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Abstract—The mitigation of process variability becomes paramount as chip fabrication advances deeper into the sub-micron regime.
Conservative guard-bands result in considerable performance loss, while most low-level solutions impede dynamic customization at
application level. This paper exploits the existing process variability of commercial off-the-shelf FPGAs to improve the operating frequency
of a design, in-the-field, at anytime during the lifetime of a chip. We begin by measuring variability in prevalent FPGAs and assessing its
impact on the performance of common DSP benchmarks. For the former, we develop a custom sensing network of Ring-Oscillators to
generate detailed 2D maps per chip. For the latter, we perform intensive testing and statistical analysis to establish the relation between
variability maps and benchmark frequencies. Accordingly, we propose a framework to automatically characterize the user’s devices, place
the design on the most efficient region, and scale its frequency based on user requirements and functional verification. Experimental results
on 20 FPGAs of 28 nm Xilinx technology show up to 13 percent intra-die and 30 percent inter-die variability; with limited cost, our framework
provides 10—14.7 percent average gain by exploiting such variability, or up to 56— 138 percent by also customizing the guard-band.

Index Terms—FPGA, process variability, ring oscillators, frequency scaling, guard-band customization, performance improvement

1 INTRODUCTION

WHILE semiconductor technology strives to evolve
according to Moore’s law, the challenges in chip fabri-
cation become even more pronounced. Controlling process
variability is one of the most prominent problems, already
present in current technology nodes and expected to become
even more arduous in the future, deeper sub-micron regime
[1], [2]. As a consequence, process variability decreases the
yield and performance of the fabricated chips.

Process variability is classified in two main types: system-
atic and random [3], [4], [5]. On one hand, systematic refers to
deterministic, spatially correlated variations induced into
wafers and dies during fabrication due to operational shifts
and equipment inaccuracies (e.g., photoresist development,
etching). On the other hand, random refers to uncorrelated,
unpredictable variations occurring in the atomic scale due to
stochastic fluctuations in the process (e.g., random dopant
fluctuation, gate oxide thickness variation). All these effects
lead to deviations in the electrical properties of the transis-
tors, such as the threshold voltage, V'th, and the effective
channel length, L.s;. In turn, these deviations translate to
variations in speed and power consumption between sup-
posedly identical dies (inter-die variability), or even inside a
single die (intra-die variability). Indicatively, in a set of
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28 nm chips, inter- and intra-die variability measures up to
17 and 7.7 percent, respectively [6].

To overcome the resulting variability and eliminate mal-
functions in their products, the vendors follow the conser-
vative “one recipe fits all” strategy. They impose common
global guard-bards to huge sets of fabricated chips. Hence,
for nominal operation, they ensure functional integrity even
for the worst-case scenario of their entire production line.
However, this pessimistic approach prevents the majority
of the chips from utilizing their full capability and leads to a
significant performance loss [6], [7], [8], [9], e.g., 80 percent
of potential increase in operation frequency.

Mitigating the process variability is of utmost importance
for enhancing the efficiency of present-day and future
processing systems. Classical techniques include statistical
modeling at design time [5], post-fabrication tuning of
parameters, either in the chip or in the equipment, speed-
binning via performance testing [10], [11], etc. These techni-
ques rely mostly on one-time variability analysis and are per-
formed during the manufacturing cycle. In contrast, the
current paper targets in-the-field mitigation, which can be
applied multiple times during the lifetime of a chip, even at
user level, without the vendor’s support. Additionally, in-
the-field mitigation enables dynamic adaptation to environ-
mental and aging effects that degrade system performance
erratically [12]. The industry has acknowledged the benefits
of such mitigation and the need for relevant IPs [13].

Among the various processing platforms, particular inter-
est should be paid to the Field-Programmable-Gate-Array
(FPGA). Today, FPGAs are flooding the market due to their
impressive performance-per-watt figures and acceleration
capabilities. Their application varies from embedded system
design to datacenter support, where the enormous number


https://orcid.org/0000-0001-7684-1111
https://orcid.org/0000-0001-7684-1111
https://orcid.org/0000-0001-7684-1111
https://orcid.org/0000-0001-7684-1111
https://orcid.org/0000-0001-7684-1111
https://orcid.org/0000-0003-1664-8648
https://orcid.org/0000-0003-1664-8648
https://orcid.org/0000-0003-1664-8648
https://orcid.org/0000-0003-1664-8648
https://orcid.org/0000-0003-1664-8648
https://orcid.org/0000-0002-6930-6847
https://orcid.org/0000-0002-6930-6847
https://orcid.org/0000-0002-6930-6847
https://orcid.org/0000-0002-6930-6847
https://orcid.org/0000-0002-6930-6847
mailto:

of chips urges for a variability exploitation scheme. In con-
trast to conventional processor-based devices (multi-cores,
GPUs, DSPs), the FPGAs offer increased opportunities for
variability evaluation and in-the-field mitigation. They base
on a uniform architecture of small identical resources [14],
which allows the user to deploy multiple sensing structures
across the entire fabric of the device to assess its variability
[15], [16], [17]. Moreover, the FPGA’s reconfigurability facili-
tates the remapping of a design to the most efficient region of
the chip, even with respect to dynamic variability.

In the current paper, we focus on exploiting the process
variability of present-day commercial FPGAs, in-the-field, as
a means of improving their performance/throughput. We
begin with a method to accurately assess intra- and inter-die
variability, at user level, which we then quantify on a given
set of 28 nm devices. For each device, we generate a corre-
sponding variability map. Subsequently, we proceed by
assessing the impact of this variability on the actual perfor-
mance of various benchmarks. We establish that the mea-
sured variability can indeed be exploited in practice, even
for the very challenging intra-die scenarios. Moreover, we
correlate the performance of the examined benchmarks to
the derived map-signature of each device, which we can
thereafter use as a predictor of frequency boost. Accordingly,
we propose a framework to increase the FPGA’s speed by
capitalizing on the generated maps and dynamic frequency
scaling. The framework customizes each implementation to
the underlying HW's variability and user-defined guard-
band. Overall, the main contributions of the work are:

e To develop and explain a generic system that produ-
ces 2D maps for the fine-grain characterization of the
actual performance capabilities of System-on-Chip
(S0C) FPGAs and conventional FPGAs.

e To evaluate process variability in multiple, diverse,
commercial 28 nm FPGAs by considering, besides
nominal conditions, voltage-drop effects in the die.

e To assess the variability’s impact on the performance
of real benchmarks, for both inter- & intra-die cases.

e To propose and develop an enhanced framework
exploiting inter- and intra-die variability, as well as
the guard-bands, to improve the FPGA performance,
in-the-field, without modifying the vendor’s tools.

Compared to our previous publication [6], the main dif-

ference/extension of the current work lies in the exploitation
of the intra-die variability. For this new and more challeng-
ing contribution, we employ our new statistical approach to
analyze FPGA performance and we intensify the testing
required. Furthermore, we automate this testing by develop-
ing a HW/SW infrastructure, we increase the diversity of the
examined devices (in terms of number and size and type), as
well as the variety of testing conditions (in terms of bench-
marks and especially workload and voltage). Owing to these
extensions, we consolidate our framework and add new fea-
tures to it. As will be further explained in Section 2, the com-
bination of the above ideas/contributions also differentiates
our work from others in the literature. When specifically con-
sidering our intra-die results, to the best of our knowledge,
this is the first work in the literature involving commercial
devices and exploitation at user-level (hence, the presented
method is central to this paper).

As a proof-of-concept, even though our methodology is
technology- and vendor- agnostic, we perform tests on 20
Xilinx devices at 28 nm node. We note that 28 nm is the most
widespread and profitable (cost per transistor) technology
and is foreseen to hold a large share of the market also in the
near future [18], [19]. Our tests show intra-die variability up
to 13 percent and inter-die up to 30 percent, which increase
with voltage drop. Our framework is evaluated with FIR and
FFT benchmarks on Zynq XC7Z020T devices, for which the
results show average performance improvement up to 5.9
and 9.9 percent exclusively due to intra- and inter-die vari-
ability exploitation, while their combined gain can increase to
14.7 percent, on average, or in the area of 20 percent for more
extreme cases. Furthermore, significant improvement, e.g.,
twofold increase in speed, can be achieved via guard-band
customization. Owing to its generic deployment and fast com-
pletion, e.g., less than a minute per chip, our framework is
suitable for selecting the best region/device in embedded or
high-performance applications, for re-evaluating the status of
a chip anytime during its lifetime, or for examining hundreds
of devices in an automatic fashion within a centralized facil-
ity, e.g., datacenters or HPC clusters.

The paper is organized as follows: Section 2 includes the
related work. Section 3 presents our method and evaluation
of conventional and SoC FPGAs using variability maps.
Section 4 analyzes and establishes the correlation between the
variability maps and the performance of common bench-
marks. Section 5 presents the proposed framework. Section 6
evaluates the framework. Section 7 draws the conclusions.

2 RELATED WORK

Evaluation of variability in FPGAs is being studied for more
than a decade and several works on this topic exist in the liter-
ature. The authors in [15] developed a measurement circuitry
based on an array of 884 ring oscillators (ROs) to analyze
the within-die delay variability in 90 nm FPGAs. They tested
18 Cyclone II 2C35F672C6 devices and measured up to
4.47 percent stochastic variation (3-0) and up to 3.66 percent
systematic variation. Within-die delay variation was also ana-
lyzed in [16] for 65 nm Virtex-5 5VLX330T FPGAs. They col-
lected data from 6,856 dies by deploying 6,480 ROs per die.
The total within-die performance variation (both random and
systematic) was measured at 22 percent (=max-min). Further-
more, they modeled and incorporated systematic variation in
the static timing analysis (STA) tool to show 5.4 percent aver-
age frequency improvement for a set of benchmark designs.
In [20], the authors used 112 ROs for online sensing of intra-
die variations in delay, leakage, dynamic power and tempera-
ture; their system relied on Microblaze for monitoring the
ROs on each of two 65 nm Virtex-5 XC5VLX110T FPGAs. The
delay variation was measured at 2.3 percent (= o/u). In [17],
an alternative technique is proposed for characterizing the
delay variability in FPGAs. The key idea bases on measuring
the delay of a combinatorial circuit under test (CUT) placed
between a launch and a sampling register. A clock generator
controls the registers and a stimuli generator provides inputs
to the CUT. While stepping up the frequency, a custom circuit
monitors the outputs of the CUT and the sampling register to
detect the occurrence of timing errors. Consequently, the
maximum error-free frequency is derived. The technique was



applied to measure the delay variation of LUTs, carry-chain
units and embedded multipliers in Cyclone II EP2C35 and
Cyclone Il EP3C25 FPGAs.

The existing mitigation approaches of process variability
in FPGAs are applied on architecture/device and CAD lev-
els. Regarding architecture/device level, the authors in [21]
developed analytical models for leakage and timing varia-
tions to calculate the yield rate of a lot under process variabil-
ity. By considering the Virtex-II Pro architecture as reference
point, they showed that the tuning of various architectural
(logic block and LUT size) and device (Vy4, V}) parameters
can increase the leakage-delay yield by 23 percent. In [22], an
adaptive FPGA architecture is proposed to compensate for
process induced threshold voltage variations. This architec-
ture comprises an additional characterization circuit, which
classifies the logic and routing blocks of the fabric into groups
according to their measured performance. The classification
information is stored in dedicated SRAM bits and is used by
a body-bias circuit to configure accordingly the V'th value of
each block. SPICE simulation results revealed significant
decrease in delay and leakage variation (¢): up to 3.3x and
18x, respectively. In [23], the authors investigate the robust-
ness of bidirectional and unidirectional routing architectures
in the presence of Vth variation. They modified the existing
VPR tool to account for delay variation effects. Experimental
results on synthetic benchmarks showed that bidirectional
routing is preferable only in case of short wire segments. As
wire length increases, unidirectional routing presents smaller
standard deviation in critical path delay, e.g., 36 percent. The
authors in [24] evaluate the suitability of different routing
architectures under process variation. They claim that the
architectures including more short wire segments with more
buffers present improved timing variation. Moreover, further
improvements can be achieved by enhancing existing place-
ment and routing algorithms to account for timing variations.
Specifically, experiments based on VPR tool and synthetic
benchmarks showed improvement up to 18.8 percent in tim-
ing variability (o), which increases up to 22 percent when
combining the variability-aware CAD optimizations. More-
over, improvements up to 28 and 68 percent were observed
in delay (1 + 30) and timing yield, respectively. In [25], the
process variation tolerance of Transmission Gate (TG) and
Pass Transistor (PT) based LUT structures at HK/MG 16 nm
technology is studied. MonteCarlo simulations on SPICE
showed that TG-based LUT can decrease the delay variation
to 4.9 percent instead of the 23.3 percent in the case of PT-
based LUT.

Regarding mitigation at CAD level, the works in [26] and
[27] propose a chip-wise placement method to leverage corre-
lated process variation and improve the performance of
FPGA applications. Given the variability map of the underly-
ing FPGA as input to the proposed placement algorithm, the
most efficient solution can be retrieved. Experiments with
synthetic benchmarks present performance improvement of
4—26 percent compared to the conventional placer of VPR
tool (T-Vplace). In [28], the authors study the performance
improvement through path reconfiguration within a LUT
cluster. Specifically, for a given logic network, they investi-
gate the performance impact of possible LUT mapping and
placement scenarios in the presence of process variation. The
efficient combination of LUT mapping and placement results

in over 10 percent critical path delay improvement according
to MonteCarlo experiments. In this direction, a variation-
aware chip-wise routing method is presented in [29]. On top
of VPR router, they enhance the related cost function and
timing analysis to include information extracted from vari-
ability maps of actual FPGAs. Experiments with maps of
100 Cyclone III FPGAs and synthetic benchmarks revealed
up to 6.4 percent improvement in critical path delay. In [30]
an NBTI/PV-aware placement technique is presented to
improve the performance and reliability of FPGA designs.
The technique is integrated in VPR’s T-VPlace to consider
the joint PV/NBTI effect in regional delay estimations
and move/swap cost functions. The process variability
data were retrieved from 5 Virtex-II Pro FPGAs, whereas
the switching probabilities for nets and LUT inputs were
obtained from the PowerModel tool. The experiments
carried-out on synthetic benchmarks showed more than
60 percent PV/NBTI reduction for 60 percent of the chips.

Finally, a limited amount of recent works in the litera-
ture show the performance gained due to guard-band cus-
tomization. The most widely adopted approach bases on
frequency scaling and online measurement of timing slack
in critical paths. Representatively, [9] and [8] modify the
design netlist by employing additional shadow registers
or in-situ detectors in the most critical paths, while scal-
ing the frequency at the maximum level until no error is
detected. Their experimental results on a 60 nm Cyclone
IV and a 28 nm Zynq ZC7020 showed performance impro-
vement up to 39 and 98 percent, respectively. However,
the analysis of the critical paths is performed off-line,
according to STA, without taking into account the existing
process variability and aging of the underlying chips. In
practice, this could mislead the selection of the actual criti-
cal paths. The authors in [7] propose an approach to isolate
and measure the actual timing slacks of critical paths
replicas under various voltage/temperature conditions.
Accordingly, they build a calibration table such that, when
the target design is mapped on the FPGA, its operation fre-
quency can be adjusted based on the pre-stored values of
the calibration table. This method requires developing
an augmented CAD tool and analysis of the critical paths
with STA. Experiments based on a 65 nm Cyclone IV
FPGA and an FIR benchmark showed 50 percent increase
of the operating frequency over STA.

In comparison to the aforementioned works, we develop
a framework for in-the-field mitigation of variability at user
level, where no modification is required in device parame-
ters, vendor’s CAD tool, or design netlist. In effect, like
many of these works, our framework considers inter- and
intra-die process variability, guard-band customization, or
even adaptation to environmental and aging effects (with-
out relying extensively on the time-consuming processes of
Synthesis, Placement & Routing, and bitstream generation
of user IPs).

3 PROCESS VARIABILITY EVALUATION IN FPGA

The current section presents in detail the design and deploy-
ment of our custom sensing network for automatic in-the-
field measurement of process variability. The key idea is to
analyze the actual performance capabilities of present-day
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Fig. 1. Proposed system for variability evaluation.

conventional and SoC FPGAs without relying on the estima-
tion of the vendor’s STA tool. By comparing the maximum
achieved speed among multiple identical chips, we deter-
mine the inter-die variability. Similarly, by comparing the
maximum local speed of distinct regions inside a chip, we
determine the intra-die variability.

For the purposes of the evaluation, we developed the sys-
tem depicted in Fig. 1. It consists of an embedded processor
(EP) and a network of uniformly distributed sensors pro-
grammed in the FPGA. In essence, each sensor measures the
local speed of a distinct region in the chip. The EP supervises
the operation of the sensors, collects their local data and com-
municates with any external CPU (via serial or Ethernet port)
to forward the results for further processing. Our method is
generic and can be applied to most FPGAs, with any hard/
soft-core processor (e.g., ARM, Microblaze), and at any gran-
ularity (number of sensors). The following sections provide
details regarding our sensor, the system’s operation, and
results derived for 28 nm Xilinx chips.

3.1 RO Sensor Design for Robust Replication

The fundamental building block of our evaluation system is
our custom sensor utilizing the well-established Ring Oscil-
lator (RO) circuit [6]. In general, an RO consists of a chain of
inverters forming an asynchronous loop as shown in the
middle box of Fig. 2. When the number of gates is odd and
the RO is fed with a constant signal, its output oscillates to
provide a square wave. The frequency of this wave depends
only on the delay of the RO’s asynchronous path, i.e., on the
number and electrical characteristics of the transistors in the
loop. If we guarantee that the gates and routing in this loop
(the total path) remain relatively intact when we move the
RO within the FPGA, then its frequency will change depend-
ing only on the electrical characteristics of the specific local
region (its overall variability).

The complete structure of our sensor is shown in Fig. 2. It
comprises a three-stage RO augmented with a 16-bit up-
counter and I/O registers. The goal is to measure the fre-
quency of the signal generated by the RO. To do so, we use
this signal as a clock to drive the up-counter. Upon initiali-
zation, the counter is reset and the 1-bit input register holds
an activation signal for a predefined time period 7. During
T, the RO oscillates and the counter increments continu-
ously as if it was measuring the number of positive edges of
the generated signal. At the end of 7', the 16-bit output regis-
ter (synchronous to the RO signal) holds the final outcome
¢y of the counter. The RO’s frequency is calculated by EP as
fro = ¢/ T after accessing the register.
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Fig. 2. Ring oscillator sensor structure.

To obtain reliable results, as mentioned above, we must
ensure that the f,, depends only on the location of the RO in
the fabric and is not affected by the synthesis/implementa-
tion process of the vendor’s SW tool. Therefore, we pay par-
ticular attention in terms of VHDL, coding attributes, and
tool constraints to produce a robust RO structure, which can
be replicated with the exact same resources and routing
—almost- anywhere within the FPGA. Several in-house
experiments with our sensor and the devices/tools verified
that the operation of the RO is highly sensitive to any envi-
ronmental stimuli or design alteration. Overall, according to
our experiments, we summarize that:

e The RO should be isolated from any surrounding
logic to eliminate power noise and avoid local tem-
perature increase (noticeable shifts occur otherwise).

e All ROs must be implemented with identical routing
resources (relative to each other). Tests verified that
each wire connection has considerable impact on the
RO timing and, hence, attention should be given to
ensure that all connections are constrained/fixed.

e All ROs must utilize identical logic resources (LUTs,
Flip Flops and Carry Chains) with fixed placement
on the fabric. Unconstrained placement allows rout-
ing uncertainty and, hence, leads to different timings
(for Xilinx, even the SLICEs must be of the same
type, i.e., SLICEM or SLICEL, due to individual
routing connections and construction of LUTs).

In respect of the above, we developed a custom built-in
macro block describing a robust RO sensor, with various con-
straints/attributes that prevent all unwanted phenomena. As
noted in Fig. 2, we use appropriate synthesis constraints to
prevent the SW tool from optimizing the chain of inverters,
i.e., from removing the functionally redundant gates. More-
over, we consider the individual architecture of the underly-
ing FPGA to map the RO sensor to specific logic resources:
each inverter is mapped to a distinct LUT followed by a pass-
through latch, whereas the counter is mapped on four spe-
cific carry chain units together with 16 flip-flops. The four
pass-through latches add extra delay to the signal transition
between the stages of the RO chain (as in [20]). Fig. 3a illus-
trates the resulting mapping of resources with a floorplan
view of the FPGA fabric (the orange highlighted small blocks
represent DFF/latches, mid-sized blocks represent LUTs,
large blocks represent carry-chains). In addition, we use rout-
ing constraints to guarantee that the connections among the
above resources will remain identical, relative to each other,
regardless of where the RO sensor is placed on the FPGA.
Fig. 3b shows the routing of our sensor with nets (green high-
light) connecting the fixed resources shown in Fig. 3a. Notice
that the implemented sensor is quite compact (only four
CLBs, or eight slices, occupying 0.06 percent of a mid-range
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Fig. 3. Floorplan of ring oscillator implementation on XC7Z020T FPGA.

XC7Z020 chip) and allows the deployment of an entire RO
network alongside real designs by paying a minor resource
overhead.

3.2 Deployment and Operation of Sensing Network
The robust sensor macro-block described in the previous sec-
tion is deployed in several copies and placed uniformly
across the FPGA to sufficiently cover the entire fabric. We
automated the deployment via parametric VHDL code and a
device-specific Python script, which generates all of the nec-
essary constraints to drive the implementation process (after
synthesis). In practice, the script includes a template for the
sensor and information regarding the architectural details of
the FPGA (e.g., the size of the fabric at slice level). The script
inputs the necessary net names output from the synthesis
process. For each net of each sensor, it generates the neces-
sary constraints by replicating the sensor’s template and
increasing the X-Y location on the fabric. Specifically, for
each sensor, the script defines its eight slices (using X-Y)
and, subsequently, defines the routing and logic resources
within and among the eight slices (using fixed identifiers
and the sensor’s template). The script outputs a big con-
straint file imported in Xilinx Vivado to be used in the imple-
mentation process (placement and routing) of the network.
The entire flow is depicted in Fig. 4.

The communication of the EP with the RO network is real-
ized with an AXI-lite port and a large multiplexing structure
connecting all the RO sensors. The EP sends all of the appro-
priate 32-bit commands for the initialization, triggering, and
data collection from the sensors. Successively, the EP resets
all sensors, activates them for a predefined period T and,
when the period T is over, it deactivates their operation.
Also, the EP sequentially retrieves the registered results: for
each sensor, it sends a distinct word over AXI-lite represent-
ing an address of the multiplexer and allowing the corre-
sponding sensor to forward its result over AXI. To determine
the measurement period 7" as accurately as possible, in case
of a SoC FPGA, we use the private timer of the ARM proces-
sor, or in case of conventional FPGA with a soft-core Micro-
blaze, we use the AXI Timer IP; the EP sets its timer before
issuing the activation command to the sensors, waits for
10,000 timer cycles to receive an interrupt, and issues the
deactivation command. The timing error of this procedure
tends to be systematic and less than 0.7 percent. The entire
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Fig. 4. Flow of automatic deployment of the proposed sensing network.

process is executed in a bare-metal environment, whereas EP
communicates with a host PC via serial port to forward the
variability map.

3.3 Evaluation Results: Variability Maps
By using the aforementioned sensing network, we evaluated
the process variability in 20 conventional and SoC FPGAs in
our lab. The examined FPGAs are listed in the first two col-
umns of Table 1. They are all fabricated at 28 nm and the
speed-grade varies from “—1” to the faster “—2”. The “Zynq”
category indicates SoC FPGAs integrating a Processing Sys-
tem (PS) with a dual-core ARM Cortex A9 processor and a
variety of peripherals, as well as the Programmable Logic
(PL) with the actual FPGA resources under investigation.
The “Virtex-7” are conventional FPGAs including only Pro-
grammable Logic. In Zynq FPGAs, we use the ARM proces-
sor as the EP described in previous sections, while in Virtex-
7 devices we deploy a lightweight version of the Microblaze
soft-core processor. For each distinct FPGA we measure the
intra-die variability. Furthermore, we measure inter-die vari-
ability in 13 identical Zynq XC7Z020T FPGAs (all hosted on
Zedboards), in 2 extra XC7Z020T FPGAs (1b and 2b, hosted
on ZC702 evaluation boards), and in 2 identical Virtex-7
XC7VX485T FPGAs (hosted on VC707 evaluation boards). In
all cases, the measurements were conducted under same
environmental conditions (e.g., 26°C ambient temperature).
Let us begin by focusing on the XC7Z020T devices playing
the key role in our experiments. Indicatively, Fig. 5 illustrates
the results for the first nine variability maps (one per FPGA).
Each map represents the area of the chip, which is divided in
408 small cells (top-left is the location of PS, not considered
here), with each cell being colored according to the frequency
of its corresponding RO (one RO per cell). The frequency of
each RO is averaged over 10 runs with the standard devia-
tion being negligible, i.e., 0.15 MHz. The color scale is
common to all maps and ranges from 380 to 440 MHz (chip 4
reaches down to 381 MHz, while chip 8 reaches up to
476 MHz). Considerable intra-die variation is shown in all
maps; e.g., chip 3 presents differences up to 30.7 MHz indi-
cating that the top right corner is faster than the central area
of the chip. Overall, the frequencies vary rather smoothly in
each map and reveal homogeneous regions subjected to
systematic sources of variability. Moreover, considerable
difference is observed among the chips, both in mean values
(RO frequencies) and in the direction/distribution of their
intra-die maps. For instance, the fastest chip 8 outperforms
the slowest chip 4 by 68,7 MHz (mean RO frequency).
Similar maps are shown in Fig. 6 for the Virtex-7
XC7VX485T FPGAs. Notice that, in this case, the construction
of Microblaze requires the utilization of programmable logic
and a part of the chip’s fabric is reserved for this purpose,
i.e., it cannot be evaluated. To overcome this problem, we



TABLE 1
Variability Results for Multiple Conventional and SoC FPGAs from Xilinx at 28 nm Technology Node

FPGA Devices #Sensors Mean Freq. Intra-Die Variability (MHz) Inter-die Variability
Type (id) Speed Grade (MHz) range = max-min  range/min (%) o range [min’ (%)
Zynq XC7Z020T (1) -1 408 396.71 24.22 6.31 413
Zynq XC7Z020T (2) -1 408 403.04 29.97 7.7 6.29
Zynq XC7Z020T (3) -1 408 414.84 30.73 7.64 5.35
Zynq XC7Z020T (4) -1 408 393.91 26.26 6.89 4.55
Zynq XC7Z020T (5) -1 408 406.86 23.54 5.94 4.21
Zynq XC7Z020T (6) -1 408 419.52 29.97 7.36 5.58
Zynq XC7Z020T (7) -1 408 410.6 30.25 7.6 5.94 30.32
Zynq XC7Z020T (8) -1 408 462.56 23.61 5.24 3.91
Zynq XC7Z020T (9) -1 408 435.67 32.7 7.73 6.87
Zynq XC7Z020T (10) -1 408 354.95 28.19 8.22 5.46
Zynq XC7Z020T (11) -1 408 371.6 22.35 6.18 4.15
Zynq XC7Z020T (12) -1 408 457.04 35.7 8.05 6.23
Zynq XC7Z020T (13) -1 408 401.4 25.13 6.45 45
Virtex-7 XC7VX485T (1) 2 216 546.94 66.61 12.85 13.26
Virtex-7 XC7VX485T (2) 2 216 593.69 28.39 4.89 5.08 8.55
Zynq XC7Z020T (1b) -1 408 385.16 27.53 6.87 4.16 105
Zynq XC7Z020T (2b) -1 408 42559 25.69 6.66 4.74 :
Zynq XC7Z045 2 1060 513.48 26.52 5.28 4.25 -
Zynq XC7Z100 2 1310 584.78 42.71 7.55 5.2 -
Virtex-7 XC7VX690T 2 1296 533.13 29.09 5.59 4.81 -

construct two distinct variability maps per FPGA. In each of
the two partial maps, Microblaze is located in a different cor-
ner of the chip. By superimposing the two partial maps we
provide a full coverage variability map of the chip. We stress
that the measured frequency of the common cells between the
two partial maps is almost identical (0.16 percent difference
on average), which verifies the robustness of our RO sensors.
The derived maps show noticeable intra-die variation in the
first chip (Figs. 6a, 6b), i.e., up to 66.6 MHz across its bottom
left to top right corner, while the second chip (Figs. 6¢, 6d) has
a more homogeneous distribution with no significant differ-
ences among the cells, i.e., up to 28.4 MHz. The second chip is
considerable faster than the first chip with the mean RO
frequency difference being 46.6 MHz.

In summary, Table 1 provides statistics regarding the
measured intra-die variability for all examined FPGAs. It
lists the number of ROs employed in each distinct FPGA, the
mean frequency value of each map, as well as results regard-
ing intra- and inter-die variability. For intra-die, we calculate
the range between the mazrimum and minimum frequency
of RO in the chip, i.e., their difference, and we compare it to
the minimum frequency to report the chip’s variability as a
percentage. For inter-die, similarly, we calculate the percent-
age by considering the mean frequency per chip and com-
paring the fastest to the slowest chip (range’/min’). We note
that the frequencies of the RO sensors in each chip tend to fol-
low a Gaussian distribution. As expected, the mean frequen-
cies show that higher speed grade indicates faster silicon
fabric. When considering our range/min metric, the average
intra-die variability measures at 7 percent for the 15 smaller
XC7Z020T devices, while it reaches up to 12.8 percent for the
bigger devices. Similarly, the inter-die variability measures
at 30.3 percent for the 13 Zynq Zedboards and 8.6 percent for
the 2 Virtex-7 VC707 boards. Finally, when we compare the
fastest RO of the fastest chip to the slowest RO of the slowest

chip, for same families, we get a variability of 39.7 and
17.5 percent for XC7Z020T and XC7VX485T, respectively.

3.4 Evaluation Results: Variation Due to
Voltage Drop

One step further, we evaluate the change of intra-die vari-
ability under the influence of voltage drop effects. In this
direction, we perform two distinct tests: i) we introduce par-
asitic workload on the chip to force IR-drop, ii) we decrease
the supply voltage directly via a power controller hosted on
the ZC702 evaluation board.

For the first test, we construct a baseline sensing network,
e.g., with 186 RO sensors, to retrieve an initial variability map
to be used as reference. On top of this network, we gradually
add parasitic workload and retrieve corresponding variability
maps. To quantify the impact of IR-drop, we compare these
maps to the reference and report differences for various work-
loads. Representatively, we use the Zynq XC7Z020T chip 1
and we introduce additional workload by adding numerous
unconstrained ROs (randomly placed and routed in the fabric
of the FPGA by the Vivado tool). Fig. 7 depicts four maps of
XC7Z020T for various workloads: 0, 400, 800 and 1,600 extra
ROs. As shown for bigger workloads, the performance of the
chip degrades and intra-die variability increases. Specifically,
intra-die variability increases from 4 percent in the reference
map to 7 percent when 1,600 extra ROs are employed, while
the overall performance decreases by 10 percent (mean fre-
quency value of fixed RO sensors). We note that, when 2,000
extra ROs operate simultaneously, the FPGA stops function-
ing after a few seconds. The same test was repeated with a
larger Zynq FPGA, i.e, XC7Z045, with 1,060 RO sensors in the
network and 2, 4 and 8 K extra ROs as workload. The variabil-
ity increased from 5,3 percent (baseline) to 8 percent (8 K extra
ROs) and the performance decreased by almost 13 percent.
The shape of the map undergoes a minor change due to the



440

0

5 1
FPGA x axis (RO grid numbering)

(@) Chip 1.

10
FPGA x axis (RO grid numbering)

(d) Chip 4.

430 30

Hz)

420 © 25

410

'
kN
o
B
N
o

W
(3

Iy
@
)

w

(=]
N
@
S

S

n
o
S
n
o

'
n
(=}

GA

P
[

F
N
o
1S3

400

N
=3
o

RO frequency (|
G

b
o
RO frequency (MHz)
y
n
o
b
o
RO frequency (MHz)

o

390

[
©
o

o

5 1
FPGA x axis (RO grid numbering)

T—1

o 15

[
@
o

5 10 15 280
FPGA x axis (RO grid numbering)

(b) Chip 2. (c) Chip 3.

S
S
o

— 440

S
@
o

w

=3
N
@
o

S
N
o
S

N
a
B
n
o

[T

Y
o
S

Y
o
S

iy
o
RO frequency (MHz)
y
n
o
ey
o
RO frequency (MHz)

w
©
o
[
©
=3

15

B
o
S

[
©
o

0

5 1
FPGA x axis (RO grid numbering)

(9) Chip 7.

15 380

440
430

=

I

420 5

)

410 §

g

g

400 £

o

o
390
5 10 15 200

FPGA x axis (RO grid numbering)
(h

5 1 5 1
FPGA x axis (RO grid numbering) FPGA x axis (RO grid numbering)

380

w
@
o

0 15 0 15

() Chip 5. (f) Chip 6.

440

| 430
420

410

400

390

5 0 15 80

1
FPGA x axis (RO grid numbering)

RO frequency (MHz)

) Chip 8. (i) Chip 9.

Fig. 5. Variability maps of 9 distinct Zynq XC7Z020T-1CSG324 FPGAs (common scale, the color represents maximum RO frequency per cell).

non-uniform placement of the extra workload by the tool we use the ARM processor and the I2C interface of PS to con-
(more congested regions lead to higher IR-drop).

In our second test, we use the two Xilinx ZC702 boards communication with the controller bases on the PMBus pro-
each hosting a XC7Z020T FPGA (id’s 1b and 2b) and a power  tocol and a custom developed SW program, which imple-
controller chip (UCD9248PFC). To perform voltage scaling, ments all the necessary functions to set the user defined Vpy.
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trol the voltage rail driving the Zynq’s PL subsystem. The

The baseline design is a sensing network with 408 RO sen-
sors operating at the nominal supply voltage of 1 V. We grad-
ually decrease this supply voltage from 1 to 0.86 V with a
granularity of 0.01 V (the FPGA becomes non-functional
below 0.86 V). Fig. 8 shows that intra-die variability increases
in an almost uniform fashion, linearly to the supply voltage
reduction. In contrast to the first test, the variability map
retains its shape during this procedure (correlation > 0.92).
By comparing the reference map to that of 0.86 V, we mea-
sure 0.74—1.1 percent increase of intra-die variability and
32.1-35.4 percent performance degradation.

Overall, both tests show that voltage decrease has a
considerable effect on intra-die performance variation: up to
3 percent increase when highly active designs are operating
on the FPGA, or up to 1.1 percent exclusively due to the
14 percent voltage scaling. When added to the initial process
variability of the chip, the intra-die differences increase to
more than 9 percent for XC7Z020, or more than 14 percent
for bigger devices, and are expected to increase even further

Fig. 6. Variability maps of 2 distinct Virtex-7 XC7VX485T-2FFG1761C ~ With aging effects. Thus, as shown throughout this section,
FPGAs (common scale, represents maximum frequency per cell).

the significant intra- and inter-die variability motivates us to
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Fig. 7. Variability maps of XC7Z020T chip 1 with 186 fixed ROs and varying additional workload.

study its impact on the performance of actual benchmarks in
the FPGA and investigate the possibility of exploiting local
differences for the sake of throughput improvement.

4 IMPACT OF INTER- AND INTRA-DIE VARIABILITY

ON ACTUAL BENCHMARK PERFORMANCE

In the current section, we study whether and how the afore-
mentioned process variability of 28 nm FPGAs affects the
performance of bigger benchmarks, in practice. We evaluate
both how inter-die differences increase the throughput of
fast devices and how much the maximum speed depends
on local intra-die variations. Specifically for the latter, due
to challenges involved in the procedure, we follow a custom
approach based on repetitive testing and correlation analy-
sis. In both cases, the goal is to relate the variability maps
derived in Section 3 to the actual benchmark performance,
such that we can use the maps as predictors within the
framework proposed in Section 5.

4.1 Experimental Setup

Hereafter, we focus on the first nine Zynq XC7Z020T FPGAs
used in Section 3 (id’s 1 to 9). We implement VHDL code to
extract maximum benchmark frequency with respect to, 1)
mapping on distinct FPGAs, for assessing inter-die varia-
tions, and ii) local mapping on the fabric of individual
FPGAs, for assessing intra-die variations. To extract the maxi-
mum frequency on HW (which tends to be higher than the
rated of STA), we developed a support architecture enabling
the automatic frequency scaling and the verification of func-
tional correctness of each benchmark. The architecture is
depicted in Fig. 9. It includes a Phase-Locked-Loop unit
(PLL, bottom) driving the clock of the benchmark (User IP,
top right), which is placed within a dedicated clock domain.
To realize frequency scaling, the PLL is reconfigured at run-
time by the ARM processor (PS, left) through the AXI-lite
port. The reconfiguration of the clock requires 30 pusec.
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Moreover, 2 dual-clock FIFOs serve as synchronizers for
clock domain crossing and correct transferring of the I/O
data between the IP and the DMA controller (DMA, center).
The DMA implements AXI-stream PS-PL communication for
faster data transferring. The DMA and PLL operate in their
own clock domain at 100 MHz, whereas the ARM processor
operates at 667 MHz. The PS is connected to the external
DDR memory storing I/O data of the user IP (test vectors, as
explained below). The resource utilization of this support
architecture is 4.7 K LUTs and 6.5 K DFFs (8.9 percent of the
XC7Z020, but less than 2 percent for bigger devices, e.g.,
XC7Z100). The architecture is generic enough to be deployed
either in SoC or in conventional FPGAs (e.g., with Micro-
blaze) and forms a basis for even more complex systems.
When a benchmark (User IP) is integrated in the support
architecture, the embedded processor extracts the maximum
error-free operating frequency by executing a custom SW
script as shown in Algorithm 1. In particular, the embedded
processor initializes the frequency of the user design, fip,
with the value reported by STA, fsra. Subsequently, the
design is executed using as inputs a set of test vectors (2
mega-samples generated pseudo-randomly) to produce the
correct results, D, (golden data), which are stored in the
external DDR memory. Then, iteratively, the f;p is increased
in steps of 1 MHz, the application is re-executed and the
fetched results, D,, are compared to the golden data, D,. In
case of data mismatches/errors, the process is terminated
and the highest error-free frequency is reported.
Furthermore, to automate the experimental procedure
and involve multiple FPGAs, we developed the custom
infrastructure depicted in Fig. 10. Our infrastructure hosts
all FPGAs, together with an Ethernet switch for communi-
cating with each board. Initially, each FPGA loads Linux OS
(petalinux) on the ARM processor, with a fixed IP address,
while the bitstreams of the benchmarks and the test vectors
are preloaded to the SD card of its board. By using a host-
PC in the same network, we broadcast specific commands
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(d) 0.86V (8.01% var.).

=]
2 4 6 8 10 12
FPGA x axis (RO grid numbering)

(c) 0.90V (7.61% var.).

Fig. 8. Variability maps of XC7Z020T chip 1b with 406 fixed ROs and varying supply voltage.
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to the known IP addresses of the FPGAs to establish multi-
ple remote connections and execute, effectively in parallel, a
bash script on each ARM CPU. For each FPGA /test, the
script initializes the DDR memory, invokes the frequency
extraction process (Algorithm 1), and stores the results. This
HW /SW setup allows for simultaneous control of all FPGAs
and execution of the 1,000’s tests required in an automatic
fashion. Also, it facilitates the generation of all variability
maps. We stress that the idea can be easily extended in large
scale, e.g., in data centers, where the central node perform-
ing resource management can also broadcast the appropri-
ate commands to all FPGAs for concurrent testing.

Algorithm 1. Maximum Frequency Extraction Process

Input: Reported frequency by STA, fsra
Output: Achieved performance, f;p
fIP = fSTA/ fstep =1 MHz
D, = execute(IP, fsra) # retrieve golden results D,
fip = frp + fstep
while true do
D,, = execute(IP, fip) # retrieve new results D,
if (D, == D,) then
fip = fip + fotep
else # last error-free frequency

return fip = fip — fotep
end if

end while

Regarding the selected benchmarks, our goal is to assess
considerably larger areas of the FPGA compared to that uti-
lized by each RO sensor. We select regions of 1.6 K LUTs and
3.2 K DFFs, which are sufficient for hosting realistic bench-
marks. We divide the FPGA fabric into 28 such regions
(almost full coverage of the chip, Fig. 11) to evaluate the per-
formance variation across the entire fabric. The benchmarks
mapped in these regions are two very popular DSP algo-
rithms, which are widely adopted in a plethora of real-world
applications: a 16-tap FIR filter (1.17 K LUTs, 1.32 DFFs) and
a 16-size FFT (1.1 K LUTs, 1.86 K DFFs), with 10—13 I/O bits
accuracy. They are implemented with Xilinx Vivado 2017.1
and, according to the STA, the former operates nominally at
140 MHz, while the latter at 240 MHz.

4.2 Challenges of Impact Assessment

To achieve the level of detail required for the analysis in this
task, we face two main challenges when relying on a user-
level test setup. First, we face the performance measurement
variation. When a benchmark/bitstream is tested multiple

Fig. 10. Parallel testing of 9 Zedboards (XC7Z020T) in a custom infra-
structure with an Ethernet switch for communication with the host PC.

times to find its maximum frequency, we observe a small
variation, i.e., ~1% or up to £3 MHz. This phenomenon
appears when the transistors operate at their very psychical
limits, when operation is susceptible to the slightest fluc-
tuation that might occur e.g., in power supply or local temp-
erature. Such variation becomes important in our tests,
especially when we examine chip regions with performance
difference less than 1 percent. To overcome this issue, for
each region of the chip, we calculate the average maximum
frequency over 100 runs of each bitstream.

Second, we face the small architectural variation of the
XC7Z020T FPGA fabric. The latest Xilinx FPGAs are template
based (with respect to CLBs, RAMBs, DSPs, etc.) but the
resources are not distributed ideally uniformly across the fab-
ric. Hence, when moving our already placed design from
region to region in the chip, each time, we increase the proba-
bility that the tool utilizes slightly different relative resources.
As a result, we are not comparing exactly the same designs/
paths. On top of that, when implementing our benchmark in
a new region, we suffer from the randomness introduced by
the vendor’s place & route heuristic algorithms. These effects,
which become evident already at SW level, impose slight dif-
ferences even on supposedly identical bitstreams. Hereafter,
we refer to such differences as SW variability. Experimentally,
by considering all of our generated bitstreams, we evaluated
the SW variability to 6.5 percent in terms of timing (according
to STA). This number is comparable to the amount of under-
lying intra-die process variability (Section 3). It can be viewed
as a form of noise that prevents us from establishing the use
of variability maps as predictors of benchmark performance.
To tackle this problem, we rely on the idea of averaging
filters: for each benchmark, we generate and test multiple
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Fig. 11. (a) Benchmarking granularity, with the PL fabric partitioned in 28
regions. (b) Most prominent regions for intra-die variation analysis.

distinct bitstreams per region to retrieve their mean max fre-
quency. This average value represents the region in the
remaining of the analysis. More specifically, for Xilinx, we
begin with a single synthesized netlist of the benchmark and
we proceed to the PAR stage, where we perform multiple dis-
tinct implementations by tweaking small details via the floor-
plan utilities of Vivado (we avoid modifying “strategies” or
“constraints” to avoid major changes in the netlist). For exam-
ple, we alter the position of a single register or a LUT by mov-
ing to an adjacent location/slice. This minor change forces a
distinct implementation result when repeating the PAR pro-
cess, similarly to changing the seed of the heuristic algorithm.
Thereby, we produce 20 distinct bitstreams per chip region,
which however represent the same benchmark. We note that
this multiplicity also captures the real-world behavior, where
supposedly identical benchmarks could vary among users in
terms of bitstream due to the smallest coding/tool detail.
Also notice that SW variability does not affect the inter-die
comparisons in our lab, because it is valid to use the exact
same bitstream file in all XC7Z020T FPGAs.

4.3 Proposed Assessment Approach

By combining the aforementioned SW and HW infrastruc-
ture and proposed problem solutions, we now outline our
approach for assessing the impact of process variability on
actual benchmarks. First, to extract maximum frequency, we
developed on Linux OS two scripts to handle the cases of
inter- and intra-die variability testing. For inter-die testing,
which is not affected by SW variability, we map each bench-
mark on 28 adjacent regions in each chip (e.g., as in Fig. 11)
by implementing one bitstream per region. This granularity
allows us to examine the entire fabric and, moreover, instead
of performing a single inter-die measurement on only 1 set
of chips, we repeat our test by assuming 28 distinct sets of
chips (smaller chips, but practically distinguished from one
another due to the local variation in each XC7Z020T map).
For the intra-die case, due to SW variability, we implement
4 x 20 bitstreams per benchmark on 4 remote regions (e.g., as
in Fig. 11b), which are selected arbitrarily and present notice-
able change in the variability maps (Fig. 5). Since we repeat
this intra-die test for multiple big chips, individually, the
above number of bitstreams and regions suffices to establish
the performance relations. In total, for this purpose, we
perform almost 2-10° executions on the FPGAs: 50.4 K for the
inter-die case (2 benchmarks x 28 regions x 100 runs x 9
FPGAs), and 144 K for the intra-die case (2 benchmarks x 4
regions x 20 bitstreams x 100 runs x 9 FPGAs). In an
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Fig. 12. Inter-die performance variation of FIR on 28 FPGA regions.

automatic fashion, in parallel for all FPGAs, the host PC
broadcasts via Ethernet specific commands to them to com-
plete the script as follows:

1) Download & program each FPGA with the first FIR
bitstream, i.e., the one referring to the first region.

2)  Execute 100 runs of the frequency extraction process
(Algorithm 1) and store the mean value in SD card.

3) In case of intra-die testing, download the next bit-
stream (referring to the same region) and execute
steps 2 and 3 for all 20 bitstreams of that region.

4)  Reconfigure the PL to place the FIR in the next region
and repeat steps 2-4. When all regions under exami-
nation are tested (4 or 28), proceed to step 5.

5) Reconfigure the PL to implement the FFT bitstream,
starting from the first region, repeat steps 2-4 until
the entire FFT benchmarking is also completed.

6) Fetch sequentially to the host PC all data stored in
SD cards, from all FPGAs, to perform our analysis.

Second, we analyze the data fetched, statistically. The goal
is to associate the benchmark’s performance to the RO sen-
sors, per region and per chip. As variables, we use the FIR &
FFT frequencies retrieved by our script. Also, we calculate
the spatial mean RO frequency of each region to emulate a
bigger sensor to match the size of the benchmark (e.g., in the
case of Fig. 11a, we average 9 ROs to denote a region sensor).
The relationship of the resulting variables is not 100 percent
deterministic/exact, both due to their benchmark-dependent
magnitude and the limited randomness involved in the pro-
cedure. Therefore, we propose to base the analysis on the
concept of correlation which, besides establishing the afore-
mentioned relationship, allows us to study the covariance
of the measured frequencies and make predictions when
given a reference point. In particular, we rely on the Pearson
product-moment coefficient, which is the most commonly
used correlation in the literature, and facilitates our study as
shown below.

4.4 Inter-Die Performance Analysis, Correlation to
Variability Maps

The maximum frequencies of the two benchmarks measured
on 28 regions and 9 chips are reported in Figs. 12 and 13.
Their actual performance is significantly higher than that
reported by STA (black dashed line), i.e., 124 percent higher
on average. Furthermore, considerable performance varia-
tion is observed among the FPGAs: 19.6—16.6 percent for FIR

and FFT, respectively. More concisely, Fig. 14 depicts the
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correlation between the frequency of each benchmark and
the ROs of each chip, for 28 distinct chip regions. Notice that
correlation=1 implies exact linear relationship. As shown,
we measure extremely high correlation with the vast major-
ity of the coefficients (91 percent) lying in the range of
0.96—1. Hence, we deduce that both FIR and FFT follow
closely the behavior of the RO sensors. Indicatively, Fig. 15
focuses on region 4 to show how predictably the maximum
frequency of FFT and FIR changes when we know a priori
the behavior of the ROs in each chip.

Overall, the derived results prove the existence of an
exploitable inter-die variability, up to 19.6 percent, and the
importance of the variability maps, i.e., the high correlation.
It is worth-mentioning that, in principle, this conclusion also
applies to the intra-die scenario when no SW variability
exists. That is, if we assume a pseudo-chip consisting of 9 iden-
tical regions allowing the bitstream to be copied seamlessly
among them (in our case, such a chip is constructed hypo-
thetically by stitching 9 co-located regions originating from 9
real chips), then Fig. 14 would show the intra-die correlation
to ROs as measured for 28 distinct pseudo-chips. In all of our
28 pseudo-chips, the correlation is above 0.88. However, in
practice, the analysis of intra-die correlation is more compli-
cated for the reasons explained in Section 4.2 and will be
tackled separately in the following section.

4.5 Intra-Die Performance Analysis, Isolation and
Correlation to Variability Maps

Following the approach described in Section 4.3 and the
maps of Fig. 5, we select the four regions shown in Fig. 11b
(kept common for all chips). We measure up to 4.9 percent
frequency variation between region sensors in each quadru-
plet (to illustrate this, Fig. 16 shows each region’s frequency
increase versus the slowest region sensor of its chip). Then,
we place our benchmarks on these regions and we isolate
their performance by averaging the frequency of 20 bit-
streams per region (to filter out SW variability, Section 4.2).
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Fig. 14. Inter-die correlation of variability maps to FIR/FFT performance.
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Fig. 15. Inter-die performance variation of RO, FIR, and FFT on region 4.

The intra-die performance varies among chips between
0.6—4.7 percent for FIR and 2.7—6.8 percent for FFT. Fig. 17
depicts the correlation between the FIR/FFT performance
and the region sensors for all 9 chips. The coefficients range
in 0.4—0.96 for FIR and 0.69—0.99 for FFT. As an outlier, a 0.4
coefficient appears for FIR in chip 8. This is attributed to the
low intra-die process variability of the regions of chip 8, i.e.,
0.1-1.6 percent (Fig. 16), which is not a sufficient bias given
the 6 percent SW variability in each region. For the majority
of the chips, the correlation ranges in 0.74—0.99 and implies
that the benchmarks indeed follow closely the RO behavior.
Similarly to the inter-die case, the above results indicate
exploitable variability and predictable benchmark behavior.
The confidence level increases for chips having areas with
considerable performance differences, e.g., 2.5 percent, and
is further analyzed in Section 6 in more practical scenarios.
In summary, this section showed considerable bench-
mark performance variation in 28 nm FPGAs, both for the
inter- and intra-die cases. For the former, the variation
ranges in the area of 16.6-19.6 percent whereas, for the latter,
in the area of 0.6-6.8 percent. Moreover, the analysis showed
that these differences are predictable, i.e., we can estimate
the benchmark’s frequency by considering the variability
maps derived beforehand, without the need for an exhaus-
tive search/test. Essentially, the results were the same for
both benchmarks (the thoroughly examined FIR and FFT),
and thus, can be considered conclusive for our purposes
without the need for extra benchmarking. In total, when
also customizing the guard-band to bypass the pessimistic
estimations of STA, we measured significant room for
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Fig. 16. Process variability effect on 4 selected regions for 9 tested
chips.
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performance improvement ranging in 95—138 percent (for
zero margins). All the above numbers quantify the potential
gain of an FPGA user and demonstrate clearly the need for
a framework to exploit process variability and guard-bands,
in-the-field.

5 PROPOSED FRAMEWORK FOR EXPLOITING
PROCESS VARIABILITY

Motivated by the results of Section 4, we developed a frame-
work exploiting the existing variability in FPGAs towards
improving the performance of realistic applications. Our
framework considers both inter- and intra-die variability,
as well as guard-band customization, to reap the full—
hidden—potential of the underlying FPGA(s).

The overview of the proposed framework is illustrated in
Fig. 18.It consists of five complementary stages: i) generation
of variability maps, ii) device selection based on inter-die
variability, iii) region selection based on intra-die variability,
iv) integration of user design/IP to the support architecture,
and v) performance improvement of the design via fre-
quency scaling. The inputs of the framework are:

FPGAs: number and model of the employed FPGAs.
Resource Utilization: the cost of the user’s design/IP in
terms of FPGA resources (LUT, DFF, RAMB, DSP).

o  Target performance: user requirement for performance
in terms of operating frequency frp of the design. If
no specific value is given, the framework will auto-
matically target the maximum error-free frequency.

o  User-defined guard-band: imposed as a safety margin
(e.g., for aging, environmental effects, or low confi-
dence level of a test vector procedure), it is expressed
as a percentage of the f;p. For instance, 30 percent
guard-band implies that the design should oper-
ate correctly even as high as f, =1.3- fp during
calibration.

In more detail, the first stage of our framework involves
the generation of variability maps for the available FPGA(s).
Depending on the FPGA model, a custom library provides
the corresponding bitstream for the deployment of the RO
network, along with the SW program loaded to the embed-
ded processor. The second stage refers to the selection of the
fastest FPGA with respect to the generated variability maps
(when more than one FPGA are available). The selection
bases on the average value of the RO sensors employed in
each chip. The third stage is related to the mapping of the
user design on the most efficient region of the selected
FPGA. The location and the size of the candidate region
depend on the variability map of the FPGA and the resource

FPGA
Devices
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Utilization Performance Guard-Band

FPGA Model
Library

Y
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|
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Fig. 18. Proposed framework.

utilization of the user design. Notice that the spatial resolu-
tion of the RO map is relatively high to facilitate searching
for this optimal location. The search procedure is automated
via a custom Python script, which implements a 2D moving
average calculation across the variability map to detect the
region aggregating the highest score (coded via box filters
and integral images). The size of the moving average window
reflects the size of the design (according to resource utiliza-
tion), plus additional margins to alleviate routing congestion
for the successful PAR (e.g., 25 percent in LUTs and DFFs).
The outcome of the script is a placement constraint file,
which is imported to the Vivado tool to drive the placement
of the user design to the most efficient region. The fourth
stage involves the integration of the user design to the sup-
port architecture described in Section 4.1.

Finally, the calibration stage loads an exploration script to
the embedded processor, as well as test vectors to the exter-
nal memory (generated randomly when not user-defined).
The exploration script calibrates the FPGA frequency with
respect to user requirements. First, the design is tested with
the user’s target frequency and including the desired guard-
band ratio. In case of functional errors, the script executes
the frequency extraction process of Algorithm 1 to find the
highest error-free frequency (also with guard-band).

6 FRAMEWORK EVALUATION RESULTS

6.1 Runtime Analysis

The evaluation begins with the time cost of our framework.
Representatively, we analyze the case of XC7Z020T FPGAs
and FIR and FFT benchmarks. Time is devoted to two main
parts: i) the generation of variability maps, and ii) the
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execution of the frequency extraction script. The generation
of variability maps requires less than 2 sec per chip when 10
consecutive runs are being averaged. We stress that the exe-
cution time of a Python script for detecting the most perfor-
mance-efficient region is negligible, i.e., ~1 ms on an Intel i7-
5500U CPU for a typical 14 x 36 variability map. The execu-
tion time of the frequency extraction process depends on
multiple factors: the throughput rate of the design, the PS-PL
communication method, the size of the test vectors, the clock
frequency of the processor, and the iterations needed to find
the highest error-free frequency in FPGA. Indicatively,
for the FIR and FFT benchmarks using 2 Msample test vec-
tors, the time required to perform the DMA communication,
retrieve the results, and compare to the golden data stored in
DDR memory, was measured at 0.6—1.8 sec. Hence, when
the design meets the target performance immediately and
only one iteration is performed, the cost is only 1.8 sec.
Otherwise, time depends on the number of iterations search-
ing for the highest error-free frequency (Algorithm 1) and
could increase at most to 138—351 sec on Zynq's ARM A9.
We note that this time can be significantly decreased, i.e., to
less than one minute, by pruning the search space with
adaptable frequency steps of 10—1 MHz (to perform a
coarse-grain before the fine-grain search) [6].

6.2 FPGA Performance Improvement

To assess the effectiveness of our framework on improving
the performance of FPGAs, we assume numerous ordinary
users performing a single trial each. We perform a statistical
analysis to quantify their gains, as a whole, while we scruti-
nize the framework’s output to distinguish benefits due to
guard-band customization, intra-die, and inter-die variabil-
ity exploitation. In particular, we compare each output to a
default implementation of the vendor’s tool, on a random
chip/location, as done in lieu of an exploitation framework.
Similarly to Section 4, we assume classical DSP benchmarks,
such as 16— to 1024—point FFTs and 16— to 128—tap FIRs
with 7— to 27-bit accuracy, implemented with CLBs on
Xilinx Zyng-7020 FPGAs. This experimental setup includes 9
devices, 5 benchmarks/designs, and 10*-10° hypothetical
users combining more than 1,400 distinct implementations/
netlists.

We begin by evaluating the frequency increase exclu-
sively due to the guard-band customization. For the sake of
this analysis, we apply our framework using zero guard-
band and we consider evenly the entire set of results, regard-
less of netlist, location, and chip. In such configuration, the

minimum speed gain per benchmark varies from 1.56x to
2.09x (with overall average at 1.9x). Therefore, for our given
set of devices and CLB-only benchmarks, we estimate the
observable guard-band introduced by the STA tool at around
56-109 percent. We note that this observable gap is a mere indi-
cation of the actual/sophisticated guard-band calculated by
the vendor’s tool (Xilinx) and it only serves as reference for
the remainder of our analysis.

To continue the evaluation with respect to intra-die vari-
ability, we rely on our set of zero guard-band implementa-
tions, which facilitate decoupling from SW margins and
focusing on actual HW capabilities. First, we verify the impor-
tance of the correlations shown in Section 4. We assume that a
user tests the prediction quality of our framework by imple-
menting the same benchmark on 4 arbitrary locations on a sin-
gle device. Ideally, without SW variability, the 4 results
should be in accordance to the gains predicted by the frame-
work, i.e, by the RO map of the device. In practice, for verifica-
tion, it suffices to acquire high correlation between the 4 actual
FPGA results and the internal predictions of our framework.
Thus, we assume 2 million users (distinct combinations of 18
netlists, on 4 locations, on 9 devices, for 2 benchmarks) and
we calculate a coarse, 5-bin histogram of 2 million Pearson
coefficients. As depicted in Fig. 19a, the concentration of coef-
ficients implies a strong bias due to intra-die process variabil-
ity. That is, on a random device, when testing FIR—FFT
benchmarks, the user gets 69-82 percent possibility of deriv-
ing good-to-excellent correlation, 25-15 percent for indifferent-
to-worse, and only 6-3 percent possibility of anticorrelation
(Fig. 19a, left bar). We stress that devices of substantial intra-
die variability, e.g., of 7.7 percent, lead to 84-93 percent occur-
rence of good-to-excellent predictions.

To further quantify the success rate of our framework, we
calculate the possibility that a user will benefit by performing
a single execution of our proposed tool (compared to the
default output of the vendor’s tool). For fairness, we assume
10* distinct users, each one comparing his/her own frame-
work result to one random implementation (as would be
acquired in the default approach). On a random device, the
user will improve the performance with 76 percent possibil-
ity and achieve an average gain of 4 percent. On devices of
substantial intra-die variability, this possibility increases to
85-94 percent for FIR and FFT, respectively, whereas the
average gain improves to 4.5-5.9 percent; Fig. 19b depicts
such a distribution where the gains reach beyond 15 percent
(also due to SW variability). Furthermore on such a device, if
we enhance the framework to implement the IP twice and
keep the best result (similarly to exploiting SW variability),
the possibility of improvement becomes 93-97 percent with
an average gain of 5.2-6.9 percent.

When assuming multiple devices per user, i.e., when
seeking to exploit the inter-die variability, the framework
achieves almost 100 percent success rate in improving the
frequency with an average gain of 8.2-9.9 percent for FFT
and FIR, respectively. We stress that this gain is derived by
comparing to the random choice made among 9 devices, in
lieu of a relevant framework, without relocating the design
between chips. When the available devices are limited in
number and highly diverse in performance, the gain
increases up to 13-16 percent, or even up to 20 percent for
specific areas of the chip.



In total, when we combine the exclusive gains of intra- and
inter-die variability exploitation reported above, the proposed
framework leads to 10—14.7 percent average improvement
compared to the random/default choice (regardless of bench-
mark). The 14.7 percent is estimated according to the aforemen-
tioned percentages by assuming that the fast device of the user
also has substantial intra-die variability, whereas the 10 percent
is measured with our example set of 9 devices. The best case
scenarios (versus the worst possible choice, including SW vari-
ability) involve gains up to 25.1 percent or 28.9 percent. When
we also include the gain due to guard-band customization, the
framework improves the performance of our example FIR and
FFT benchmarks by up to 138 percent (e.g., up to 577 MHz ver-
sus the 242 MHz estimate of STA for the 16-point FFT).

6.3 Comparison to Similar Methods

Considering recent works in the literature that introduce addi-
tional registers in the critical paths of the design [8], [9], the rel-
evant methods achieve improvements in the area of 39 and 98
percent for 60 nm Cyclone IV and 28 nm Zynq ZC7020 FPGAs,
respectively. Our method also provides gain in this range,
partly due to our guard-band customization, which can take
place regularly during the chip’s lifetime for adaptation pur-
poses (without re-executing the time-consuming processes of
Synthesis, Placement, Routing, and bitstream generation), and
partly due to inter-/intra-die variability exploitation reaching
up to the area of 20 percent by itself. However, our method has
the advantage of being applied at user-level without requiring
modification of the IP netlist or the CAD tool. Moreover, we
avoid binding the resource overhead to the complexity of the
IP netlist (our support architecture has constant cost). That is,
the above published methods might suffer from increasing
overhead, e.g., 5 percent additional FPGA slices [8] to monitor
100 critical paths, which could render their approach impracti-
cal for large-scale IPs with numerous paths.

Considering recent works proposing off-line evaluation
of critical paths replicas [7], the publications present perfor-
mance improvement of 50 percent for an FIR filter imple-
mented on a 65 nm Cyclone IV FPGA. Such gain is also
within the range of our own framework. However, similarly
to the register-based methods and in contrast to our frame-
work, this method relies on augmented CAD tools and STA
analysis. Also, their calibration for in-the-field adaptation
(e.g., to aging effects) consumes considerably more time
than us, because it requires the off-line construction of a cal-
ibration LUT by performing extensive lab experiments.

Overall, the aforementioned comparisons are performed
against the most representative works of the field and high-
light the advantages of our framework. Additional compari-
sons, e.g., to older papers, lead to similar conclusions. The
advantages are summarized in the higher level of modifica-
tion, the faster calibration, and the limited resource overhead,
which is independent of the size of the user IP: 8.9 percent
LUT utilization in ZC7020 or less than 2 percent in ZC7100.
On top of that, compared to the aforementioned works, the
proposed is the only method to explicitly exploit the inter-
and intra-die variability of the underlying FPGA. Therefore,
the performance gain of our framework matches that of
state-of-the-art works due to guard-band customization, and
prevails by 10—14.7 percent when we also consider variability
maps to place the design on the most efficient chip regions.

7 CONCLUSIONS

The current work evaluated process variability on 28 nm
commercial FPGAs and proposed a user-level framework to
exploit local differences for improving the FPGA perfor-
mance, in-the-field. Based on a custom, programmable sens-
ing network, we generated detailed variability maps for 20
randomly selected conventional and SoC FPGAs from Xilinx.
The maps revealed up to 13 percent intra-die and 30 percent
inter-die variation, which further increases by 1—-3 percent
due to voltage drop effects. Thorough performance analysis
via intensive benchmarking and correlation techniques
established that process variability has a direct impact on
actual designs in classic user applications. For an example
set of Zynq-7000 FPGAs and FIR/FFT benchmarks, we mea-
sured considerable speed differences ranging up to 7 percent
for intra-die and 20 percent for inter-die comparisons. How-
ever, these differences were shown to be predictable and in
accordance to the variability map of each device. Hence, we
developed a generic framework to automatically test the
user’s FPGA(s) and IP(s) to provide the most suitable place-
ment and frequency scaling for each application. Statistical
results for relatively diverse chips show that users derive
improved performance with a possibility of 85—100 percent
and average gain around 10—14.7 percent, i.e., 5 percent
exclusively due to intra-die and 9 percent due to inter-die
exploitation, which increases to the area of 20 percent in
extreme cases and to 56—138 percent when also applying
guard-band customization. Compared to similar works, our
framework has the advantages of avoiding modifications at
fabrication or CAD or netlist level, while it has small constant
resource overhead and limited calibration time allowing for
in-the-field mitigation and dynamic adaptation.
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