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Abstract: In multi-staging manufacturing environments, more than necessary reworking at
an early stage can prevent costly defects at later stages. One goal of the EU research project
ZAero (Zero-defect manufacturing of composite parts in the aerospace industry) is to generate
precious feature data by implementing an inline quality control for the manufacturing process of
carbon fibre components of aircraft. However, for each feature detected by ZAero’s inline quality
control, operators must decide whether or not to rework that feature. Additional reworking of
non defects can reduce expensive defects in later stages, but the increased effort should not have
a significant impact on production. To help operators make the right decisions, an extensible
hybrid decision support system (DSS) is proposed, which combines a software application that
visualizes 3D-based process-specific feature data and supports the execution of rework decisions
with web-based business analytics dashboards. The dashboards visualize data generated by
part flow simulation experiments for various rework strategies, as well as valuable data from a
manufacturing execution system (MES). The proposed DSS can be easily customized to integrate
additional data treasures from the ever-increasing amount of data in the industrial sector.

Keywords: Decision Support Systems, Aerospace Engineering, Edge Computing, Fog-Based
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1. INTRODUCTION

In the aerospace industry very high quality standards have
to be met (Tomic et al., 2012). For the manufacturing
of carbon fibre parts this is currently solved through
extended end-of-line inspection (Capriotti et al., 2017) in
combination with re-work processes to deal with defective
parts. Also, in-situ visual inspection (Addepalli et al.,
2017) is used for quality control, which is currently causing
huge productivity losses during lay-up and has become a
real bottleneck in carbon fibre parts manufacturing.

In the EU research project ZAero (Zero-defect manu-
facturing of composite parts in the aerospace industry)
(Eitzinger, 2016) the future manufacturing of the A320neo
wing covers provides the background for the developments.
In the ZAero project a solution to reduce productivity
losses by developing integrated inline quality control meth-
ods for the key process steps automatic fibre material lay-
up and curing is provided.

This paper focuses on the lay-up inline quality control,
that can detect features and additional data for these
features on carbon fibre plies. Decision support systems
(DSS) (Simon, 1960; Shim et al., 2002) support the cogni-
tive processes of workers in decision processes. Simulation-
based DSS are cited in many examples in literature (Mah-
davi et al., 2010), (Salama and Eltawil, 2018) . . . , but less
research focuses on visual design, the challenging integra-

tion into the concrete process and easy extensibility of the
DSS. In our work, we implemented a DSS using a hybrid
infrastructure that supports machine operators in deciding
which features have to be reworked. We combine a spe-
cialized fat client software application that visualizes the
current 3D based process-specific data from inline quality
control and enables the execution of rework decisions, with
web-based business analytics dashboards that support the
decision-making task. The dashboards display data from a
Manufacturing Execution System (MES) or a Production
Data Acquisition (PDA) system and result data from part
flow simulation (PFS) experiments with different rework
strategies. We implemented these interactive dashboards
using the business intelligence (BI) / data discovery prod-
uct QlikView that also operates as a web server. Users
can easily extended the dashboards to display additional
data from other data sources in the future. Dashboards can
also support line managers to analyze the performance of
various production line part flow scenarios.

In (Döppner et al., 2018) the authors describe their re-
search approach to elaborate the hitherto not investigated
problem class of Empty Unit Load Device (ULD) reposi-
tioning (EUR) in air cargo. In their work they propose a
web-based intelligent decision support system (IDSS) that
combines a rule-based expert system with a good expla-
nation facility and heuristics. Their multi-criteria decision
making model takes into account costs, compliance and
benefit. The performance of each individual criterion of an
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Fig. 1. ZAero - System Overview

alternative is displayed to the user with the help of a traffic
light system. The overall score for each recommendation
is then calculated by assigning numbers to the traffic light
colors for each criterion and using a weighted sum method
(WSM). Integrating additional ’non-rule-based’ data was
not an objective of this approach.

Not enough focus was put on the human-centered aspects
of interactivity say (Parsons et al., 2015). They describe
their work on a tool named Visual Analytics of university
Research networkS and IndusTrY (VARSITY) and discuss
aspects such as interactivity, interaction and scoping us-
ing their tool. VARSITY also deploys the user frontend
in HTML. But instead of using standard software, their
backend system is implemented individually using Apache
CouchDB, MySQL, Node.js, D3.js, JQuery and some in-
dividual connectors for necessary Web APIs, which seems
to be more complex than using a BI standard solution.

The rest of the paper is structured as follows; Section 2
introduces the ZAero production process and the planning
of the decision making process. Section 3 describes in
detail the DSS implementation. Finally, section 4 presents
conclusions and possible future extensions.

2. APPROACH

Figure 1 shows an overview of the ZAero system. Af-
ter tooling preparation and Automated Dry Material
Placement (ADMPR©) or dry Automated Fibre Placement
(AFP) lay-up of carbon fibre material for one layer (a
complete part consists of multiple layers), two different
non-contact sensors-types scan the carbon fibre surface of
that ply in the inline inspection step for defect detection:
A fibre orientation sensor (FScan) with 5 cameras that
uses a reflection model of carbon fibre to measure fibre
orientation (Zambal et al., 2015) and a laser profile scanner
(LScan) with 3 cameras that acquires 3D profiles, to scan a
ply. Figure 2 shows the lay-up and inspection system. The
large data amount from both sensors then is aggregated
by edge computing (Al-Fuqaha et al., 2015), and combined
to identify features, their size and their location. Machine
learning classifiers predict the type of the feature (angle
deviation, gap, twist, . . . ).

The overall inspection result then is written to an hierar-
chical data format file (HDF5) called the manufacturing
database (MDB), that also contains the CAD-model for
the part. In a next process step, a structural simulation
(finite element simulation) is performed for all features
found on a ply. The algorithm first calculates a margin of

Fig. 2. ADMP LayUp + Inline Inspection for a Demo Part

safety (MoS) for each feature location without the defect
and then repeats the calculation assuming a defect. The
calculated values for MoS before and after defect then are
appended to every feature of the current ply in the HDF5
file. The MDB and structural simulation together can thus
serve as support for a digital twin of the ply.

In a next step, the decision makers must decide which
features to rework and perform the rework before another
ply can be placed over the current ply. After all plies of a
wing are layered, next steps are curing the part in the oven
and trimming. This is finally followed by an ultrasonic non
destructive inspection (NDI) quality testing and some final
recalculation and rework steps.

Of course for the inline layup inspection all critical features
(defects) must be reworked - but what features are critical?
Usually, operators configure this by setting rework rules
based on some property values for e.g. the extent value of
a special feature type (e.g. rework all fuzzballs >= 2mm).
In general, the inspection software could only forward
those features that correspond to this rigid set of rules.
However, one would deprive oneself of the possibility of
detecting possible trends in the overall process (creeping
deterioration). More efficient is also to provide non defect
features and later to determine which of them must be
classified as to be reworked by using rework rules. This
procedure now offers the possibility of reworking more
than the minimum required by the process. Any additional
rework will of course also result in increased correction
time. But the usage of hard limits within rework rules
does not seem to be perfect, and additional rework can
help to reduce defects that occur at later stages in the
process (e.g. NDI quality testing) and thus help to reduce
future rework times.

2.1 Planning the Decision Making Process

Two roles are assumed to be involved in optimizing a plant:
The machine operator and the line manager.

The line manager is responsible for delivery of all orders
in time. His job is to ensure that resources are available
to match the demand (number of moulds, number of fibre
placement machines, number of active mould preparation
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Fig. 3. DSS Overview

stations, shift plans). He uses PFS to ensure proper order
fulfillment and is more likely to need support with tactical
decisions.

The machine operator uses the decision support tool oper-
ationally to decide whether features need to be reworked
or not, and is interested in the estimated order delivery
information for his current order.

In the first phase of the project, the DSS shall support
the machine operator in his decision-making process. Ac-
cording to (Anthony, 1965) in this case the unstructured
decision to be taken is what features to rework. The op-
erator can use the essential characteristics of the feature
(location, size, extent, . . . ) to manually define for each
feature if this has to be reworked or not. Additionally, the
event type, the MoS calculated by structural simulation
and a calculated severity value is supported.

But manually clicking for any feature would be too time
intensive and erroneous. A faster way for the operator is to
select an alternative from pre-definable rework strategies
depending on suitable rules, which then rapidly sets an
appropriate IsRework flag value for any corresponding
feature. The operator then should use the default rework
strategy suggested by the line manager, but has to rework
at least all features the minimum rework strategy Rework
NIO (= rework all defects) defines to be reworked. For
each existing alternative, the DSS provides information on
how many features would be reworked and how long the
rework time would then take.

Information about the current order timeliness help in
this task too; thus visualizations from results of PFS runs
that execute for the whole plant those rework strategies
are integrated. If PFS results show that there is enough
time for the concrete order, the operator maybe decides to
rework some features more, to hopefully get less rework to
do in later process stages. Figure 3 shows the most relevant
parts of the DSS.

3. IMPLEMENTATION

The decision to rework also non defects can be made more
easily if decision makers know more about the additional
rework times required and the delay in the delivery of their
specific order. In the ZAero project a system-level DSS was
developed that assists human decision-making in assessing
defects and part flow planning through the production line.
The tool is supported by a model built using the discrete
event simulation tool ”Tecnomatix Plant Simulation” from
Siemens for part verification and logistical planning. Sim-
ulation model experiments are performed periodically; the
potential future data from simulation runs is stored and
used for predictive analytics later.

Inspection systems and generally all production / indus-
trial I4 environments generate a multitude of data: ”The
next wave of IoT innovation will be driven by data analyt-
ics” say (Patel et al., 2017). There are also trends in DSS
areas to use Business Intelligence (BI) Tools (Felsberger
et al., 2017) to cope with the ever-increasing amount of
data.

On one hand, the DSS shall visualize all individual process-
relevant data as well as possible and also requires cor-
responding functions in the software solution in order to
take over the desired decisions of the user and thus adapt
processes accordingly. On the other hand, in order to sup-
port decision-making as much as possible, the DSS should
be able to present relevant information from as many
different data sources as possible. Since the second part
seems to be more volatile, due to the constantly changing
processes in production environment, a split approach was
implemented. In principle, web solutions are of course
always to be preferred. However, they usually also require
higher development costs. To create a web solution for the
first more stable part seemed to be too costly, therefore a
typical fat-client architecture was chosen.

For the second, more data-intensive part, the integration of
the display of relevant data into the overall solution via a
configurable, a more easily adaptable BI Web solution was
decided. On the tool market there exist a lot of solutions
that can be used for implementing BI solutions. Some of
the most used Big Data visualization tools (Minelli et al.,
2013) are:

• Tableau, www.tableausoftware.com
• QlikView, www.qlikview.com
• MicroStrategy, www.microstrategy.com
• D3JS, Data Driven Documents java script library,

http://d3js.org
• SAS, www.sas.com . . .

QlikView was chosen for this project, because of the in-
tegrated support for simple extract transfom load (ETL)
tasks (Inmon, 1992). In our environment clean data can
be accessed; Therefore, the need for sophisticated trans-
formation scripts is low, which saves the cost of using an
often expensive data warehouse (Inmon, 1992).

Thanks to its in-memory architecture QlikView also con-
vinces with good performance (Rantung et al., 2018) and
enables easy ad-hoc data filtering as well as fast drilldown
possibilities, which thus also offers a good user experience
when testing hypotheses. Analytics experienced users can
quickly create BI dashboards. Even inexperienced users
can then analyze data with those dashboards created.
QlikView thus already supports the broad spectrum of
features of a data-driven DSS demanded by (Power, 2008).
The Developer Edition from QlikView enables rapid devel-
opment and first initial testing. A QlikView server is avail-
able for integrated use, which then also provides features
such as the permanent time-controlled loading of data and
functions as a web server, via which dashboards can be
made easily accessible to end-users.

The final DSS infrastructure shown in Figure 4 therefore
uses a combination of a fat client Decision Support Tool
and BI web-dashboards built using QlikView.
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Fig. 4. DSS Infrastructure and HDF5 file (MDB) usage

Table 1. Results from Plant Simulation Exper-
iments

3.1 Tecnomatix Plant Simulation + Database + QlikView

As shown in Figure 4, the PFS model is used in multiple
ways: For calculating experiment series for different rework
strategies and to generate data the way a MES system
would normally generate it. On each experiment series run,
the PFS initializes with the current plant status first and
then executes multiple series of experiments using different
rework strategies. For the MES part, Plant Simulation is
executed sometimes (identified by an ever incrementing
RunId value) and then writes history information of orders
and machines data into an MS-SQL server database. This
order history information was used to examine whether the
MES data that can later be expected in real production
can also be helpful to support decision making (= data
from the past for descriptive analytics).

In order to obtain a suitable stochastic for the rework
strategies experiment series (identified by an ever incre-
menting ExperimentSeriesId value), several runs are car-
ried out for each strategy in parallel. To see how much
time is needed to compute the series, some experiments
were carried out. As hardware an Intel Xeon Gold 6136
CPU@3GHZ, 192GB memory and 2*12 Cores was used.
The Results of the experiments are depicted in Table 1.
Finally, the setting was chosen, that executes 4 strategies
with each 96 observations to simulate 63 days in future;
This takes less then 3 minutes to execute.

The DSS infrastructure now uses a scheduler to launch
the simulation tool any 15 minutes execute this setting
and write data; And the QlikView Server was configured
to load this data also in 15 minutes intervals, but always
starts 5 minutes later.

3.2 Decision Support Tool

The .NET based Rapid Application Development (RAD)
tool PPOpt (Project Planning and Optimization) from
Profactor was used, to implement a software solution to
support decision making in our environment. This GUI
(graphical user interface) tool helps the machine operator
to decide which of the features need to be reworked. The
developed solution solves the following tasks among others:

• Read and write HDF5 files.
• Show the inspection results for a ply as a list and per

click show features and their location in 3D space.
• On mouse over a feature in 3D space, a tool tip is

displayed. If users click on a feature in 3D space, the
corresponding feature in the list will be selected.

• Enables to set the IsRework flag for individual
features of a ply.

• A module named ReworkStrategies enables to define
rework strategies (see Figure 6). Theses strategies
can be executed by users, to fasten the process to
define what features shall be reworked. Rules can
be attached to strategies to define what features
to rework (e.g. rework all fuzzballs >= 2mm). If a
single strategy is later applied, all the rules of the
strategy are reviewed. If at least one rule matches,
the IsRework flag is set for this feature.

• One special strategy can be marked as IsSeverityCal-
culator. An algorithm then uses the n rules limits
(=CompareValue) to calculate a single severity value
to express the magnitude of the problem:

Severity = max(
FeaturePropertyV aluej

CompareV aluej
)
∣∣∣n
j=1

→ Severity ≥ 1.0 (=defect) must be reworked
→ Severity < 1.0 could be additionally reworked

• Using the module ReworkDuration operators can
configure how long a special feature type needs to
be reworked.

• Enables access to further analytical QlikView data
(PFS results, current ERP/PPS/MES data . . . ) us-
ing deep hyperlinks to support the decision making
process.

The tool periodically checks the HDF5 file of the current
part in production. If a PLY DEFECTS VERIFIED event
from structural simulation is detected, all features and also
the properties of the ply inspection are displayed to the
operator. Figure 5 shows the GUI. To decide whether to
rework a particular feature or not, users may consider the
following properties of the feature:

• Type (angle deviation, gap, twist, overlap, foreign
object, fuzzball, early/late cut, . . . )

• Severity
• Area, Length, Width
• MR = MoS reduction
• MoS - before and after defect (for quick and detailed

analysis)

The operator can use the predefined ReworkStrategies to
reduce the time needed to decide which features to rework
and which not. (e.g. ’Rework NIO + 25% IO’ = the worst
25% (depending on Severity) of non-defective features
should also be reworked)
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Fig. 5. ZAero DSS Tool - displaying Sample Data

Fig. 6. DSS - Rework Strategies and Rules

Fig. 7. DSS Dialog to choose a Rework Strategy + Hyper-
links to QlikView Dashboards

A click on the ’Set IsRework by Strategy’ button opens an
additional DSS-dialog as shown in Figure 7 that uses this
information. For each rework strategy the dialog indicates
how many features have to be reworked and gives an
estimate of how long the rework would take then.

This dialog also serves as a bridge to access results of
detailed PFS runs for different rework strategies. The op-

Fig. 8. Dashboard: KPIs of Simulation Runs

Fig. 9. Dashboard: Order-Delivery Info for 2000098 from
Simulation Runs

Fig. 10. Dashboard: Order-History (MES/PDA)

erator can choose the hyperlinks to access the appropriate
QlikView dashboards shown in Figures 8, 9, 10.

The Dashboard in Figure 9 shows e.g. for each rework
strategy if the 95th percentile finish time for this order is
in time or delayed provided that all lay-up stations would
use this rework strategy.

All this information helps the operator to choose a concrete
rework strategy which then defines all features that have to
be reworked. If there is enough time, more rework should
be planned to hopefully get fewer defects in later stages.

After rework is done, a click on the ’Write Defects-
Reworked’ button sets the flag IsRework for all reworked
features in the MDB too. Structural simulation therefore
can also consider effects over several layers in the next run
for all not reworked features. This button click also writes
an appropriate event into the MDB, to trigger the lay-up
to continue work.
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The proposed DSS infrastructure can easily be adapted to
display additional data, as the visualization of simulated
MES/PDA data in the solution has proven. MES data
e.g. provides helpful hints for optimizing production. For
one simulation experiment AFP 04 station was set to
produce more features and the workers of the lay-up ma-
chine AFP 02 were configured to rework slower. Operators
can see this clearly in the ”Avg. ReworkDuration” and
”Avg. Defects/Station” charts depicted in Figure 10 and
thus respond in a timely manner (e.g. perform preventive
maintenance on AFP 04 ).

4. CONCLUSIONS AND FUTURE WORK

The presented hybrid decision support system infrastruc-
ture provides machine operators with all information /
visualization they need for the decision-making process of
planning necessary rework tasks in production. Users can
also easily extend BI dashboards to integrate additional
valuable data sources in the future.

In a next work step, the PFS and dashboards will be
further developed, to better support line managers that
want to analyze the performance of different production
line part flow scenarios (e.g. add additional lay-up ma-
chines). The current simulation model also does not take
into account the fact that more rework in earlier phases
will lead to less rework in later phases of production. In a
next work step, the model will be updated to respect an
appropriate NDI-Rework Decrease Factor. Correct settings
for this factor can be determined during real production
then using DoE (Design of Experiments) (Box et al., 1978).
The simulation experiments showed that NDI-Rework can
be a bottleneck in some situations, so reducing rework
there may help to optimize the whole plant.

Future research can use the location information of the
feature to guide the worker to this location on the ply
e.g. by using a beamer/laser that projects the location of
the erroneous feature on the ply. Alternatively, a suitable
augmented reality technology can support the worker with
suggestions for the necessary rework tasks.
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