

# Neutron noise experiments in the AKR-2 and CROCUS reactors for the CORTEX European project

**ANIMMA** 2019 | 17.06.2019, Portorož (Slovenia)

<u>V. Lamirand</u><sup>1,2</sup>, A. Rais<sup>1</sup>, S. Hübner<sup>3</sup>, C. Lange<sup>3</sup>, J. Pohlus<sup>4</sup>, Uwe Paquee<sup>4</sup>, C. Pohl<sup>5</sup>, O. Pakari<sup>1</sup>, P. Frajtag<sup>1</sup>, D. Godat<sup>1</sup>, M. Hursin<sup>1,2</sup>, A. Laureau<sup>1</sup>, G. Perret<sup>2</sup>, C. Fiorina<sup>1</sup>, A. Pautz<sup>1,2</sup>

vincent.lamirand@epfl.ch, sebastian.huebner@tu-dresden.de

<sup>&</sup>lt;sup>5</sup> TÜV Rheinland Industrie Service GmbH (TUV), 51105 Cologne, Germany



Laboratory for Reactor Physics and Systems behaviour (LRS), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

<sup>&</sup>lt;sup>2</sup> Nuclear Energy and Safety Research Division (NES), Paul Scherrer Institut (PSI), CH-5232 Villigen, Switzerland

<sup>&</sup>lt;sup>3</sup> Institute of Power Engineering, Technische Universität Dresden, 01062 Dresden, Germany

<sup>&</sup>lt;sup>4</sup> Institut fur Sicherheitstechnologie GmbH (ISTec), 85748 Garching, Germany

#### **Contents**

The CORTEX project

First AKR-2 campaign

- The AKR-2 reactor
- Perturbation systems
- Detection instrumentation
- Measurements performed

Conclusions & outlook

First CROCUS campaign

- The CROCUS reactor
- Fuel rods oscillator
- Detection instrumentation
- Measurements performed



## The Horizon 2020 CORTEX project

CORe monitoring Techniques and EXperimental validation & demonstration develop a core monitoring technique for the early detection, characterization, and localization of anomalies using neutron noise





## The Horizon 2020 CORTEX project

#### 20 partners for 5 work packages

- WPI Development of modelling capabilities for reactor noise analysis:
- Task I.I Modelling of fluid-structure interactions
- Task 1.2 Modelling of the effect of fuel assembly vibrations
- Task 1.3 Generic modelling of reactor transfer function
- Task I.4 Methodology for uncertainty and sensitivity analysis applied to reactor noise simulations
- WP2 Validation of the modelling tools against experiments in research reactors
- Task 2.1 Generation of high quality experimental data for code validation
- Task 2.2 Validation of the computational tools
- WP3 Development of advanced signal processing and machine learning methodologies for analysis of plant data
- Task 3.1 Generation of basic scenarios and simulated data
- Task 3.2 Advanced data processing in the time- and frequency-domains
- Task 3.3 Data analysis using machine learning techniques and deep neural networks
- WP4 Application and demonstration of the developed modelling tools and signal processing techniques against plant data
- Task 4.1 Preparation of available measurements and core data; performance of additional measurements; packaging and distribution of tools to project partners
- Task 4.2 Demonstration of the computational tools and methodologies developed in WPI and WP3
- Task 4.3 Recommendations on in-core and out-of-core instrumentations
- WP5 Knowledge dissemination and education
- Task 5.1 Education in reactor dynamics, neutron noise and diagnostics
- Task 5.2 Knowledge dissemination
- Task 5.3 Communication



## **Experimental campaigns for CORTEX**

#### 20 partners for 5 work packages

- WPI Development of modelling capabilities for reactor noise analysis:
- Task I.I Modelling of fluid-structure interactions
- Task 1.2 Modelling of the effect of fuel assembly vibrations
- Task 1.3 Generic modelling of reactor transfer function
- Task I.4 Methodology for uncertainty and sensitivity analysis applied to reactor noise simulations
- WP2 Validation of the modelling tools against experiments in research reactors
- Task 2.1 Generation of high quality experimental data for code validation
- Task 2.2 Validation of the computational tools
- WP3 Development of advanced signal processing and machine learning methodologies for analysis of plant data
- Task 3.1 Generation of basic scenarios and simulated data
- Task 3.2 Advanced data processing in the time- and frequency-domains
- Task 3.3 Data analysis using machine learning techniques and deep neural networks
- WP4 Application and demonstration of the developed modelling tools and signal processing techniques against plant data
- Task 4.1 Preparation of available measurements and core data; performance of additional measurements; packaging and distribution of tools to project partners
- Task 4.2 Demonstration of the computational tools and methodologies developed in WPI and WP3
- Task 4.3 Recommendations on in-core and out-of-core instrumentations
- WP5 Knowledge dissemination and education
- Task 5.1 Education in reactor dynamics, neutron noise and diagnostics
- Task 5.2 Knowledge dissemination
- Task 5.3 Communication



#### TUD EPFL ISTec

4 acquisition systems

Ist AKR-2 campaign in March 2018

- rotating neutron absorber
- vibrating absorber

1st CROCUS campaign in Sep. 2018

• fuel rods oscillator



## Data acquisition systems (DAQ)

TUD Pulse-mode DAQ (I channel): ORTEC Easy-MCS multichannel scaler and MAESTRO software

EPFL Pulse- (4 ch.) and current-mode (4 ch.) DAQ:

- ORTEC PCI-based multichannel scalers and LabVIEW routines
- Lecroy Wavesurfer 10 oscilloscope

ISTec SIGMA industry-grade current-mode system (16 ch.), used with Robotron 20046 frequency to voltage converters for pulse-mode.



# First AKR-2 campaign

6-15 March 2018



#### **AKR-2 Characteristics**



- Thermal, zero-power reactor
- Homogeneous uranium-oxide, polyethylene core
- U-235 enrichment of 19.8 % (ca. 790 g)
- Graphite reflector
- $\Phi_{\text{max}} = 2.7 \cdot 10^7 \text{ cm}^{-2}.\text{s}^{-1}$
- $P_{\text{therm,max}} = 1.4 \text{W (2W)}$



## **AKR-2 Components**



#### **AKR-2 Kinetic Parameters & ZPTF**

MCNP 6.0 ENDF/B-VIII.0

|                 |                | <b>Estimate</b>               |
|-----------------|----------------|-------------------------------|
| Generation time | Λ              | 57.29561 x 10 <sup>-6</sup> s |
| Beta effective  | $eta_{ m eff}$ | 0.00766                       |

| Precursor | $oldsymbol{eta}_{	ext{eff}}$ | $\lambda_i$ (s <sup>-1</sup> ) |
|-----------|------------------------------|--------------------------------|
| I         | 0.00027                      | 0.01334                        |
| 2         | 0.00137                      | 0.03273                        |
| 3         | 0.00133                      | 0.12079                        |
| 4         | 0.00296                      | 0.30293                        |
| 5         | 0.00123                      | 0.85011                        |
| 6         | 0.00050                      | 2.85508                        |
|           |                              |                                |



## **AKR-2 Locality of Perturbations**



Linear moving absorber (pile oscillator)



Rotating absorber





#### **AKR-2 Perturbation systems**

Linear moving absorber

- Drive: pneumatic
- Distance: fixed, 20 cm
- Frequency: 0.08 to 0.71 Hz
- Motion profile: fixed, trapeze (jump)
- Total reactivity:  $\rho_t = 0.0126$  \$





## **AKR-2 Perturbation systems**

Rotating absorber







## **AKR-2 Perturbation systems**

Rotating absorber





Measured reactivity of the rotating absorber





#### **AKR-2** Position of detectors



#### **AKR-2 Position of detectors**



- ① to ③ He-3 proportional counter
- 4) Fission chamber
- 5 & 6 Fission chamber, wide range
- γ- compensated ion chamber, power range



#### **AKR-2 Position of detectors**



#### TUD EPFL ISTec

1) to 3

**(4)** 

5 & 6

 $\overline{7}$ 

He-3 proportional counter

Fission chamber

Fission chamber, wide range  $\gamma$ - compensated ion chamber,

power range



## **AKR-2 Measurement Campaign**

#### **Linear Moving Absorber (Pile Oscillator)**

| IsTec | EPFL | TUD | Comparable |
|-------|------|-----|------------|
| 18    | 17   | 16  | 15 (17)    |

Reactor Power: 0.8 to 2.0 W; Perturbation frequency: 0.08 to 0.71 Hz

#### **Rotating Absorber**

| IsTec | EPFL | TUD | Comparable |
|-------|------|-----|------------|
| 23    | 10   | 4   | 4 (10)     |

Reactor Power: 0.2 to 2.0 W; Perturbation frequency: 0.2 to 2.0 Hz

Static measurements of ISTec (and TUD) at different power levels



# First CROCUS campaign

**17-21 September 2018** 



#### The CROCUS reactor

#### Reactor type

LWR with partially submerged core Room T (controlled) and atmospheric P Forced water flow (160 l.min-1)

#### Operation

 $100\,\mathrm{W}$  (zero-power reactor) i.e. maximum  $2.5\times10^9\,\mathrm{cm}^{-2}.\mathrm{s}^{-1}$  Control:  $B_4\mathrm{C}$  rods and spillway





#### The CROCUS reactor

Reactor type
 LWR with partially submerged core
 Room T (controlled) and atmospheric P
 Forced water flow (160 l.min-1)

#### Operation

100 W (zero-power reactor) i.e. maximum  $2.5 \times 10^9$  cm<sup>-2</sup>.s<sup>-1</sup> Control: B<sub>4</sub>C rods and spillway









#### The CROCUS reactor

Reactor type

LWR with partially submerged core Room T (controlled) and atmospheric P Forced water flow (160 l.min-1)

Operation

100 W (zero-power reactor) i.e. maximum  $2.5 \times 10^9$  cm<sup>-2</sup>.s<sup>-1</sup> Control: B<sub>4</sub>C rods and spillway

• Core dimensions Ø60 cm/100 cm

Fuel lattices

2-zone: 336/176 rods actually

Inner: UO<sub>2</sub> 1.806 wt% 1.837 cm Outer: U<sub>met</sub> 0.947 wt% 2.917 cm





#### **CROCUS Kinetic Parameters & ZPTF**

**ZPTF** 

MCNPv5-1.6 JEFF 3.1.1

|                 |                | Estimate        |
|-----------------|----------------|-----------------|
| Generation time | Λ              | 47.82 ± 0.05 μs |
| Beta effective  | $eta_{ m eff}$ | 759 ± 7 pcm     |





Estimated APSD from an efficient detector (10<sup>-5</sup>)



Design for investigating power fluctuations induced by fuel oscillations

- COLIBRI experimental program in CROCUS
- Up to  $18 U_m$  rods,  $\pm 2.5$  mm (i.e. 8 pcm), 2 Hz
- Authorization in July 2018 for step-by-step loading and testing procedure, from in-air out of the vessel to critical operation I





View of the oscillation device for testing in the vessel



Design for investigating power fluctuations induced by fuel oscillations

- COLIBRI experimental program in CROCUS
- Up to  $18 U_m$  rods,  $\pm 2.5$  mm (i.e. 8 pcm), 2 Hz
- Authorization in July 2018 for step-by-step loading and testing procedure, from in-air out of the vessel to critical operation I

Presentation on Thursday at 14:40 (Europa)





View of the oscillation device for testing in the vessel



#### **Specifications**

• No elements in the active zone

• Rigid transmission top to bottom, with Al beam

• Fuel rods lifted for oscillation: 10 mm



and few pins inserted in the device



#### **Specifications**

- No elements in the active zone
- Rigid transmission top to bottom, with Al beam
- Fuel rods lifted for oscillation: 10 mm
- Signal outputs
  - Motor's position from control
  - Motor's rotation via inductive captor
  - Position at device bottom via cable sensor

All signals collected by the operation software,

+ extraction of the inductive captor's output.



Motor, inductive captor and pins, and measuring cable



Cable (blue) and inductive captor (bottom, red) signals provided by the control (I rod in air, ±1.5 mm and I Hz)



## Configuration







Safety Monitor Photonis CFUM21  $^{235}$ U FC  $^{235}$ U FC  $^{235}$ U  $^{235}$ U FC  $^{235}$ U  $^{23$ 



Experimental locations and associated detectors

**NORTH** 







Monitor

Photonis CFUL01  $^{235}$ U FC  $^{248}$  x 211 mm  $^{-1}$ 



**NORTH** 





Transcommerce Int. MN-1 BF<sub>3</sub>  $\varnothing$ 7.5 x 100 mm  $10^{-2}$  n<sub>th</sub><sup>-1</sup>



Experimental locations and associated detectors





Experimental locations and associated detectors



BF<sub>3</sub>

#### **Detection instrumentation** Photonis CFUF34 FC Ø4.7 x 27 mm NORTH $10^{-3} \, n_{th}^{-1}$ Monitor CC54 <sup>10</sup>B CIC (N) BF<sub>3</sub> (NW) #G20056 CFUL01 <sup>235</sup>U FC (W) #654 Monitor CFUM21 <sup>235</sup>U FC (W) 00000 BF<sub>3</sub>(COLIBRI) #G20055 MN-I BF<sub>3</sub> (SW) #G45270 10 cm

Experimental locations and associated detectors



#### Experimental setup

In addition from COLIBRI:

- Inductive captor
- Cable coder via software
- Motor position | output only





## Acquisition

In addition from COLIBRI:

- Inductive captor
- Cable coder via software
- Motor position | output only







## Acquisition

In addition from COLIBRI:

- Inductive captor
- Cable coder via software
- Motor position | output only







## Acquisition

In addition from COLIBRI:

- Inductive captor
- Cable coder

via software

- Motor position

output only







#### Measurements

#### **Static** measurements

Reactor: 100 mW stable power, 20°C, 1000 mm water level, control rod operation

#### **COLIBRI** measurements

Reactor: same, but variable control rod insertion

Setup: 18 rods oscillation, 30 min to 2 h measurements

| Amplitude<br>(mm) | Frequency (Hz) |          |              |          |          |
|-------------------|----------------|----------|--------------|----------|----------|
|                   | 0.1            | 0.5      | ı            | 1.5      | 2        |
| ±0.5              | <b>✓</b>       | <b>✓</b> | $\checkmark$ |          |          |
| ±1.0              | <b>✓</b>       | <b>✓</b> | <b>✓</b>     | <b>✓</b> | <b>✓</b> |
| ±1.5              | <b>✓</b>       | <b>✓</b> | <b>✓</b>     | <b>✓</b> | <b>✓</b> |
| ±2.0              | <b>✓</b>       | <b>✓</b> | <b>✓</b>     |          |          |



#### Measurements





18 rods at ±1.5 mm and 1 Hz



#### Measurements





Preliminary results for COLIBRI with 18 rods at ±2 mm and 1 Hz modelled with CORE SIM (courtesy DREAM, Chalmers University)



#### **Conclusions and outlook**

CORTEX: an H2020 collaborative project for innovative core monitoring techniques

- The two first campaigns in AKR-2 and CROCUS were carried out successfully
- Data processed and distributed along a technical report to the Consortium
- Qualification study of TUD and EPFL acquisition systems with respect to ISTec
- On-going analysis of the experimental data, with uncertainty quantification
- Iteration with the modellers for the design and preparation of the next campaigns:
  - October 2019 for COLIBRI in CROCUS
  - Spring 2020 for AKR-2
- Upgrades of the perturbation devices and instrumentations
- Development of miniature fiber-coupled scintillators for core-mapping



#### **Conclusions and outlook**

CORTEX: an H2020 collaborative project for innovative core monitoring techniques

- The two first campaigns in AKR-2 and CROCUS were carried out successfully
- Data processed and distributed along a technical report to the Consortium
- Qualification study of TUD and EPFL acquisition systems with respect to ISTec<sup>1</sup>
- On-going analysis of the experimental data, with uncertainty quantification
- Iteration with the modellers for the design and preparation of the next campaigns:
  - October 2019 for COLIBRI in CROCUS
  - Spring 2020 for AKR-2
- Upgrades of the perturbation devices and instrumentations
- Development of miniature fiber-coupled scintillators for core-mapping
   Presentation on Thursday by F. Vitullo at 15:20 (#04-1456, Europa)





## Thank you!



