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Abstract: To what extent do firms rely on basic science in their R&D efforts? Several 

scholars have sought to answer this and related questions, but progress has been impeded by the 

difficulty of matching unstructured references in patents to published papers. We introduce an 

open-access dataset of references from the front pages of all patents granted by the U.S. Patent & 

Trademark Office to scientific papers published since 1800 as captured by the Microsoft 

Academic Graph. Each patent-paper linkage is assigned a confidence score, which is 

characterized in a random sample by false negatives vs. false positives. We outline several 

avenues for strategy research enabled by these new data. 
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INTRODUCTION 

This paper details the construction of a publicly-available set of citations from U.S. patents 

(1947-2018) to scientific articles (1800-2018). We establish approximately 16.7MM patent 

citations to science. The patent-paper linkages, as well as selected metadata on the articles 

(whether cited or not), and the source code are publicly available for download at 

http://relianceonscience.org.  

Patent citations to science (hereafter, PCS) are of interest to strategy researchers who seek to 

understand innovation in firms: the nature of research and development, how inventors and 

scientists search for commercializable basic science, and the process by which university 

inventions are exploited by firms. Despite these advantages, PCS have only sometimes been used 

in strategy research, for at least two reasons. First, PCS are difficult to work with given that they 

appear in patent records as unstructured text strings. Thus researchers must either match patents 

and scientific articles by hand (for small samples) or (for large samples) build algorithms that are 

possibly error prone. Second, even when research teams have invested the effort to link patents 

and scientific articles at scale, they have typically done so using proprietary databases such as 

Scopus or the Web of Science. Thus the matched PCS cannot be shared with other research 

teams, who must license the databases for themselves and/or develop algorithms from scratch. 

As other research teams have (Gaetani and Bergolis, 2015; Fleming et al., 2018), we link data 

from the U.S. Patent & Trademark Office to a broad set of scientific articles not limited by 

industry or field. Specifically, we cover all U.S. patents from 1947-2018, correcting for many 

errors in OCRed data prior to 1976. Our linkages involve not only proprietary article databases, 

which cannot be shared, but also a newly-available, open-source database from Microsoft (Sinha 

et al, 2015) which permits us to post the resulting PCS for public use. Based on third-party 



assessment, we estimate that our algorithm can capture up to 93% of patent citations to science 

with an accuracy rate of 99% or higher. We believe this to be the longest panel of patent-to-paper 

citations (spanning more than seven decades) that is publicly available and is accompanied by 

rigorous performance metrics. 

The paper is organized as follows. We begin by motivating the use of PCS in strategy 

research and review prior approaches. Second, we detail our patent-paper linking algorithm. 

Third, we describe both the private and publicly-available data products as well as our methods 

for assessing their efficacy. We conclude by sketching research avenues opened up by the broad 

availability of PCS. 

MOTIVATION 

Innovation is a key source of sustainable differentiation for firms and thus a longtime focus 

of strategy researchers. The lottery-based nature of research & development (R&D) has long 

prompted inquiry into the nature of the inventive process (Scherer, 2001), including both how 

internal R&D projects are managed and how external sources of commercializable science are 

accessed (Nelson, 1982; Mokyr, 2002; Cohen, Nelson, & Walsh, 2002; Fleming & Sorenson, 

2004).  

Given that firms appear to be retreating from investing internally in basic science (Arora, 

Belenzon, & Pattaconi, 2018), it is perhaps more important than ever to understand to where 

firms look for technological inspiration, as well as how they differentiate themselves from that 

source material in order to secure temporary monopoly rights in the form of intellectual property 

protection. The growth of markets for technology (Arora, Cohen, & Walsh, 2016; Arora, Fosfuri, 

& Gambardella, 2001), including from academia, thanks to changing norms and policies 



including the Bayh-Dole Act, entail that firms can sample from a larger scientific palette than 

ever, including established firms, startups, government agencies (Fleming, et al., 2019), and 

“lone” inventors. Firms are moreover thought to configure themselves to more easily engage 

with external innovators and absorb their knowledge (Gambardella, 1992; Cockburn & 

Henderson, 1998; Cohen & Levinthal, 1991).  

But tracing the scientific lineage of R&D—whether inside or outside the firm—can be 

elusive. Firms are under no obligation to disclose where their innovations came from, except in 

the case of patented inventions. Of course not every innovation is patented, and many 

questionable patents are granted. But the process of prosecuting a patent—especially at the U.S. 

Patent and Trademark Office—obligates the applicant to disclose “prior art” against which the 

focal invention is distinguished and upon which the inventors may have relied in their own 

inventive process. Applicants to the USPTO are obligated “to disclose to the Office all 

information known to that individual to be material to patentability” (see 

http://www.uspto.web/offices/pac/mpep/mpep-2000.pdf). Prior art exists in two primary forms: 

a) references to prior patents b) references to non-patent literature (NPL). Because the omission 

of prior art, whether patent or non-patent can threaten the legitimacy of the patent, applicants 

have strong incentives to list all relevant patents as well as non-patent literature. 

References to patents may provide clues to underlying technologies that influence a firm’s 

own patented inventions, but by definition they provide a rather incomplete record. Belenzon and 

Schankerman (2013) suggest that barely 10% of scientific discoveries at universities are patented. 

Patenting inventors may have built upon a much wider array of basic science and technology 

than is captured by the patent corpus. Indeed, Roach and Cohen conduct a survey of R&D 

managers, finding that “citations to nonpatent references, such as scientific journal articles, 

http://www.uspto.web/offices/pac/mpep/mpep-2000.pdf


correspond more closely to managers’ reports of the use of public research than do the more 

commonly employed citations to patent references” (Roach and Cohen 2013:505).  

Hence, citations from patents to scientific articles can help expand our understanding of 

inputs into the R&D process, at least as far as the applicants were aware enough of prior art to 

report it in patent applications. Indeed, scholars have found PCS useful in furthering at least 

three research agendas; 1) describing the process of searching for innovations 2) characterizing 

the nature of R&D portfolios 3) the localization of spillovers from academia to industry.  

Prior strategy work using PCS 

Regarding search processes, Fleming and Sorenson (2004) use counts of NPLs from May and 

June 1990 to argue that science can serve as a “map” to help commercial inventors navigate the 

complexities of interdependent technologies. Counts of NPLs are also employed by Arts and 

Fleming (2018) to show that the negative effect of exploration on breakthroughs is mitigated by 

reliance on science. Katila and Ahuja (2002) dig deeper into R&D search processes by mapping 

NPL references to the original scientific papers for 124 robotics firms, contrasting deep search vs. 

search of wider scope. Gittelman & Kogut (2003) likewise trace NPL for patents from 116 biotech 

firms to describe selection logics of inventors, whose reliance on important scientific papers is 

negatively correlated with high-impact inventions.  

PCS have also been used to characterize R&D more generally. Veugelers, Wang, and Stephan 

(2017) use combinations of papers cited by patents to measure novelty. Bransetter and Kwon 

(2004) show that the connection between patenting and science among 300 Japanese firms has 

contributed to both productivity and an increase in alliances. McMillan, Narin, & Deeds (2000) 

trace NPLs from 199 biotech firms that completed an IPO to show that these firms relied on very 



basic research as compared with more applied work. Ribiero, et al (2014) further characterize the 

reliance of R&D in multinational corporations on cross-national networks using NPLs. Arora, 

Belenzon, and Sheer (2017) collect PCS for 4,736 firms from 1980-2006 to demonstrate that firms 

whose patents cite their own scientific papers invest more in R&D generally. 

A third area of research supported by PCS is of spillovers from academia and government to 

industry, including the localization of such. Especially as firms retreat from investing internally 

in R&D, government and academia becoming primary sources of material upon which 

commercial inventors can build. Belenzon and Schankerman (2013) use both patent-to-patent 

citations and PCS to papers from 184 research universities to establish that the flow of university 

knowledge is geographically bounded. Li, Azoulay, & Sampat (2017) show that about 10% of 

NIH grants lead to a patent (as tracked via PCS).  Fleming et al. (2019) document that nearly one-

third of U.S. patents depend in some way on federally-funded research, including by the 

inclusion of a citation to a paper with a government grant. Ahmadpoor & Jones (2017) calculate 

the citation distance from papers to patents using PCS in order to show how deeply various fields 

rely on science.  

The foregoing makes clear that strategy researchers find PCS useful. Indeed, the number of 

papers that have relied on PCS might call into question the need for the present exercise. 

Although many of the aforementioned papers are highly cited, it is difficult for researchers to 

replicate or build directly on them because the PCS used are either a) limited to counts of 

references b) limited to a small number of firms c) unavailable due to licensing restrictions.  

Some papers use simple counts of NPL references from a patent as evidence of reliance on 

science, although many NPL references do not refer to scientific documents but product 

brochures, trade magazines, websites, and other non-patented material. Callaert, Grouwels, and 



Van Looy (2011) have distinguished scientific NPLs from non-scientific ones, which represents a 

step forward, but several papers still use counts of such NPLs without linking to the scientific 

papers themselves that are referenced. 

Some researchers have undertaken the task of mapping NPLs to scientific papers (e.g., Katila 

& Ahuja (2002), Branstetter & Kwon (2004), Gittelman & Kogut (2004), among others), but 

typically this has been undertaken for a limited number of firms  in a single industry. Tjissen 

(2001) does so for a somewhat larger sample of Dutch research papers from 1987-1996. Hu et al. 

(2007) generate linkages to papers from 50,000 nanoscale engineering patents. Belenzon, and 

Sheer (2017) assemble PCS for 4,736 firms from 1980-2006.  

In a few cases, researchers have mapped a comprehensive set of NPLs to scientific 

references, including Narin & Olivastro (1998), Gaetani & Bergolis (2015), Shirable (2014), 

Patelli et al (2017), Knaus & Palzenberger (2018), and Fleming et al., (2019). However, these 

linkages have been made to proprietary datasets such as the Clarivate Web of Science or Scopus 

and cannot be shared publicly. This presents two barriers for researchers who wish to verify or 

extend prior findings using PCS. First, they must pay to license the proprietary databases, which 

can be prohibitively expensive. Second, they must either obtain the code for the patent-paper 

linking algorithm from its developers or invest in creating their own linking algorithm. 

Linking PCS to open datasets including the Microsoft Academic Graph 

An alternative is to link PCS to open datasets. At least two research teams have linked to 

PubMed, which covers more than 20 million papers in the life sciences and can be downloaded at 

https://www.nlm.nih.gov/databases/download/pubmed_medline.html. Azoulay, Graff Zivin, and 

Sampat (2011) as well as Agarwal, et al (2011) have linked to various editions of PubMed. 



Although it would be possible for other researchers to build directly on this work, to our 

knowledge neither the patent-to-PubMed linkages nor the code for generating these appears to be 

publicly available from either effort.  

One might consider linking PCS to Google Scholar, a well-known repository of academic 

publications. However, Google obstructs users from retrieving its underlying data at scale and 

thus cannot be used for this task. 

Microsoft however recently released its Academic Graph (hereafter, “MAG”), which 

purports to capture more than 160 million papers since 1800 and is thus similar in many ways to 

Google Scholar. Unlike Google Scholar, the MAG data are openly available for download by 

registering for an Azure account and paying the required data-transport fees (approximately $60 

for a full release, according to our own billing statement). MAG is subject to the Open Data 

Commons (ODC-By) attribution license, which permits the creation and distribution of 

derivative works with acknowledgment. Thus it is possible to use MAG as the target set of 

scientific articles for matching against PCS, and to publish the resulting dataset.  

Given that MAG is newer and less well known than Google Scholar, one may be curious as 

to its coverage and representativeness. A direct comparison is infeasible because Google does not 

permit comprehensive downloading of its data, but some scholars have verified coverage in 

subsets. Paszca (2016) checks for the availability of 639 randomly-selected documents, finding 

MAG’s coverage on par with Google Scholar (76.0% vs. 76.2%) and significantly higher than 

Scopus (66.5%) or the Web of Science (58.8%). Hug & Braendle (2017) benchmark MAG against 

Scopus and the Web of Science using 91,215 verified, multidisciplinary publications from the 

University of Zurich’s Open Archive and Repository as of October 2016. Coverage of these 

publications was 47.2% in WoS, 52.0% in Scopus, and 52.5% in MAG. MAG was found to be 



particularly superior  vs. Scopus and WoS in recalling book sections and conference proceedings, 

both of which are frequently cited as prior art. (Scholars in several Engineering fields publish 

frequently or even primarily in refereed conference proceedings.) In order to further facilitate use 

of MAG, we provide Digital Object Identifiers as part of our redistribution (see Appendix 3). 

Moreover, in case researchers are concerned that certain journals covered by MAG are less 

legitimate than one might find in a curated database such as Scopus or WoS, we calculated the 

Journal Impact Factor for every MAG paper and provide this in our redistribution (see Appendix 

4). Researchers thus have the option of excluding very low impact factor journals from the set of 

PCS matches. 

ESTABLISHING LINKAGES BETWEEN PATENTS AND SCIENTIFIC PAPERS 

We link non-patent references in patents granted by the USPTO from 1947-2018 to articles 

captured by the Microsoft Academic Graph. We focus on citations from U.S. patents given the 

USPTO’s requirement “to disclose to the Office all information known to that individual to be 

material to patentability” (see https:// https://www.uspto.gov/web/offices/pac/mpep/mpep-

2000.pdf). Applicants are in a better position to know the scientific articles on which they relied 

than are patent examiners, who assume the burden of finding prior art in major non-U.S. 

jurisdictions. One would thus expect non-patent references in USPTO documents to be at once 

more complete and also more representative of the science upon which the inventors actually 

relied, as compared to jurisdictions where no such duty exists.  

References can be either to patents or non-patent literature and can appear either in the body 

of the patent or on its “front page.” We engaged two patent attorneys and two patent examiners 

to better understand the nature of such citations. All four described a similar asymmetry between 

attorneys, inventors, and examiners with regard to the types of prior art they include in patents.  



Attorneys typically assemble the list of patent-related prior art but have less to add in terms of 

academic literature, as they are less familiar with it. (That said, attorneys may “borrow” non-

patent prior art from related patents.) By contrast, inventors themselves rarely report patents that 

should be included in the application (“maybe one out of twenty inventors knows a relevant 

patent”, said one attorney), but they are the primary sources of scientific references and other 

non-patent prior art. Importantly, the duty of the applicant to the USPTO is to report prior art that 

of which the applicant is aware; applicants are not required to do an exhaustive search.   

Examiners, of course, are quite familiar with the patent corpus (and add up to 40% of patent-

based prior art) but are less familiar with the scientific literature (although one attorney 

maintained that examiners are “getting better” at knowing relevant non-patent publications). 

Indeed, both examiners said that they regularly search the scientific literature using Google 

Scholar and similar tools in order to find relevant non-patent prior art during the examination 

process. That said, both examiners said that their preference is to cite patents when possible as 

these tend to be more precise and relevant to patentable material whereas it can be harder to pin 

down the exact content and its relevance to a pending application.  

The attorneys’ and examiners’ observations are consistent both with fieldwork and the NPL 

corpus itself. From in-depth interviews with 21 inventors who cited scientific articles in their 

patents, Bikard and Marx (2018) report that most were from the inventors themselves and not 

from the patent attorneys, suggesting again that PCS may more authentically represent 

knowledge flows including from academia to industry. Ahmadpoor and Jones (2017) find that 

only 4% of PCS are added by patent examiners, which we confirm in our analysis. 

Regarding the location of prior art, attorneys and examiners alike were sanguine with regard 

to the role of citations on the “front page” of the patent as opposed to in the narrative or “body” 



of the document. In February of 1947, the USPTO began listing on the front page of granted 

patents the prior art against which the patent itself was defined as novel and non-obvious. “The 

patent is presumed valid over those references,” said one attorney we consulted. Meyer (2000) 

adds that the front-page citations may be overgenerous as applicants attempt to impress 

examiners with a long list of prior art against which the present invention is (supposedly) 

distinct. (One examiner confirmed this observation, unprompted, naming some firms that 

routinely include hundreds and sometimes thousands of non-patent citations.) Many of the front-

page references also appear in the body of the patent, but certainly not all. Sometimes references 

will be only in the body of the patent “to explain well known things without having to go into 

gory detail…sort of a shorthand,” as one attorney said. Thus references in the body of the patent 

may provide additional insight into the workings of the invention and science upon which the 

inventors have built, independent of whether the patent’s validity depends on differentiating 

itself from those references. The other attorney suggested that most citations in the body of the 

patent ought to be incorporated in the Invention Disclosure Summary (IDS), because citations in 

the body of the patent will not be reviewed by examiners and thus do little to increase the 

patent’s chance of being granted. He suggested that body-text citations have become less 

common in the past ten years, especially among newer attorneys, and he advises his clients not to 

include citations in the body of the patent. One of the examiners similarly expressed puzzlement 

at the use of body-text citations: “I can’t think of any reason not to include a body-text citation in 

the IDS.” Both speculated that the use of body-text citations may be on the wane, though this 

remains an empirical question. 

Almost all PCS datasets, including ours, focus on citations that can be extracted from the 

front page of the patent. Bryan, Ozcan, and Sampat (2019) offer a partial dataset of citations from 



both the front-page and the body text of patents, linked to papers in 244 journals from 1984-

2016.1 The field still awaits a comprehensive dataset of citations from the body text of patents. 

From the front pages of patents, from 1947-2018 we found 36,020,060 non-patent references. 

Challenges 

Linking NPLs from patents to scientific articles (whether in MAG, or other dataset) includes 

at least three challenges: 

Knowing which non-patent citations represent scientific articles. Of the ten randomly-

selected non-patent references shown in Table 1, only six are to scientific articles. Two of the 

references are to product brochures or user manuals; one is to a patent application; and another 

references an action by the patent office. Other types of non-patent references include web pages, 

popular magazines, and lawsuit-related documents including deposition testimony. Using the 

count of non-patent references as an indicator of how often scientific articles are cited is thus 

misleading, as noted by Cassiman, Veugelers, and Zuniga (2008).  

Table 1 about here 

Handling incomplete references to academic articles. Even if one can determine which of the 

non-patent citations are to scientific articles, determining exactly which article is being cited is 

difficult for a number of reasons. In Table 1, journal names are frequently abbreviated (Nucleis 

Acids Res., JAMA, Arch Surg). The volume and issue number of the journal are not always 

present; often, both are missing. Or, if included, one or the other might be incorrect. Quite often, 

the title of the article is truncated, partially misspelled, or entirely absent. The reference may be 

                                                 

1 As a benchmark, the top 250 journals in MAG from 1984-2016 contain 0.5% of all MAG articles.  



to a working paper, the title of which evolves by the time the article is finally published. 

References are occasionally written in a different language. In some cases, even author names or 

year of publication can be missing or incorrect. Trying to match incomplete or incorrect citations 

to scientific articles can result in both Type I and Type II errors.  

Computational complexity. The non-patent citations in Table 1 are sampled from 36 million 

non-patent references since 1947. Checking each of these against the nearly 50 million articles in 

the Clarivate Web of Science (WOS), or the estimated 160 million articles indexed by Google 

Scholar (Orduña-Malea, et al, 2014), could involve quadrillions of patent-article comparisons. 

The computational task is further complicated by the fact that multiple pieces of information per 

citation—e.g., author, year, volume, number, page, journal name, title—may need to be checked 

as part of each pairwise comparison. 

The MAG article data are structured, with separate fields for article title, author, journal, 

publication year, volume, issue, and page numbers. If the non-patented references were also 

structured, our task would be greatly simplified as we could execute a simple database join on 

the same fields in both databases, possibly introducing fuzzy matching to account for 

typographical errors. However, as is visible in Table 1, the non-patent references are not 

structured consistently. Although there are some structural tendencies—e.g., author names tend 

to appear at the beginning of the unstructured string—such heuristics are not always reliable.  

It is especially difficult to determine which (if any) part of the unstructured string contains 

the title. As is visible even among the ten randomly-sampled unstructured references in Table 1, 

the title usually but not always appears after the author. Titles are delimited by quotes in many 

but not all cases; sometimes, the journal name is also/instead in quotes. Titles are very often 

shortened and sometimes are missing entirely. Volume/issue/page information is usually present 



but is often missing or only partially available and in various orderings. Given the difficulty of 

imputing structure to such data, we pursue a matching strategy that makes minimal assumptions 

regarding the structure of the reference. 

Appendix 1 describes in detail the steps involved in the linking algorithm. At a high level, we 

first hash the unstructured source data into millions of subsets which can then be examined in 

parallel. Second, we execute loose, computationally-inexpensive matching to generate a large 

number of potential PCS linkages. Third, we apply computationally-expensive scoring 

techniques to determine the likelihood that each potential PCS represents an actual PCS, and 

assign a confidence score to the linkage. 

Resulting matches 

Both the PCS linkages as well as selected MAG metadata are available at 

http://relianceonscience.org with accompanying documentation. Two sets of output are 

available. First are PCS based on linking USPTO to MAG. Each PCS is labeled as originating 

from the applicant, examiner,2 or unknown and is given a confidence score from 3-10 (matches 

with confidence scores 2 or 1 are not included in the distribution). The schema for this output file 

is detailed in Appendix 2.  

Researchers interested only in the number of PCS per patent may find this sufficient; 

however, we suspect that most researchers will want to know about papers that were cited, as 

                                                 

2 Conversations with patent examiners highlighted that even when a reference is labeled as “added by 

examiner” the reference may have originally been added by the applicant, but because the examiner chose to list it 

explicitly that information is lost. Whether an examiner-added citations was originally added by the applicant is 

captured on the 1449 table submitted by the original applicant, but these data are not publicly available in machine-

readable format. The examiners speculated that this was not frequent, but the 95% of citations added by applicants 

may be slightly understated. 



well as papers that were not cited. Hence, we post selected metadata from the 1 January 2019 

edition of the Microsoft Academic Graph, including year, volume, issue, pages, title, journal / 

conference, authors, subjects, and citations. Importantly, these files include Digital Object 

Identifiers (DOIs) for all MAG papers where available and can be merged against the master file 

to provide a crosswalk to other databases of papers. These files and schemas are described in 

Appendix 3. Finally, additional fields we add to MAG including Journal Impact Factor are in 

Appendix 4. 

Turning to the matches themselves, we provide 16,715,523 linkages from 9,472,232 unique 

non-patent references in 1,479,338 unique patents, citing 3,937,792 unique MAG papers. In 2006 

and later, 94.9% of PCS are from applicants, and 4.9% are from examiners, consistent with the 

reports of others (Ahmadpoor & Jones, 2017). Note that prior to 2006, applicant/examiner 

indicators are rarely available. 

Approximately 17.6% of patents granted since 1947 contain at least one citation to science on 

their front page. That trend is growing, up from 6.7% in 1976 to 25.6% in 2018.3 Patents have on 

average 1.99 citations to science, a trend which has grown substantially since 1947 as depicted in 

Figure 1. Patents before 1980 had less than one citation to science on average, but more recently 

the average has been more than four citations per patent. 

Figure 1 about here 

Academic patents have far more citations to science than those assigned to firms (14 on 

average, versus 2 for corporate patents and 1.3 for government patents), a rate which has grown 

                                                 

3 We found citations to science in about 1% of patents from the late 1940s and early 1950s. However, given that 

OCR errors make it more difficult to identify citations before 1976, those match rates may be understated. 



dramatically, especially in the 1990s, as shown in Figure 2. This is consistent with the 

observation of one of the attorneys we interviewed, who said that the sort of academic scientists 

whose works are patented by universities know the academic literature extremely well and cite it 

generously. By contrast, inventors in firms are not as well acquainted with published work. 

Indeed, although there is some growth in the number of scientific citations per patent among 

corporations (and government), the rate of increase pales in comparison to universities. Lone 

inventors cite less science than any of the other groups, with less than half a citation to science 

per patent and little growth in this rate. 

Figure 2 about here 

Which fields of innovation are most reliant on science? Figure 3 shows the average number 

of citations to science per patent, broken down by eight primary Cooperative Patent 

Classification categories, which have been retrieved for patents back to 1926 by Fleming et al. 

(2019). Of these categories, Chemistry and Metallurgy has the highest number of citations to 

science per patent (average of 6 per patent, and up to 17 per patent in recent years), followed by 

Human Necessities. Mechanical Engineering is the least reliant technology category, with 0.14 

citations to science per patent and little growth over the full timespan. 

Figure 3 about here. 

Approximately 1.5% of all papers are cited by the front pages of USPTO patents. By far, the 

journal most frequently cited by patents is Proceedings of the National Academy of Sciences, 

followed by the Journal of Biological Chemistry, Science, and Nature. The top 20 most cited 

journals are listed in  

Table 2. The life sciences are very heavily represented among top journals, as is physics. The 

paper most frequently cited by patents (4,783 times) is “Less than additive epistatic interactions 

of quantitative trait loci in tomato” by Eshed, et al., published 2004 in the journal Nature. The top 

20 most cited papers are in Table 3. 

Table 2 about here 



Table 3 about here. 

Performance Characterization 

When matching patents with papers at scale, some error is inevitable. The algorithm may fail 

to accurately map an NPL reference to the appropriate paper in MAG (false negative), or it may 

mistakenly map an NPL reference to the wrong paper in MAG (false positive). Which matches 

should be provided for use by others? Of course one would like to avoid any false positives or 

false negatives, but doing so would involve checking 16.7 million PCS linkages by hand and is 

impractical. Moreover, there is a tradeoff in that reducing false positives will increase false 

negatives and vice versa.  

One approach is to present a single set of PCS linkages which we believe best trades off 

precision and recall. However, researchers may have different preferences for false negatives vs. 

false positives. For example, in estimating percentage of patents relying on government funding 

by using PCS linkages, Fleming et al., (2018) chose a conservative matching approach in the 

interest of constructing a lower bound. By contrast, researchers interested in using PCS linkages 

in a particular industry or even for a single firm, may prefer to start with a less conservative set 

of matches for their narrow context, perhaps checking the few applicable PCS manually.  

Respecting these preferences, instead of exercising our own judgment in guessing which set 

of matches are most appropriate for researchers, we provide a large set of matches along with 

confidence scores from 3-10. Note that 87.5% of matches have confidence score = 10 (essentially 

error-free; see below for details of performance analysis). The percentage of matches in each 

confidence band is shown in Figure 4. 

Figure 4 about here. 



Of course, researchers need to understand what a confidence score means in terms of false 

positives vs. false negatives in order to make a sound decision regarding which set of matches to 

use. A confidence score of “9” is uninformative without further detail. In the section below, we 

characterize false-negatives and false-positives at each confidence level. Given that many may 

find it more intuitive to think in terms of correct performance instead of errors, we report 

performance in terms of two common metrics: 

Recall: What percent of actual matches did the algorithm find? Higher is better. Given that a 

false negative indicates an actual match that the algorithm failed to find, recall is equivalent to 1 

minus the percentage of false negatives. (A common synonym for recall is “coverage” as it 

represents the percentage of actual matches found by the algorithm.) 

Precision: What percent of the reported matches were correct? Again, higher is better. A false 

positive means that a reported match was incorrect, i.e., the PCS linkage pointed to the wrong 

article in MAG. Thus precision is 1 minus the percentage of false negatives. (Precision is often 

referred to as “accuracy.”) 

Precision was evaluated by checking the accuracy of a stratified random sample of the paper 

to patent matches output by the algorithm. For each confidence level, 100 randomly-selected 

matches output by the algorithm are checked by hand for accuracy. A research assistant checked 

these independently, and then reviewed the results with one of the authors.4 The number of false 

positives at each confidence level are listed in the third column of Table 4. The corresponding 

                                                 

4 Note that there would be a risk of overfitting the algorithm to the matches that were reviewed manually, 

especially if these were used again in testing precision. Although thousands of hand-scored matches were retained 

and used to assess the progress of the algorithm, the precision scores in Table 4 were derived from a fresh set of 

1,000 hand-checked matches. 



percent correct for each confidence level is listed in column 4. This percentage is multiplied by 

the number of matches found at each confidence level (column 2) to estimate the cumulative 

percent of correct matches per confidence level (column 5). 

Table 4 about here 

As is visible from Table 4, at confidence levels 2 and 1 very few correct matches are likely to 

be found. Thus we restrict our distribution to PCS linkages at confidence score 3 and above.  

To assess recall (again, 1 minus false negatives), we need to have a set of actual matches the 

algorithm should have found. We created a test set of actual, “known good” references. Of 

course, the algorithm developers cannot involve themselves in the creation of the known-good 

references, lest the algorithm be overfitted to these test cases, and the algorithm would inevitably 

appear to perform better (on the test data) than it does generally. Accordingly, we tasked multiple 

research assistants with creating the known-good cases from a random sample of 1000 

unstructured NPLs. The RAs were trained by categorizing 100 randomized unstructured lines 

under supervision of one of the authors, but these were discarded from the test set. The authors 

have never seen the known-good references.5 

The first step in creating the known-good list was to categorize the 1000 unstructured non-

patent references into those that are scientific references and those that are not, as in Figure 1. 

Two RAs did this independently, and differences were resolved via conference, with 546 

                                                 

5 One might argue that even if the algorithm developers have not seen the known-good references, even being 

told the performance on that test set may result in overfitting if, for example, the algorithm developers try techniques 

that happen to work well on this test set. That the test set was randomly sampled works against such bias, but we 

cannot fully rule out this possibility. 



scientific references retained. Next, it was established which of these 546 scientific references 

were findable in MAG. The RAs jointly determined that 501 of these were in MAG. 

The output of the algorithm was automatically compared against the known-good patent-to-

paper references. Table 5 shows the number of known-good references found at each confidence 

level, individually and cumulatively. The recall % is cumulative. At the least-restrictive level of 

matching (1), more than 93% of known-good references were identified. 

Table 5 about here 

Researchers may have different preferences for recall vs. precision.  

 

Figure 5 plots recall against false negatives (i.e. one minus precision), using the statistics from 

Table 4 and Table 5.6 Recall is on the y-axis and precision on the x-axis. A “perfect” algorithm 

would have 100% recall (i.e., no false negatives) and 100% precision (no false positives) and thus 

would plot in the upper right-hand corner of the graph. The plotted points in 

 

Figure 5 show how recall and precision can be traded off against each other. Each point on the 

graph represents recall and precision scores at a particular confidence score, shown italicized in 

parentheses. 

 

Figure 5 about here 

For instance, researchers who care about finding as many matches as possible should select 

confidence score 3, which is associated with 93.01% recall and 98.76% precision. That said, a 

substantial improvement in precision is achieved by moving to confidence score 4 (99.47%) with 

                                                 

6 We thank Ivan Png for suggesting a reorientation of this graph from the typical Receiver-Operator Curve 

(ROC) orientation with recall on the y-axis and false positives on the x-axis. Having instead precision (1 – recall) on 

the x-axis makes clearer that the data user is trading off false negatives vs. false positives in deciding which 

confidence level(s) to use. 



only a slight decrease in recall (92.81%). At the other extreme, those who want perfect or 100% 

precision (i.e., no false positives) could choose only matches with confidence score = 10. 

However, insisting on 100% precision lowers recall to 84.63%. Recall grows quickly with only a 

slight decrease in precision: for example, using all matches with confidence 5 and above yields 

92% recall with 99.5% precision.  

Comparison with prior PCS efforts is not straightforward for two reasons. First, few other 

PCS linkages are publicly available, and those that are have generally not provided performance 

metrics. Ideally we would compare our matching performance against another dataset matching 

NPL to MAG, but the only effort we are aware of matching patent NPLs to MAG is available via 

API access at lens.org (Jefferson, et al. (2018)). Jefferson et al. report that their algorithm reports 

matches with a confidence score of .9 or greater, but the false-negative/false-positive 

characteristics of this confidence level are not reported. Although our own confidence score of 9 

or above corresponds to 99.96% precision and 87.62% recall, we cannot say how that compares 

without knowing similar metrics for other datasets. If it becomes possible to retrieve their PCS 

linkages with MAG IDs at scale, we would be able to automatically assess its false-negative 

performance against our known-good set and could assess its false-positive performance in a 

random sample. 

As an indirect comparison, our algorithm also operates on the Web of Science (WoS) data 

although we do not publish the resulting matches due to licensing restrictions. Although we have 

not calculated formal precision and recall performance for our patent-to-WoS matches, it seems a 

reasonable assumption that matches with confidence = 10 will have perfect recall. Thus one 

method of comparing against prior efforts is to count the number of error-free PCS. Fleming et 

al. (2019) enable such a comparison because they report that their PCS have 100% precision and 



20% false negatives in a known-good sample using WoS, with a total of 9,589,207 matches. 

Their sample ranges from 1976-2017, so as a comparison we count the number of patent-to-WoS 

matches generated by our algorithm with confidence = 10 during the same time frame. We find 

10,425,123 such matches, nearly a 9% increase in the number of PCS.7  

As a second comparison, Azoulay, Graff Zivin, and Sampat (2012) found 558,982 unique 

articles in PubMed that were referenced from USPTO patents in the NBER-defined Chemical 

and Drugs & Medical categories between 1976 and 2010. Similar to Fleming et al. (2019), they 

reported no false positives in a random sample of 200. We counted the number of PCS linkages 

from that same set of patents to WoS papers for which a PubMed ID could be found. (PubMed 

IDs for WoS papers were identified via a crosswalk supplied by Clarivate, publishers of the Web 

of Science; the accuracy of their crosswalk is unknown but presumed to be high.) We found 

579,019 unique PubMed matches with confidence = 10, an increase of 3.6%.  

 

Known Limitations  

There are two types of references that will not be found via our algorithm. First, although our 

algorithm can find matches where the original unstructured line is missing the year, a reference 

containing a year that differs by more than one year (e.g., 2005 instead of 1995) will not be found. 

A second category is references that a) omit or misspell both the longest and second-longest 

                                                 

7 Knaus and Palzenberger (2018) report extensively on their matching of WoS to USPTO, EPO, and WIPO 

patents, although they use a different methodology to calculate precision and recall, so their results are not directly 

comparable to ours. They report achieving precision of >99% for 40% of the USPTO NPLs they checked by hand, 

and 80% if relaxing precision to 90%. They also forecast matching approximately 9.5 million NPLs to WoS, similar 

to the count of Fleming et al. (2019), although it is unclear whether this includes USPTO, EPO, and WIPO patents. 



words in the title, such that our loose first-pass title match will not find it, and also b) do not 

include the first page (or volume, if MAG is missing the first page) of the article.  

Beyond these immediate issues, there are many ways to potentially enhance the performance 

of the algorithm. We rely on matching the first author of the paper (by surname, and where 

possible by first initial of the given name). Sometimes, however, the unstructured line includes 

not only the first initial but the entire given name, which we could use to increase our confidence 

in a particular match. Similarly, sometimes more than one author is listed and so we could 

leverage matching on multiple author names to increase confidence, especially given low title-

match score. Moreover, we can take advantage of the prior probability of author X publishing 

a(ny) paper in year Y to adjust our confidence scoring. 

Certainly the greatest limitation of this dataset is its exclusive focus on front-page citations to 

non-patent prior art. As Bryan et al (2019) show, there are many citations that are not on the front 

page but are embedded in the body text of the patent (moreover, many front-page citations also 

appear in the body text). Their examination of citations to 244 journals from 1984-2016 suggests 

that these are distinct in purpose and function from front-page citations (to the extent that the two 

types do not overlap). The creation of a comprehensive dataset including body-text citations 

from all issued patents to all known journal articles is an important next step. 

CONCLUSION: HOW PCS CAN FUEL FURTHER STRATEGY RESEARCH 

We have described the construction of a set of citations from USPTO patents, 1947-2018, to 

papers 1800-2018 from the Microsoft Academic Graph. The open nature of MAG makes it 

possible for us to share these patent-to-paper citations for use by other researchers. We moreover 



characterize the performance of our linkage algorithm, characterizing false-positive and false-

negative rates for linkages at each confidence level.  

The general availability of patent citations to science will enable researchers to pursue a 

number of research agendas that were previously difficult to attempt, at least at scale. In the 

introduction we noted three areas the researchers have pursued: 1) describing the process of 

searching for innovations 2) characterizing the nature of R&D portfolios 3) the localization of 

spillovers from academia to industry. We conclude by sketching additional research questions 

that could be answered using PCS, including recent papers that further this agenda. 

Reliable counts of scientific references in patents  

Before proceeding, it is worthwhile to document what information is available to researchers 

in this dataset that was not generally available from the raw patent records. Previously, 

researchers have been able to download the non-patent references from the front page of U.S. 

patents in their raw, unstructured form. Absent additional processing, the general applicability of 

these data is to assemble a count of the non-patent references but without regard to the nature of 

the references (as in Fleming & Sorenson, 2004). As shown in Table 1, and as discussed more 

generally by Callaert et al. (2011), a large percentage of non-patent references are not scientific in 

nature but correspond to product brochures, actions of the patent office, press releases and other 

news items, or legal proceedings. Therefore, a key contribution of this dataset is to enable 

researchers to assemble a much more accurate count of scientific references in patents.  

As one example, Kneeland, Schilling, & Aharonson (2019) use these data to examine the 

process by which inventors in firms come up with non-incremental innovations, finding that 

“outlier” patents have more citations to science. Importantly, they find stronger results when 



using the count of PCS from these data than when simply counting the overall number of NPL 

citations. Arora, Belenzon, and Suh (2019) use these data to expand the concept of firms’ 

technological search into markets for technology. Beyond merely citing articles they find 

relevant, firms can engage in transactions to acquire intellectual property (i.e., patents) they 

deem valuable. They report that patents more reliant on science (as measured by the count of 

PCS) are considerably more likely to be traded than those lacking scientific references. Two 

separate teams of authors use these and similar PCS to associate the count of scientific references 

in a focal patent with the monetary value of a patented invention (Watzinger & Schnitzer, 2019; 

Poege et al., 2019).  Whereas these authors would have had to use simple counts of NPL 

citations, their results are more reliable because they use actual counts of PCS. 

Counts of scientific references from patents to a focal article 

Not only does this dataset enable a more true count of citations to science in a patent; it 

enables the researcher to know how many citations to a focal paper come from the front pages of 

patents. Such analysis is impossible with a raw count of NPL citations, even if one decomposes 

NPLs into scientific and non-scientific. Rather, one must link the scientific NPL citation to the 

actual paper. The availability of these linkages enables research previously only possible for 

research teams that invested time in constructing the patent-to-paper linkages. 

As an example, Bikard & Marx (2019) deepen our understanding of biases and heuristics 

involved in firms’ search for external technologies by counting the number of patent citations to 

each of more than 10 million articles. They find that firms tend to pay more attention to papers 

located in “hubs” of relevant industry R&D. They moreover characterize papers as being in more 

vs. less applied fields by counting the average number of PCS to all papers in the same field as 

the focal paper. Finally, the introduce a measure Journal Commercial Impact Factor (JCIF), 



similar to the traditional Journal Impact Factor but which characterizes the commercial influence 

of a paper by counting citations from patents.  

Enabling explicit comparisons between linked patents and papers 

Beyond creating counts of scientific references in a given patent, or counts of scientific 

references to a given paper, these data enable explicit comparisons between each linked paper 

and patent. Such comparisons can be drawn across a wide variety of characteristics, including 

geography, age, institution, status, and other factors. 

For example, Watzinger et al. (2019) take advantage of the ability to draw geographic 

comparisons between citing patents and cited articles to predict the impact of hiring a new 

professor on local commercial activity. They count patent citations to the papers published by a 

newly-hired professor—after s/he was hired—as compared to other shortlisted candidates who 

were not hired. By measuring the proximity of each citing patent to the cited paper, they are able 

to count the number of PCS that occurred in the local area of the focal university and distinguish 

this count from more distant citations. Beyond microgeography, opportunities abound to 

understand cross-state or cross-country patterns of reliance on science. 

Marx and Hsu (2019) leverage authorship comparison facilitated by this dataset to catalogue 

Science-Based Ventures (SBVs) in which a startup company founded by a university scientist 

commercializes that same discovery. Each patent assigned to a startup (as determined from 

CrunchBase or VentureXpert) is compared with all of the papers it cites to determine the level of 

overlap between the authors of the paper and the inventors on the patent. The count of SBVs in 

North America closely parallels the counts reported by the Association of University Technology 

Managers, but their data are available worldwide. 



Many additional such comparisons are possible. Another application of authorship 

comparison would be to correlate the relative status of the paper cited (i.e., by the authors’ 

collective citation history vs. that of the patent inventors). One could alternatively rank the 

scientific status of a patent according to the average JIF of cited articles, average number of 

citations to cited articles, or other measures. Do firms rely on the “usual suspects” when citing 

scientific literature, or do they unearth less-well-trodden discoveries, and how does this practice 

relate to the novelty of the patented invention? 

In addition to comparing authorship, one can compare institutional affiliation of the paper 

with that of the patent assignee (noting, of course, that papers may have multiple affiliations and 

patents may have multiple assignees). Doing so may be a useful bookkeeping exercise for 

researchers who want to exclude “self-citations”; more broadly, however, differentiating internal 

vs. external citations can open a window into how insular firms’ reliance on science is. Young 

firms likely have little internal science to rely upon, but does this pattern change as firms age? 

What explains which firms continue to absorb external knowledge with those that focus inward, 

and do these practices predict differences in market performance? 

 Likewise, what leads firms to rely on older vs. more recent science in their R&D process? 

Comparing the time lag between the citing patent and the cited paper could afford insight into 

firms’ and inventors’ preferences for well-established vs. cutting-edge science. Individual authors 

or inventors’ mobility, including exogenous limits on their mobility such as non-compete 

agreements (Marx, Strumsky, & Fleming, 2009), could be used to assess the impact on science 

reliance by the influx of “new blood” into the R&D staff of a firm. 

Finally, comparisons can be drawn by field. Which inventors cite science from their own 

field, and who recombines scientific inventions more broadly? Does the nature of creativity 



impact firm performance or the careers of inventors? To this end, some sort of crosswalk 

between patent classifications and paper categories must be assembled.  

Closing remarks 

Work to date may only scratch the surface of possible paths utilizing PCS. Invention occurs 

in two largely distinct, yet somewhat overlapping spheres: the practice of “open science” 

predominantly in academia; and the commercial realm, in which temporary monopolies can be 

secured. These worlds increasingly overlap as firms not just patent but publish, and as 

universities lay legal claim to the allegedly-open creations of their employees. (One might 

observe, somewhat ironically, that much if not most “open” science is paywalled and the review 

process fully opaque whereas the patenting process—at least in the U.S.—is exceedingly 

transparent with all documentation freely available.) Exploring the relationship between these 

spheres of invention can be challenging because publishing and patenting involve separate work 

products and, largely, separate actors. Perhaps the most important promise of PCS is to bridge 

those spheres by linking patents to papers and inventors to authors. What is the topology of the 

cross-community networks of authors who patent and inventors who publish? Which ideas 

originate in academia and then migrate to industry, and when does the reverse process take 

place? Our hope is that a broad set of researchers can attack these and other questions now that 

they are more easily able to assess reliance on science. 

REFERENCES 

Agarwal, S. M. Lincoln, H. Cai, and V. Torvik. Patci – a tool for identifying scientific articles cite by 

patents. Poster presented at the Illinois Graduate school of Library and Information Science. 

Ahmadpoor, Mohammad, and Benjamin F. Jones. 2017. “The Dual Frontier: Patented Inventions and Prior 

Scientific Advance.” Science 357 (6351): 583–87.  

Arora, A., Belenzon, S., and Suh, J. (2019). Science and the Market for Technology. 

Arora, A., Belenzon, S., & Patacconi, A. (2018). The decline of science in corporate R&D. Strategic 

Management Journal, 39(1), 3-32. 



Arora, A., Belenzon, S., & Sheer, L. (2017). Back to Basics: Why Do Firms Invest in Research? (No. 

w23187). National Bureau of Economic Research. 

Arts, S., & Fleming, L. (2018). Paradise of novelty—or loss of human capital? Exploring new fields and 

inventive output. Organization Science, 29(6), 1074-1092. 

Azoulay, P., Zivin, J. S. G., & Sampat, B. N. (2011). The Diffusion of Scientific Knowledge Across Time 

and Space: Evidence from Professional Transitions for the Superstars of Medicine. NBER Chapters, 

107–155. 

Belenzon, Sharon, and Mark Schankerman. "Spreading the word: Geography, policy, and knowledge 

spillovers." Review of Economics and Statistics 95.3 (2013): 884-903. 

Bikard, Michael and Matt Marx. (2019) “Hubs as lampposts: Academic location and firms‘ attention to 

science.” Forthcoming, Management Science. 

Branstetter, L., & Kwon, H. (2004). The restructuring of Japanese research and development: The 

increasing impact of science on Japanese R&D. Unpublished manuscript. 

Cassiman, Bruno, Reinhilde Veugelers, and Pluvia Zuniga. 2008. “In Search of Performance Effects of 

(in)Direct Industry Science Links.” Industrial and Corporate Change 17 (4): 611–46.  

Callaert, Julie, Maikel Pellens, and Bart Van Looy. 2014. “Sources of Inspiration? Making Sense of 

Scientific References in Patents.” Scientometrics 98 (3): 1617–29.  

Fleming, L., H. Greene, G. Li, M. Marx, and D. Yao, 2018. “U.S. Innovation Relies Increasingly on 

Government Funding.” 

Fleming, L., & Sorenson, O. (2004). Science as a map in technological search. Strategic Management 

Journal, 25(8‐9), 909-928. 

Gaetani, Ruben, and M. Li Bergolis. "The economic effects of scientific shocks." Unpublished 

Manuscript (2015).  

Gittelman, M., & Kogut, B. (2003). Does good science lead to valuable knowledge? Biotechnology firms 

and the evolutionary logic of citation patterns. Management Science, 49(4), 366-382. 

Hu, D., Chen, H., Huang, Z., & Roco, M. C. (2007). Longitudinal study on patent citations to academic 

research articles in nanotechnology (1976–2004). Journal of Nanoparticle Research, 9(4), 529-542. 

Hug, S. E., & Brändle, M. P. (2017). The coverage of Microsoft Academic: Analyzing the publication 

output of a university. Scientometrics, 113(3), 1551-1571. 

Jefferson, O. A., Jaffe, A., Ashton, D., Warren, B., Koellhofer, D., Dulleck, U., ... & Bilder, G. (2018). 

Mapping the global influence of published research on industry and innovation. Nature biotechnology, 

36(1), 31. 

Katila, R. and Ahuja, G., 2002. Something old, something new: A longitudinal study of search behavior 

and new product introduction. Academy of management journal, 45(6), pp.1183-1194. 

Kneeland, M, M. Schilling, and B. Aharonson (2019). Exploring Uncharted Territory: Knowledge Search 

Processes in the Origination of Outlier Innovation. Forthcoming, Organization Science. 

Knaus, J., & Palzenberger, M. (2018). PARMA. A full text search based method for matching non-patent 

literature citations with scientific reference databases. A pilot study. 

Lemley, Mark A., and Bhaven Sampat. 2011. “Examiner Characteristics and Patent Office Outcomes.” 

Review of Economics and Statistics 94 (3): 817–27.  

Li, Danielle, Pierre Azoulay, and Bhaven N. Sampat. 2017. “The Applied Value of Public Investments in 

Biomedical Research.” Science 356 (6333): 78–81.  

Marx, M. and D. Hsu. 2019. “The Entrepreneurial Commercialization of Science: Evidence from “Twin” 

Discoveries.” 

M. Marx, D. Strumsky, and L. Fleming, “Mobility, Skills, and the Michigan Non-compete Experiment.” 

Management Science 55(6):875-889 (lead article) (2009).  

Narin, F. and D. Olivastro (1998). Linkage between patents and papers: an interim EPO/US comparison. 

Scientometrics 41:1-2:51-59. 

Orduña-Malea, Enrique, Juan Manuel Ayllón, Alberto Martín-Martín, Emilio Delgado López-Cózar. 

“About the size of Google Scholar: Playing the numbers.” Mimeo, 2014. 



Patelli, A., Cimini, G., Pugliese, E., & Gabrielli, A. (2017). The scientific influence of nations on global 

scientific and technological development. Journal of Informetrics, 11(4), 1229-1237. 

Paszcza, B. (2016). Comparison of Microsoft academic (graph) with web of science, scopus and google 

scholar (Doctoral dissertation, University of Southampton). 

Poege, F., D. Harhoff, F. Gaessler, and S. Baruffaldi (2019). “Science Quality and the Value of 

Inventions.” 

Ribeiro, L. C., Kruss, G., Britto, G., Bernardes, A. T., & e Albuquerque, E. D. M. (2014). A methodology 

for unveiling global innovation networks: patent citations as clues to cross border knowledge flows. 

Scientometrics, 101(1), 61-83. 

Roach, Michael, and Wesley M. Cohen. 2013. “Lens or Prism? Patent Citations as a Measure of 

Knowledge Flows from Public Research.” Management Science 59 (2): 504–25.  

Scherer, F. M. (2001). The innovation lottery. Expanding the Boundaries of Intellectual Property: 

Innovation Policy for the Knowledge Society, 3(3). 

Sinha, Arnab, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June (Paul) Hsu, and Kuansan Wang. 

2015. An Overview of Microsoft Academic Service (MAS) and Applications. In Proceedings of the 24th 

International Conference on World Wide Web (WWW ’15 Companion). ACM, New York, NY, USA, 

243-246. 

Wang, J., Veugelers, R., & Stephan, P. (2017). Bias against novelty in science: A cautionary tale for users 

of bibliometric indicators. Research Policy, 46(8), 1416-1436. 

Watzinger, Martin, and Monika Schnitzer (2019). “Standing on the Shoulders of Science”. Mimeo. 

Watzinger, Martin, Lukas Treber, and Monika Schnitzer (2019). “Universities and Science-Based 

Innovation in the Private Sector”. Mimeo. 

 

  



Table 1: Ten randomly-sampled non-patent references from the front page of U.S. patents.  

Patent # Unstructured reference PCS 

6223284 Compaq Computer Corporation, "Compaq product information, bulletin, Proliant family 

of servers section 8,.Copyrgt. 1994 Compaq Computer Corporation, Feb. 2, 1995, pp. 1-6. 

N 

9834791 Eisenschmidt et al., "Developing a programmed restriction endonuclease for highly 

specific DNA cleavage," Nubcleic Acids Res., 33(22):7039-47 (2005). cited by applicant. 

Y 

8009111 John P. Gianvittorio and Yahya Rahmat-samii, "Fractal element antennas: a compilation 

of configurations with novel characteristics," IEEE, 4 pages, 2000. cited by other. 

Y 

9113925 Dald et al., "Accidental burns", JAMA, Aug. 16, 1971, vol. 217, no. 7, pp. 916-921. cited 

by applicant. 

Y 

9782195 "Fenestration revisited"", John A. Elefteriades, MD, et al.--Arch Surg--vol. 125--Jun. 

1990--pp. 786-790. cited by applicant. 

Y 

5383140 "User's manual, four-bit microcontroller and peripheral memory, tlcs-47e/47/470/470a"" 

(portions of title are in the Japanese language), pp. 5-211 through 5-223 and unnumbered 

final page, published by Toshiba corporation, dated 1991. 

N 

D699952 US. appl. no. 13/783,109, filed Mar. 1, 2013, Yang et al. cited by applicant. N 

9484093 response to office action dated Aug. 5, 2016 in U.S. appl. no. 14/715,586. Cited by 

applicant. 

N 

9518078 Wolff, Manfred e. ""Burger's medicinal chemistry, 5ed, part i"", John Wiley & Sons, 

1995, pp. 975-977. cited by examiner. 

Y 

8980864 Saenz-Badillos, J. et al., RNA as a tumor vaccine: a review of the literature. Exp 

Dermatol. jun. 2001;10(3):143-54. cited by applicant. 

Y 

 

Table 2: The top 20 journals by the number of PCS.  

 

# PCS Journal

428,363 Proceedings of the National Academy of Sciences of the United States of America

289,561 Journal of Biological Chemistry

284,282 Science

260,491 Nature

168,345 Journal of the American Chemical Society

166,660 Applied Physics Letters

130,298 Nucleic Acids Research

123,565 Journal of Medicinal Chemistry

120,647 Journal of Immunology

115,863 Cancer Research

108,815 Cell

90,148 Biochemistry

86,194 Journal of Organic Chemistry

84,344 Nature Biotechnology

83,264 Analytical Chemistry

81,706 Journal of Virology

80,432 Blood

67,249 Biochemical and Biophysical Research Communications

64,387 Journal of Applied Physics



Table 3: The top 20 papers most frequently cited by USPTO patents. 

  

# PCS Title First author Journal Year

4,783 less than additive epistatic interactions of quantitative trait loci in tomato y eshed Genetics 1996

4,601 linkage disequilibrium and fingerprinting in sugar beet t kraft Theoretical and Applied Genetics 2000

4,242

deciphering the message in protein sequences tolerance to amino acid 

substitutions james u bowie Science 1990

3,754 single amino acid substitution altering antigen binding specificity stuart rudikoff

Proceedings of the National Academy of 

Sciences of the United States of America 1982

3,388

continuous cultures of fused cells secreting antibody of predefined 

specificity g kohler Nature 1975

3,070

room temperature fabrication of transparent flexible thin film transistors 

using amorphous oxide semiconductors kenji nomura Nature 2004

2,879

thin film transistor fabricated in single crystalline transparent oxide 

semiconductor kenji nomura Science 2003

2,829

transparent thin film transistors using zno as an active channel layer and 

their electrical properties satoshi masuda Journal of Applied Physics 2003

2,829 polymer stabilized liquid crystal blue phases hirotsugu kikuchi Nature Materials 2002

2,827

wide bandgap high mobility zno thin film transistors produced at room 

temperature e fortunato Applied Physics Letters 2004

2,822

syntheses and single crystal data of homologous compounds in2o3 zno m 

m 3 4 and 5 ingao3 zno 3 and ga2o3 zno m m 7 8 9 and 16 in the in2o3 

znga2o4 zno system noboru kimizuka Journal of Solid State Chemistry 1995

2,812

carrier transport in transparent oxide semiconductor with intrinsic 

structural randomness probed using single crystalline ingao3 zno 5 films kenji nomura Applied Physics Letters 2004

2,795 field effect transistor on srtio3 with sputtered al2o3 gate insulator kazuo ueno Applied Physics Letters 2003

2,794

modulated structures of homologous compounds inmo3 zno m m in ga m 

integer described by four dimensional superspace group chunfei li Journal of Solid State Chemistry 1998

2,791

crystallization and reduction of sol gel derived zinc oxide films by 

irradiation with ultraviolet lamp naoko asakuma Journal of Sol-Gel Science and Technology 2003

2,789

amorphous oxide semiconductors for high performance flexible thin film 

transistors kenji nomura Japanese Journal of Applied Physics 2006

2,786 42 1 invited paper improved amorphous in ga zn o tfts ryo hayashi

Society for Information Display International 

Symposium 2008

2,783 dry etching of zno films and plasma induced damage to optical properties jun-beom park Journal of Vacuum Science & Technology B 2003

2,781 a ferroelectric transparent thin film transistor mwj menno prins Applied Physics Letters 1996





Table 4: Precision (1 – false positives) in a random sample of 100 PCS linkages per confidence 

level. 

 

 

Table 5: Recall (1 – false negatives) as measured against 501 known-good references 

 

  

(1) (2) (3) (4) (5)

confidence 

level

non-patent 

references 

linked

manually 

marked 

incorrect %  correct

estimated 

cumulative % 

correct

10 14,632,844 0 100% 100.00%

9 653,258 1 99% 99.96%

8 404,045 3 97% 99.88%

7 292,615 7 93% 99.76%

6 155,446 11 89% 99.65%

5 172,955 12 88% 99.53%

4 112,732 9 91% 99.47%

3 291,628 41 59% 98.76%

2 379,671 79 21% 97.04%

1 589,531 96 4% 93.93%

actual matches sample of 100 precision

confidence 

level

non-patent 

references 

linked

# found (of 

501 known) recall

10 14,632,844 424 84.63%

9 653,258 439 87.62%

8 404,045 445 88.82%

7 292,615 455 90.82%

6 155,446 456 91.02%

5 172,955 461 92.02%

4 112,732 465 92.81%

3 291,628 466 93.01%

2 379,671 467 93.21%

1 589,531 468 93.41%



Figure 1: Average number of citations to science per patent, by grant year 

 

 

Figure 2: Average number of citations to science per patent, 1947-2018, broken down by assignee 

type. 

 

 

0
1

2
3

4

#
 P

C
S

 p
e

r 
p

a
te

n
t

1940 1960 1980 2000 2020
year patent granted:

0
5

1
0

1
5

2
0

1940 1960 1980 2000 2020
grantyear

Government Corporation

University Lone Inventor



Figure 3: Citations to science per patent, by patent grant year and technical classification 
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Figure 4: Distribution of confidence scores for PCS linkages 

                       
 

Figure 5: PCS linkage algorithm performance, recall vs. precision 
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Appendices for Reliance on Science in Patenting:  

USPTO Front-Page Patent Citations Since 1947  

Matt Marx & Aaron Fuegi 

Appendix 1: Details of algorithm implementation 

First, we standardize lexically both the structured and unstructured source data for analysis. 

Second, we hash the unstructured source data into millions of subsets which can then be 

examined in parallel. Third, we execute loose, computationally-inexpensive matching to generate 

a large number of potential PCS linkages. Fourth, we apply computationally-expensive scoring 

techniques to determine the likelihood that each potential PCS represents an actual PCS, and 

assign a confidence score to the linkage. The following sections describe each step in turn. 

Step 1: Lexical standardization of structured and unstructured input data 

The unstructured non-patent references requires preprocessing primarily for pre-1976 records, 

due to errors in optical character recognition (OCR). There are approximately 100,000 non-patent 

references captured by OCR, too many to correct manually without a substantial investment. 

Instead, we adjusted the source data in ways that could potentially be handled by the more 

computationally-expensive matching described below. Occasional letter substitutions will 

already be handled, but since our algorithm separates words based on nonalphanumeric 

characterics, we addressed two common errors. First, letters (especially ‘a’) were frequently 

substituted by ‘@’, which caused words to be split and thus not match. We therefore replace ‘@’ 

with ‘a’ when it is embedded within a word, such as “self-driving c@r” or “electr@chemical 

reaction” (note: flexible matching will allow for ‘electrachemical’ to be properly matched against 

‘electrochemical’ even though it has been incorrectly replaced here).  

Second, words are frequently split by OCR in two with a spurious hyphen, sometimes followed 

by a space. For example, “parametric” might be rendered as “param-etric” or “param- etric”. 

Approximately one-third of the 100,000 pre-1976 non-patent references have words in this 

format. Of course, many words (and scientific words in particular) are separated by hyphens, 

such as “self-driving” and thus we do not want to introduce errors by falsely dropping hyphens to 

create “selfdriving.” Thus we only recombine words separated by a hyphen (with optional 

trailing space) when neither of the hyphen-separated words is in the dictionary. 

The structured data from MAG require less lexical preprocessing. Each is run through an ASCII 

filter to match the character set of the unstructured non-patent references, including the 

transliteration of Greek characters common in scientific titles. Articles missing authors (or where 

the author is listed as “Anonymous”) are dropped. 



Step 2. Hashing unstructured USPTO source data 

As noted above, direct comparison of approximately 36 million non-patent references8 with 150 

million MAG articles would require quadrillions of pairwise comparisons. Following Gaetani 

and Bergolis (2015) as well as Knaus & Palzenberger (2018), we partition the matching task 

initially by comparing only MAG papers from a given year with unstructured references that 

include that same year. Thus we segment the database of unstructured references into one section 

for each potential article year, 1800-2018. Again, recalling that the unstructured references do not 

have a defined year field, it is possible that four consecutive digits in an unstructured reference 

are the year of the article, a page number, or a part of the title. If an unstructured reference 

contains more than one string of digits from 1800-2018, a copy of that unstructured reference is 

placed in multiple segments.  

Segmenting the matching space by year reduces the number of required comparisons by several 

orders of magnitude, and we achieve even more dramatic improvement by further hashing the 

search process on other components of the unstructured lines. The annual data subsets for each of 

1800-2018 are further hashed, generating a subset for each non-stopword alphanumeric string in 

the unstructured lines for that year. As an example, for the following reference: 

Weisenschmidt et al., "Developing a programmed restriction endonuclease for highly 

specific DNA cleavage," Nucleic Acids Res., 33(22):7039-47 (2005). cited by applicant. 

We make 19 copies of this file, one for each word that is not a stopword like ‘for’ or ‘and’. Thus 

we add a copy of this reference to Weisenschmidt.txt, Developing.txt, Programmed.txt…33.txt, 

22.txt, 7039.txt…and so on. We then add copies of every reference containing the word 

“Weisenschmidt” to Weisenschmidt.txt, and so on. This enables our matching algorithm to look 

for papers by Weisenschmidt just in Wisenschmidt.txt instead of searching the entire corpus of 

references. 

This approach may seem wasteful, given that each unstructured reference l is duplicated N times 

where the number of non-stopword alphanumeric strings is given by Nl. However, disk space is 

inexpensive compared to computational savings achieved by searching only specific sub-

databases for matches as opposed to searching the entire database, or annual slices.  

Step 3: “Loose” matching to generate candidate PCS 

With our file-based hash table in place, we can execute massively parallelized, targeted searches 

for specific strings within subsets of the master database of unstructured lines. Still, some of the 

files are very large. Rather than attempt expensive matching on all available criteria (title, author, 

journal, volume, page, issue), we apply a loose matching filter as a first stage in order to generate 

a set of potential matches which can then be examined in more detail. 

                                                 

8 As a final preprocessing step, we excluded non-patent references clearly not to scientific articles. These 

include office actions or patent searches, deposition testimony, etc. Screening these reduced the set of non-patent 

references from 36,020,060 to 26,028,093. 

 



What sort of “loose” matching is useful to generate a set of candidate matches? Most of the 

unstructured strings contain the author and year of the publication, so we could consider 

matching simply on those two fields, but this would result in many billions of potential PCS 

matches. To these we add one additional field to winnow down the set of candidate matches 

without overcomplicating the search string, in two varieties. First, we perform loose matching 

adding the longest word in the title from MAG, in addition to the year and author surname. We 

also match on the second longest word in the title to handle cases of typographical differences in 

the longest word. Second, we repeat the loose matching, instead adding the starting-page number 

(or, if missing in MAG, the volume number) to the author surname and year. Note that these are 

unstructured searches: the year, author surname, and either longest title words or page/volume 

can appear anywhere in the unstructured reference.  

Sometimes the first author’s name is incorrectly specified in the unstructured patent reference, 

which jeopardizes our loose-matching scheme. In addition to an exact match on author name, we 

perform a flexible match using Levenshtein distance = 1 as our constraint. Given that flexible 

matching is very expensive at this early stage, we limit flexible name matching to the first four 

words of the unstructured text string, only checking these words if they are a) at least four letters 

long b) no more than one letter longer or shorter than the author’s surname c) not preceded by “et 

al.” which generally indicates the end of the author list.  

Sometimes, the year is misspecified or missing. When misspecified, it is usually the previous or 

subsequent year (i.e., the reference says 1995 when the paper was published in 1994). Hence, we 

allow for the year to be off by one in our first-stage “loose” search. Such flexibility is also useful 

when the patent applicant cites a working paper which is then published in the following year. In 

about 5% of non-patent references, the year of the article to which it refers is missing entirely 

and cannot be handled as above. We collect unstructured non-patent references that lack any 

four-digit string corresponding to a year from 1800-2018 and match these on author name and 

either longest word (or second longest word) or page number (or volume if page number is 

missing). (Obviously, this approach results in substantial overgeneration of possible matches.) 

Finally, we construct a list of potential matches for which neither any year nor any author 

matches but where a string of words is contained in quotes (possibly indicating a title). We then 

extract the string of words contained in quotes and perform a fuzzy match against all MAG 

articles. These are then added to the list of potential matches.  

The various loose searches yield more than 2 billion potential PCS linkages. This is far in excess 

of the 36 million unstructured references in the source data and largely due to overmatching of 

year, surname, and page/volume. For example, MAG has more than 11,000 articles in 2015 by 

“Smith,” so many of these will match even with a page-number restriction.  

Step 4: Scoring of “loose” matches 

Having generated a set of potential PCS, our final task is to apply more sophisticated (and 

computationally intensive) techniques to exclude false positives, based on a number of heuristics. 

The general shape of the scoring algorithm is detailed below, and the exact thresholds and terms 

are available in the posted code.  



Scoring first-author name 

Most candidate matches have overlapping years and author names, but some author names are 

more common than others. We downweight our confidence in the match for authors whose 

surnames a) are, composited together, the authors of more than one tenth of a percent of all 

articles, b) resemble month abbreviations (e.g., Jan, Jun), c) are frequent given names (e.g., 

Anthony, Morgan), d) are common terms in scientific articles (e.g., Power, Diamond), or e) 

consist of only two letters. Fuzzy matches, where the author surname was not an exact match, 

from our first round are also penalized slightly.  

We also penalize potential matches where the first initial of the author does not match that found 

in the unstructured line. Of course, it is not straightforward to determine the first initial in the 

unstructured text, so we apply this test only in the cases where the author’s surname appears 

among the first five words in the unstructured line. If so, we rely on cues including “et al” as 

well as “and” (either following or preceding the surname) to determine the first initial. In many 

cases, such as “Smith, et al.” no first name is available and so this filter cannot be applied.  

Scoring article title 

Title scoring proceeds as follows. We break apart the structured article title into its component 

alphanumeric strings (words).  We then look for these words in the unstructured reference and, 

when found, note the position or “offset” of each vs. the matching word in the structured article 

title. The most frequent offset among all words in the title is designated as the most likely start of 

the title in the unstructured string. We then again compare each word in the structured title to 

what we believe is the matching word in the unstructured data, based on the offset value. We also 

look at the words just before and after in case an extra word was mistakenly added or removed in 

the unstructured title.   

The overall score for title similarity is determined based primarily on 1) the full number of words 

in the structured title 2) the number of those words that matched exactly to their corresponding 

word in the unstructured data 3) the number of those words that matched with only a single-letter 

change (i.e., Levenshtein distance 1). Matching of common words is discounted. In effect, the 

title score increases for a higher percentage of words in the title, and the longer the title is. Titles 

of fewer than five words are given less weight while titles of seven or more words that match 

closely have greater influence on the confidence score. 

Often, what appears to be the article title is enclosed in quotes. Note that this is far from always 

the case; many NPL entries do not contain any quotes, and some surround journal names or other 

extraneous text in quotes. If, however, we find any text contained in quotes, we compute the 

Levenshtein distance between the text in quotes and the actual title in MAG. (If there are 

multiple groups of quote-surrounded text, we try all of these in turn.) Note that this approach is 

far from foolproof, as titles within quotes are often abbreviated (e.g., “properties of gallium 

arsenide…an early test”). The title score generated above as well as this title score when quotes 

are available are both used to score potential matches, with an item being considered a likely 

match if it scores highly using either method. 



Scoring volume, issue, and pages 

We then score the match for information other than the title. We generally refer to these 

characteristics as “VIP” for Volume/Issue/Pages. Our original approach with non-title matches 

followed Fleming et al. (2018) in requiring the 3-tuple of volume, issue, and first page in order. 

Such an approach generates few if any false positives but results in a large number of false 

negatives because many unstructured non-patent references omit the issue number, and some 

have only the page numbers. We give credit for matching volume, issue, or page anywhere in the 

unstructured string; however, titles sometimes contain numbers which could yield stray matches, 

especially single-digit numbers. Hence we increase confidence only slightly when single-digit 

numbers (esp. 1) match; matches of multi-digit numbers bolster confidence.  

Confidence increases dramatically if VIP information is found in sequence, such as <volume>-

<page> and especially <volume>-<issue>-<first page>-<last page>, especially when all of the 

VIP components are three or more digits. Confidence is boosted if these sequences are preceded 

by Vol. or when p. or pp. precedes the page number. Having both first and last page number in a 

sequence is especially advantageous, including when the final page number is often abbreviated 

to contain only digits that distinguish it from the initial page number (e.g., “255-73”).  

By the same token, if Vol., p., etc is followed by a number that does not match the structured 

data, we penalize the confidence score. Moreover, if in the unstructured string we see what 

appear to be a volume-issue-page combination, or two page numbers in a row, but these do not 

match the data in MAG, we lower the confidence score. Note that this filter is not applied if both 

numbers in the <first page>-<last page> sequence are lower than 32, which may indicate a date 

range for a conference. 

Scoring journal names 

We increase our confidence score if the journal title is found in the unstructured string. Journal 

titles are frequently abbreviated in references, so in addition to searching for the canonical 

journal name listed in MAG we also search for shorthand versions of every journal name based 

on the concordance found at 

https://images.webofknowledge.com/images/help/WOS/A_abrvjt.html. In addition, we reviewed 

thousands of randomly-sampled outputs labeled correct but which did not have a match on 

journal to find additional abbreviations. (Proceedings of the National Academy of Sciences USA 

had more than three dozen abbreviations.) We give less credit for finding journal names that are 

common words in articles, such as “Science” or “Cell.” 

A composite confidence score is then determined based on the above scoring algorithm. These 

scores vary according to the fuzzy-match title score, journal score, and the completeness of the 

volume/issue/page match. Note that there may be more than one MAG ID found for a given 

patent/NPL combination. In such a case, we pick the MAG ID with the highest overall 

confidence score (or, if multiple matches have a similar overall confidence score, we pick the 

match with the highest title score (and further break ties with VIP score).

https://images.webofknowledge.com/images/help/WOS/A_abrvjt.html


Appendix 2: Schema for patent citations to science (PCS) output files 

The main output file, available at http://relianceonscience.org, is called pcs.tsv and is a tab-separated file containing the patent 

number, the unique identifier in the MAG database, confidence score, and whether the reference was filed by the applicant, an 

examiner, or other (if known). It contains PCS links of confidence score 3 or higher. Those using this data are asked to cite this paper. 

The schema is as follows: 

Table A1.1: Contents of pcs.tsv. 

Variable Type Notes 

reftype string App = from applicant 

Exm=from examiner 

Unk = if unspecified in the unstructured reference (Note: almost every reference 

before 2006 is of unknown origin.) 

confscore numeric Assigned confidence score to the match. Note that only matches with a confidence 

score of 3 or above are included in the distribution. 

paperid numeric Unique identifier for each paper in the Microsoft Academic Graph. 

patent string Patents are 1947-2018, granted by USPTO. Not all patents contain references to 

science. Only patents for which our algorith established a PCS linkage are included. 

nplwithoutpatent string Unstructured reference to non-patent literature (NPL) from the patent. May have slight 

formatting alterations from original USPTO, but alphanumerics should be identical. 

Lowercase. 

As described in the body of the paper, PCS are established via a probabilistic algorithm. Users of the data should consult Tables 2 and 

3 as well as Figure 1 to determine their desired confidence-score cutoff. Matches for confidence scores 2 and 1 are not included in the 

distribution as there are very few correct matches at those levels. Even at confidence score 3, about half of the matches are incorrect. 

Most users will want to only use matches with a score of 4 or higher. 

 



Appendix 3: Files for Microsoft Academic Graph metadata 

Also available is a series of files with metadata regarding not just the references reported in 

Appendix 1 but all papers in the 1 January 2019 release of the Microsoft Academic Graph 

(MAG). They are compressed using the ‘zip’ utility under Unix CentOS5. Reposting of these 

data is facilitated by the ODC-By license (https://opendatacommons.org/licenses/by/1-

0/index.html), under which MAG is provided and under which these data are also provided. 

Those using these data should cite the following paper: Sinha, Arnab, Zhihong Shen, Yang Song, 

Hao Ma, Darrin Eide, Bo-June (Paul) Hsu, and Kuansan Wang. 2015. An Overview of Microsoft 

Academic Service (MAS) and Applications. In Proceedings of the 24th International Conference 

on World Wide Web (WWW ’15 Companion). ACM, New York, NY, USA, 243-246. 

Researchers who prefer to download the original MAG data directly from Microsoft can do so by 

signing up for an Azure account and billing plan, contacting Microsoft for access to MAG, 

selecting the 2019-1-1 release, and downloading the desired files. Instructions are at 

https://docs.microsoft.com/en-us/academic-services/graph/. Note however that some of the 

original MAG files are several dozen gigabytes in size; for example, the Papers.txt file from 

which several of these files are derived, is 56 gigabytes. 

All files are in tab-separated format, compressed as .zip files. The first set of files contain direct 

metadata for papers in MAG. 

Table A2.1: Contents of files with direct MAG metadata 

Filename Variables MAG file (fields) Notes 

paperyear paperid, 

paperyear 

Papers.txt (1,8)  

papervolisspages paperid, 

papervolume,  

paperissue, 

paper1stpage, 

paperlastpage 

Papers.txt (1,14,15,16,17) Issue and pages are 

sometimes blank. 

First page is 

available more often 

than last page. 

papertitle  paperid, 

papertitle 

Papers.txt (1,5) Titles are often 

blank for conference 

papers. 

papercitations citingpaperid, 

citedpaperid 

PaperReferences.txt (1,2) Adds headings to 

PaperReferences.txt. 

paperdoi paperid, doi Papers.txt (1,3) DOI is not available 

for every paper in 

MAG 

paperauthororder paperid, 

authorid, 

authororder 

PaperAuthorAffiliations.txt 

(1,2,4) 

Author order not 

available for every 

author 

paperauthoraffiliationame paperid, 

authorid, 

affiliationame 

PaperAuthorAffiliations.txt 

(1,2,5) 

Affiliation not 

available for many 

authors 

 

https://opendatacommons.org/licenses/by/1-0/index.html
https://opendatacommons.org/licenses/by/1-0/index.html
https://docs.microsoft.com/en-us/academic-services/graph/


The next set of files contain indirect metadata, i.e. identifiers that need to be matched to 

dictionaries in the next set of files. One could provide the full strings of the authors, journals, 

etc., directly but the files would be much larger and unnecessarily redundant.  

Table A2.2: Contents of files with indirect MAG metadata 

Filename Variables MAG file (fields) Notes 

paperconferenceid paperid, 

conferenceid 

Papers.txt (1,13)  

paperfieldid  paperid, fieldid PaperFieldsOfStudy.txt (1,2) ID for field 

of paper. 

paperjournalid paperid, journalid Papers.txt (1,11)  

 

The third set of files contains the string values for indirect metadata identifiers:   

Table A2.3: Contents of files with string values for indirect MAG metadata 

Filename Variables MAG source (fields) Notes 

authoridname_normalized authorid, 

authorname_normalized 

Authors.txt (1,3) Lowercase 

name w/o 

punctuation. 

authoridname_raw authorid, 

authorname_raw 

Authors.txt (1,4) As originally 

appeared. 

conferenceidname conferenceid 

conferencename 

ConferenceInstances.txt 

(1,2) 

Name of 

conference 

fieldidname fieldid 

fieldname 

FieldsOfStudy.txt (1,3) Paper field, 

inferred from 

title+abstract. 

journalidname journalid 

journalname 

journalissn 

Journals.txt (1,3,5) ISSN is often 

unavailable. 

 

 

  



Appendix 4: Schema for extensions to the Microsoft Academic Graph (MAG) data 

In addition to the redistribution of the MAG data, we provide two extensions for fields not present in the MAG data. First, we 

calculate Journal Impact Factor for all journals in MAG. The schema is as follows: 

Table A4.1: Contents of jif.tsv. 

Variable Type Notes 

journalid numeric  

journalname String  

jif numeric Journal impact factor. A journal’s impact factor is a popular measure of its quality, 

calculated for year t as the number of times articles from years t-1 and t-2 were cited 

by other articles during year t, divided by the number of articles published during 

years t-1 and t-2. 

 

In addition, we provide a new measure of journal impact: Journal Commercial Impact Factor (JCIF). Just like JIF is a journal-level 

measure of quality, it is possible to build a journal-level measure of appliedness or commercial relevance by replacing paper-to-paper 

citations by patent-to-paper citations. Bikard and Marx (2019) introduced this concept and calculated it for the Web of Science; here, 

we calculate JCIF for MAG. That paper should be cited if the JCIF data available here are used.  

Table A4.2: Contents of jcif.tsv. 

Variable Type Notes 

journalid numeric  

journalname String  

jcif numeric Journal commercial impact factor. A journal’s commercial impact factor is calculated 

for year t as the number of times articles from years t-1 and t-2 were cited by patents 

during year t, divided by the number of articles published during years t-1 and t-2. 

 



Finally, we provide an aggregation of the more than 200,000 fields automatically extracted from the papers themselves. We mapped 

the MAG subjects to 6 OECD fields and 39 subfields, defined here: http://www.oecd.org/science/inno/38235147.pdf. Clarivate 

provides a crosswalk between the OECD classifications and Web of Science fields, so we include WoS fields as well. This file 

is magfield_oecd_wos_crosswalk.zip. 

Table A4.2: Contents of magfield_oecd_wos_crosswalk.tsv. 

Variable Type Notes 

paperid numeric Unique identifier for each paper in the Microsoft Academic Graph. 

paperfieldid  paperid, 

fieldid 

PaperFieldsOfStudy.txt (1,2) 

oecd_field       String One of six top-level OECD fields. 

oecd_subfield    String One of 39 OECD subfields. 

wosfield String One of 251 Web of Science fields. 

 

 

 


