general technique to compute the embedding parameters because

time series are system-dependent, meaning that defined parameters may only work for

one purpose, e.g., prediction, or may not work well for other purposes e.g., computing

dynamical invariants (Bradley and Kantz, 2015).

Additionally, the quality of the time series signals is reflected on the reliability of

methods of nonlinear analysis. For instance, methods to compute embedding parameters

e.g., autocorrelation, mutual information, and nearest neighbour, require data which

are well sampled and with little noise (Garland et al., 2016) or need to be purely

deterministic signals (Kantz and Schreiber, 2003). Similarly, methods such as RSS, RP

and RQA can break down when datasets have different length, different accuracy and

precision (Frank et al., 2010), or when data are contaminated with different sources of

noise (Garland et al., 2016). It is surprising that despite these problems, methods of

nonlinear analysis have proven to be helpful to understand and to characterise time

series in the context of human movement (Bradley and Kantz, 2015; Frank et al., 2010;

Gómez-García et al., 2014; Marwan, 2011; Quintana-Duque, 2012, 2016; Samà et al.,

2013; Stergiou and Decker, 2011). Another point to consider when analysing time

series with methods of nonlinear analysis is the appropriate use of post-processing

techniques such as interpolation, normalisation or filtering. However, to my knowledge,
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there is little research on the effects and interpretation of post-processing techniques

with methods of nonlinear analysis such as RSSs, RPs and RQA.

1.2 Movement variability

Variability is inherent within and between all biological systems (Newell and Corcos,

1993). For instance, variability has been studied in electroencephalographic signals in

human brains (Klonowski, 2007), in physiological signals like the heart rate variability

(Rajendra Acharya et al., 2006; Schumacher, 2004), respiratory patterns of rats (Dhingra

et al., 2011), in speech variability where not only the linguistic aspect is investigated

but factors like gender, age, social, state of health, emotional state are strongly related

to uniqueness of the speaker (Benzeghiba et al., 2007) or even in odor responses based

on cultural background and gender (Ferdenzi et al., 2013).

Variability has also been well studied in human body movement, where, for instance,

Bernstein (1967) stated that no human movement is repeated exactly with the same

trajectory. With that in mind, movement variability has been used as a model of

fatigue to prevent chronic musculoskeletal disorders (Mathiassen, 2006; Srinivasan and

Mathiassen, 2012). Movement variability has also been considered as an indicator of

skilled performance in sport science where, for instance, Wagner et al. (2012) show

how movement variability based on statistical analysis varies with skill for three levels

of throwing techniques (low-skilled, skilled, and high-skilled). Therefore, Bartlett et al.

(2007) concluded that movement variability is ubiquitous across sports (javelin throwing,

basketball shooting or running). Another interesting example is that movement

variability can be considered as an identifier for personal trait (Sandlund et al., 2017),

where many factors of the human body can be considered for identification, such as:

age (Krüger et al., 2013; MacDonald et al., 2006; Stergiou et al., 2016; Vaillancourt and

Newell, 2003), gender (Svendsen and Madeleine, 2010), pain status (Madeleine et al.,

3



Introduction

2008; Sandlund et al., 2008), body composition (Chiari et al., 2002), work experience

(Madeleine and Madsen, 2009), pace, movement direction or cognitive demands like

perception, memory or capacity for introspection (Kanai and Rees, 2011; Srinivasan

and Mathiassen, 2012). Additionally, Bartlett et al. (2007) highlighted that movement

variability can be interpreted from different theoretical disciplines. For instance, a

cognitive control theorist considers variability as undesirable noise and variability is

reduced as skill increases, meaning that "becoming dexterous freezes unwanted degrees

of freedom in the kinematic chain" (Bartlett et al., 2007, p. 238). In contrast, an

ecological motor control specialist considers movement variability either as a functional

role in human movement for "coordination change and flexibility to adapt" in different

environments (Bartlett et al., 2007, p. 238) or as an exploration and exploitation of

body parts in the "perceptual-motor workspace" (Herzfeld and Shadmehr, 2014; Wu

et al., 2014).

Stergiou and Decker (2011), in contrast, highlighted that an optimal state of

movement variability is associated with healthiness. For instance, motor disabilities

may be related to either (i) wide range of behaviours which appear to be random,

unfocussed and unpredictable or (ii) narrow range of behaviours which seems to be

rigid, inflexible and predictable. Specifically, postural sway variability which is larger

for patients with Parkinson disease or the likelihood of falling in elderly individuals

which is associated with too little or too much step width variability. This suggest

that extremes of movement variability are symptomatic of lower ability to control

movement.

1.2.1 Modelling human movement variability

Human movement involves a complex system where many sensorimotor variables

such as joints, muscles, nervous system, motor unit and cells are the sources for
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different types of variability (Newell and Corcos, 1993). Hence, variability encompasses

different types, sources and views of variability. For instance, from a biomechanical

view, motion variability can be modelled as system of differential equations for the

neuro-musculoskeletal control system where motion variations can occur because of

"perturbations of initial states of the skeletal system", perturbations of "muscular or

neural subsystems ", or "external torques and forces acting on the skeletal system"

(Hatze, 1986, p. 13). According to Hatze (1986) motion variability can be caused

by (i) direct consequences of adaptive learning process, and (ii) random fluctuations

which are the result of stochastic processes in the nervous system. Hence, Hatze (1986)

proposed measures of dispersion (e.g. Fourier series and entropy measures) to quantify

the deviation of motion from a certain reference. With that, Hatze (1986) pointed

out that the combination of deviations from angular coordinates (radians) and linear

coordinates (meters) for Fourier series were an unacceptable quantifier as the units are

different. Hence, Hatze (1986) proposed the use of entropy as a global quantifier for

motion variability and concluded that any movement deviation of a body joint may be

the result of deterministic and stochastic causes.

Another approach to model variability has been proposed by Müller and Ster-

nad (2004), who decompose variability into exploration of task tolerance(T ), noise

reduction(N), and covariation(C). Hence, the quality of performance in goal-oriented

tasks, e.g. hitting a target, is defined "by the accuracy and replicability of the results"

(deviations from the target) "over repeated attempts of execution" (configuration of joint

angles with its velocity, angles and position) (Müller and Sternad, 2004, p. 229). For

the experiment, Müller and Sternad (2004) considered table skittles, where participants

throw a ball on a string that swings around a center post with the objective of knocking

down the skittle at the opposite site. Then, Müller and Sternad (2004) proposed D as

the absolute average of distance to the targets in n trials and used this as a measure
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of the collective performance that combines a function for movement based on the

execution vector with a function for the minimum distance from the target d. Therefore,

the overall difference in performance D is decomposed into three unequal contributions

of covariation C, noise reduction N and task tolerance T . Considering a 2-D task

space that spanned the release angle α and absolute velocity v, the components of

contributions of variability were calculated from five data sets (A, A0, Ashift, B and

B0): (i) the component of covariation where sets A and A0 and B and B0 have the

same means and variances, (ii) the component of tolerance where sets A and Ashift

differ only on their location in the task space, and (iii) the component of noise where

sets Ashift and B0 have the same means but different variances (see Fig. 6 in Müller

and Sternad (2004) for further details). With that in mind, Müller and Sternad (2004)

conducted an experiment with forty-two participants for five different locations of the

target skittle where for each target a participant performed 320 trials which is a total

of 1600 trials and therefore presented statistical confirmation of the contributions of T ,

N and C using ANOVA. Hence, Müller and Sternad (2004) concluded that T and N

contribute more to improvement of a performance of a task than C for initial practice,

meaning that a new combination of angles and velocities explore a large region of

solution space (hitting the target). However, for later practice T diminishes, and N

and C started to be more relevant. Also, Müller and Sternad (2004) showed in various

experiments of throwing actions that variability in the movement results (deviations

from the target) is generally smaller than variability in the execution (release angles

and velocities) for which it is concluded that covariation between execution variables

is another component of variability. With that in mind, Müller and Sternad (2004)

concluded that task space exploration is an essential contribution to the improvement

of movement performances which is an explanation to the increase of noise in early

practice phases.
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Seifert et al. (2011) investigated coordination profiles for recreational and com-

petitive breaststroke swimmers and proposed an hourglass model of variability that

illustrates the amount of variability as a function of expertise. Hence, Seifert et al. 2011,

p. 551 stated recreational swimmers show a considerable amount of intra-variability "as

they seek an individually appropriate coordination pattern to accommodate the novel

constrains of locomotion in water", whereas experts swimmers, after a considerable

practice, will still explore new environments to optimise their technique that create

another secondary blooming of variability which is the result of "the environment

exploration to optimise their technique with their individual strengths (e.g. physical,

anatomical, mental, etc.) and to gain an advantage over competitive swimmers". To

test the hourglass model of variability, Seifert et al. (2011) considered the continuous

relative phase (CRP) between the elbow phase angle and knee phase angle, therefore

CRP is used as an indicator on how swimmers synchronise arm recovery (elbow ex-

tension) and leg recovery (knee flexion). Seifert et al. (2011) analysed inter-individual

variability of swimmers with the shape of the curves of CRP which provide an indica-

tion of the inter-limb coordination, applied statistical measures such as hierarchical

clustering using eleven variables of CRP to classify the recreational swimmers into three

cluster of coordination (intermediate, most-variable and in-phase) and used Fisher

information to test which CRP variables were significantly differentiated the clusters.

With that, Seifert et al. (2011) concluded that inter-individual coordination variability

for recreational swimmers could be the result of (i) different state of process learning,

(ii) environmental constraints (different perception of the aquatic resistance), or (iii)

different perception of the task constrains (floating instead of swimming).

Preatoni (2007) and Preatoni et al. (2010, 2013) report that inter-trial variability is

defined as combination of functional changes associated with the nonlinear properties

of the neuro-musculo-skeletal system (Vnl) and random fluctuations in the neuro-motor-
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skeletal system (Ve). Additionally, Preatoni et al. 2013, p. 72 stated that the random

fluctuations in movement variability can be composed by Ve = Veb + Vee + Vem, where

Veb relates to the behavior and is the "error in the sensory information and in the motor

output commands", Vee is the "changes in the environmental conditions" and Vem is the

"changes in measuring and data processing procedures". Therefore, similar as Hatze

(1986), Preatoni et al. 2013, p. 77 pointed out that Vnl "may be interpreted as the

flexibility of the system to explore different strategies to find the most effective strategy

among the many available". Hence, Preatoni et al. 2010, p. 1328 concluded that the

total variability represents the changes of contributions for Ve and Vnl and it is defined

as Vtol = Ve + Vnl, where Vtol "may reveal the effects of adaptation, pathologies and

skills learning". Also, Preatoni et al. (2013) noted that their work only investigated

error from biological variability (e.g. Veb) which does not consider non-biological noise

resulting from measuring instruments or data post-processing techniques, such non-

biological noise has high frequency components that are usually removed. Therefore,

the work of Preatoni et al. (2010) and Preatoni et al. (2013) does not consider an

overall index to quantify movement variability but the combination of both Veb and

Vnl. With that in mind, Preatoni (2007) analysed the influences of Veb and Vnl for

movement repeatability by comparing entropy measures (e.g. ApEn and SampEn)

with values of their surrogate counterparts.

Generally, the previous approaches reported different models for movement vari-

ability which then are quantified with different tools. For instance, Hatze (1986) and

Preatoni et al. (2010, 2013) use entropy measures as the authors consider that the

origin of the signals in the human body is the result of deterministic and stochastic

processes, whereas Müller and Sternad (2004) and Seifert et al. (2011) reported mea-

sures of magnitude that limited the evaluation of the whole trajectories as structures

of movement variability in human body activities. Therefore, for this thesis, it is
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important to note that even with the proposed models for movement variability (Hatze,

1986; Müller and Sternad, 2004; Preatoni et al., 2010, 2013; Seifert et al., 2011) which

have been quantified with statistical or nonlinear tools, little has been investigated with

regards to the reliability of the nonlinear tools when using real-world data (Newell and

Slifkin, 1998). A further review of nonlinear analysis with real-world data is presented

in Chapter 2.

1.2.2 Movement variability in human-humanoid interaction

Movement variability in the context of human-humanoid interaction has been investi-

gated for exercising, rehabilitation and dancing purposes in the last six years (Görer

et al., 2013; Guneysu et al., 2015, 2014; Peng et al., 2015; Tsuchida et al., 2013).

For instance, Görer et al. (2013) conducted an experiment of a robotic fitness coach

where eight elderly participants performed five gestures: three for arm related exercises

and two for leg strength exercises. Hence, Görer et al. (2013) with only graphical

visualisation of joint angles trajectories extracted from the pose estimation of a kinect

sensor, stated that only one subject out of eight fail to imitate the gestures correctly.

Additionally, Görer et al. (2013) surveyed participants using a 5-point Likert scale about

the positive and negative effect, flow, immersion and challenge of the human-robot

interaction activity, concluding that their system is easy to use based on the high

scores for immersion and positive effect and low scores for challenge and negative effect.

However, the small sample size and somewhat naive analysis of data in the study makes

it difficult to generalise these findings.

Another example is the work of Guneysu et al. (2014) who conducted experiments

with children for upper arm rehabilitation using a play-like child robot interaction.

Hence, Guneysu et al. (2014), using a Kinect sensor to get data of join angles of the

participants‘ skeleton, performed an automatic evaluation of three upper body actions
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(shoulder abduction, shoulder vertical flexion and extension, and elbow flexion) of eight

healthy children who mimicked an humanoid robot. To evaluate motion imitation,

Guneysu et al. 2014, p. 202 considered similarity error using Dynamic Time Warping

(DTW) that penalise large angle errors over ten percent in the area range of the motion

type and applied recall measure as a representation of "how much of angular area of the

baseline motion from the humanoid robot is also covered by the child’s motion". Then,

Guneysu et al. (2014) presented the evaluation of five physiotherapists using Intraclass

correlation coefficient (ICC) which is a metric for reliability of ratings for motion types,

and reported that for the first motion, which consists of only one joint, the metric

and physiotherapist evaluations showed high agreement, whereas for the second and

third motions, which motions were more complex consisting of more joint values, the

evaluation between the metrics and physiotherapist ratings differed. Guneysu et al.

2014, p. 203 stated that during the evaluation of complicated movements, children

misperceived the actions for which "therapists compensated such misunderstanding by

giving high scores to the children while the proposed system only considered angles".

This suggests that it is also possible that the physiotherapist’ ratings differed from

these data because they were considering aspects which could have been incidental

to the movements. With that in mind, it is interesting to note that similarity error

and recall measures with the ICC metric are not completely reliable since they did

not model movements that involved more than one joint. Then, Guneysu et al. (2015)

analysed movements of more than one joint of four physiotherapists performing five

actions: opening a door with a key, touching the opposite shoulder with hand, taking

an object from back to neck, taking an object from the back and reaching an object

above the head. Guneysu et al. (2015) applied traditional statistics (e.g. sample

mean and sample variance) to characterise the five actions. For instance, the initial

positions of arms changed from person to person, specially for the key turning action

10



1.2 Movement variability

which variation were affected by the sample mean, while performances of turning the

amplitude of the arm were associated with the standard deviation of the data. However,

such statistical differences cannot capture the structure of the time series from each of

the participants which performed the movements at different frequencies and therefore

with different data length (see Fig. 10 in Guneysu et al. (2015) for further details).

Movement variability in the context of human-humanoid interaction has also been

investigated in robotic dance activities. For example, Tsuchida et al. (2013) explored

four dance formations which were performed three times by nine participants who

had three years of experience: dancing with a robot, dancing alone, dancing with a

self-propelled robot and dancing with a projected video. To visualise dance movements,

Tsuchida et al. (2013) presented two participant’s movement positions with twelve

trajectories each (four dance activities times three trials) of z and x directions obtained

with a Kinect sensor. Although, the dance experiment was rich in terms of movement

variability for both participants and dance activities, only distance between each of the

conditions in the dance formation was considered. With that in mind, Tsuchida et al.

(2013) concluded that the sense of dancing with a projected video of a person was the

closest to dancing with a real person and the trajectory of dance with a self-propelled

robot was the closest to the trajectory of a dancer. Additionally, Tsuchida et al. (2013)

only applied traditional statistics (i.e., ANOVA) to characterise dance movements.

Another aspect of movement variability in the context of human-humanoid inter-

action is the generation of robotic dance. Recently, Peng et al. (2015) reviewed an

hierarchical taxonomy of four categories for robotic dance (i.e., cooperative human-

robot dance, imitation of human dance motions, synchronisation for music and creation

of robotic choreography). Peng et al. (2015) pointed out that the creation of robotic

dance is still an open research question because such motions should generally be both

interesting and exciting for users. According to Peng et al. (2015), the creation of
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robotic dances can be accomplished with any of the following methodologies: (i) random

generation: where robots can be programmed with series of predefined algorithms

that can be chosen randomly, (ii) mapping rule: where robots can react, and therefore

dance, to different factors such as colours, sounds, speech, temperature or human

activity, (iii) chaotic dynamics: where chaotic systems are sensitive to initial conditions

and these systems can create various dance styles from periodic and couple rhythm to

jumping styles, resulting in innovative and consistent dance patterns, (iv) interactive

reinforcement learning: where the robot can automatically choose motions based on

rewards of participants’ preferences of graceful motions, (v) evolutionary computation:

in which multiple iterations of generations of dance motions can create graceful robotic

dance motions, and finally (vi) using a Markov chain model, a discrete time stochastic

chain, where each sequence of dance motions is considered as a state in the Markov

chain producing dance that synchronise with music and emotions. While the research

questions of this thesis are not focused on the creation of good robotic dances (i.e,

being innovative or having accordance with human aesthetics) (Peng et al., 2015), it is

important to note that sensitivity to initial conditions of chaotic dynamics systems is

aligned to the deterministic-chaotic properties of human movement (see Chapter 2 for

fundamentals of deterministic-chaotic time series).

Although, movement variability in the context of human-humanoid interaction has

not been well investigated in recent years, it can be noted that movement variability is

indeed present in activities such as exercise, rehabilitation or dance. Hence, previous

works in human-humanoid interaction have analysed gestures, movements or dance

activities with the use of traditional statistics, however the following points show some

issues in this field of research: (i) it is not clear how Görer et al. (2013) performed the

evaluation of synchronisation for gestures between participants and the humanoid nor

what were the methods of evaluation of gestures (apart from the visual observations to
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classify correct trajectories of gestures), (ii) little has been investigated with regards to

the differences in movement variability of physiotherapists in the works of Guneysu

et al. (2014) and Guneysu et al. (2015), and (iii) in the results of Tsuchida et al. (2013)

is not clear why the distribution of trajectories for subject 1 were more uniform than

the trajectories of subject 2.

Considering the previous reviewed works in the context of human-humanoid inter-

action, it can then be suggested that applying nonlinear analysis methods instead of

traditional statistics might provide better quantification and understanding of move-

ment variability of persons when interacting with humanoid robots. It is important

to note that non-stationary and non-linearity of time-series data from this thesis is

assumed (see Chapter 7 for a discussion on the reasoning, as posed by (Schreiber and

Schmitz, 2000), of making rather dangerous assumption). That said, the application of

nonlinear analysis methods to human-humanoid interaction activities can contribute

to the not yet fully explored reliability of nonlinear analysis methods with real-world

data (see Chapter 2 for a review of nonlinear analysis methods with real-world data).

1.3 Research questions

A number of questions regarding movement variability have been investigated in the last

decade: how is variability controlled while learning a new skill? (Bartlett et al., 2007;

Seifert et al., 2011; Wagner et al., 2012), is variability associated with disease or health?

(Stergiou and Decker, 2011; Stergiou et al., 2006), what are the sources of variability and

how do they interact in the production of observed variation of movement? (Preatoni,

2007; Preatoni et al., 2010, 2013). Nonetheless, little has been investigated regarding

to the reliability of methods of nonlinear analysis to quantify movement variability

(Iwanski and Bradley, 1998; Yao and Lin, 2017) when dealing with real-world data

(Bradley and Kantz, 2015; Caballero et al., 2014). Therefore, this thesis explores the
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effects of three methods of nonlinear analysis (e.g. Reconstructed State Space (RSS),

Recurrence Plots (RP) and Recurrence Quantification Analysis (RQA)) with different

features of time-series data such as structure, levels of smoothness and window lengths.

To perform such exploration, two experiments were conducted with twenty right-handed

healthy participants: one for human-image imitation activities and another in the

context of human-humanoid imitation activities. For the experiments, participants

were asked to imitate simple arm movements and participants and humanoid robot

worn inertial sensors to collect time-series data. Hence, the following research questions

are investigated in this thesis.

• What are the effects on RSSs, RPs, and RQA metrics of different embedding

parameters, different recurrence thresholds and different characteristics of time

series (structure, smoothness and window length size)?

• Additionally, what are the weaknesses and strengths of RQA metrics when

quantifying movement variability?

• How does the smoothing of raw time series affect methods of nonlinear analysis

when quantifying movement variability?
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1.4 Outline of the thesis

This thesis is organised as shown in Fig. 1.1. Chapter 1 presents a background of

quantification of movement variability, state-of-the-art for modelling human movement

variability, movement variability in the context of human-humanoid interaction and

research questions are stated. Chapter 2 presents an introduction to fundamentals of

time series analysis in terms of: (i) what to measure in movement variability? and (ii)

which nonlinear tools are appropriate to measure movement variability?, including a

review of the state-of-the-art literature of nonlinear analysis with real-word data. In

Chapter 3 a review of state space reconstruction method is presented that entails an

explanation for uniform time delay embedding (UTDE), a description of the techniques

to estimate minimum embedding parameters (e.g. false nearest neighbour and average

mutual information), and an introduction to Recurrence Plots (RPs), structures of

RPs and different metrics to perform Recurrence Quantification Analysis (RQA) as

well as the weakness and strengthens of RPs and RQAs. In Chapter 4, the experiments

for human-image imitation and human-humanoid imitation are presented describing

aims, participants, activities in the experiments, equipment, ethics and preparations of

the time series. Chapter 5 and 6 present the results with regards to two experiments

(human-image imitation and human-humanoid imitation) for minimum embedding

parameters, reconstructed state space using uniform time-delay embedding, recurrence

plots, recurrence quantification analysis(RQA) metrics and 3D surfaces of RQA metrics

to show the weaknesses and strengths of RQA. Finally, Chapter 7 presents conclusions,

the answers for the research questions, the contribution to knowledge and future work

after this thesis.
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Fig. 1.1 Thesis outline. Chapter numbers with its titles. N.B. Quetzalcoalt, a
feathered serpent, is flowing between chapters. "To the Aztecs, Quetzalcoatl was both
a boundary-maker and a transgressor between earth and sky" (Quetzalcoatl, 2018).
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Partial work of this thesis has been presented in the following four peer-reviewed

conferences. Additionally, one preprint has been uploaded to ArXiv which its final

version will be submitted to Scientific Reports and a manuscript for the research topic

Recurrence Analysis of Complex Systems Dynamics of the journal Frontiers in Applied

Mathematics and Statistics is in preparation.

Author contributions for the papers of Miguel Xochicale (MX), Chris Baber (CB)

and Mourad Oussalah (MO) are as follow: Conceptualisation: MX, CB, MO; Data

Curation: MX; Formal Analysis: MX; Funding Acquisition: MX, CB; Investigation:

MX; Methodology: MX; Project Administration: MX; Resources: CB; Software:

MX; Supervision: CB; Validation: MX; Verification: MX; Writing - Original Draft

Preparation: MX; Writing - Review: CB, MO; and Writing - Editing: MX.
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1.6 Open access PhD thesis

This PhD thesis is open access under the licence of Creative Commons Attribution

Share Alike 4.0 International and code and data is available at https://github.com/

mxochicale-phd/thesis/ (Xochicale, 2019). The github repository has been created to

make this work reproducible and perhaps help others to advance this field. Throughout

the thesis links to R code ( ) are provided in the caption of figures in order to

reproduce their results. See Appendix A for details on how code and data is organised

and how results can be replicated in this thesis.
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