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The Horizon 2020 CORTEX project1

CORe monitoring Techniques and EXperimental validation & demonstration

develop a core monitoring technique for the early detection,
characterization, and localization of anomalies using neutron noise

In-core and ex-core

detectors’ signals

Anomaly characterisation

and localisation

Signal processing

Machine learning trained with

validated simulation tools

1 Demazière C., Vinai P., Hursin M., Kollias S., and Herb J., Overview of the CORTEX project, Proc. Int. Conf. Physics of Reactors – Reactor Physics paving the way towards

more efficient systems (PHYSOR2018), Cancun, Mexico, April 22-26, 2018 (2018)



The Horizon 2020 CORTEX project

20 partners for 5 work packages
• WP1 – Development of modelling capabilities for reactor noise analysis:
• Task 1.1 – Modelling of fluid-structure interactions
• Task 1.2 – Modelling of the effect of fuel assembly vibrations
• Task 1.3 – Generic modelling of reactor transfer function
• Task 1.4 – Methodology for uncertainty and sensitivity analysis applied to reactor noise simulations

• WP2 –Validation of the modelling tools against experiments in research 
reactors
• Task 2.1 – Generation of high quality experimental data for code validation
• Task 2.2 – Validation of the computational tools

• WP3 – Development of advanced signal processing and machine learning 
methodologies for analysis of plant data
• Task 3.1 – Generation of basic scenarios and simulated data
• Task 3.2 – Advanced data processing in the time- and frequency-domains
• Task 3.3 – Data analysis using machine learning techniques and deep neural networks

• WP4 – Application and demonstration of the developed modelling tools and 
signal processing techniques against plant data
• Task 4.1 – Preparation of available measurements and core data; performance of additional 
measurements; packaging and distribution of tools to project partners
• Task 4.2 – Demonstration of the computational tools and methodologies developed in WP1 and WP3
• Task 4.3 – Recommendations on in-core and out-of-core instrumentations

• WP5 – Knowledge dissemination and education
• Task 5.1 – Education in reactor dynamics, neutron noise and diagnostics
• Task 5.2 – Knowledge dissemination
• Task 5.3 – Communication



1st AKR-2 campaign in March 2018

• rotating neutron absorber

• vibrating absorber

1st CROCUS campaign in Sep. 2018

• fuel rods oscillator

Experimental campaigns for CORTEX

20 partners for 5 work packages
• WP1 – Development of modelling capabilities for reactor noise analysis:
• Task 1.1 – Modelling of fluid-structure interactions
• Task 1.2 – Modelling of the effect of fuel assembly vibrations
• Task 1.3 – Generic modelling of reactor transfer function
• Task 1.4 – Methodology for uncertainty and sensitivity analysis applied to reactor noise simulations

• WP2 –Validation of the modelling tools against experiments in 
research reactors
• Task 2.1 – Generation of high quality experimental data for code validation
• Task 2.2 – Validation of the computational tools

• WP3 – Development of advanced signal processing and machine learning 
methodologies for analysis of plant data
• Task 3.1 – Generation of basic scenarios and simulated data
• Task 3.2 – Advanced data processing in the time- and frequency-domains
• Task 3.3 – Data analysis using machine learning techniques and deep neural networks

• WP4 – Application and demonstration of the developed modelling tools and 
signal processing techniques against plant data
• Task 4.1 – Preparation of available measurements and core data; performance of additional 
measurements; packaging and distribution of tools to project partners
• Task 4.2 – Demonstration of the computational tools and methodologies developed in WP1 and WP3
• Task 4.3 – Recommendations on in-core and out-of-core instrumentations

• WP5 – Knowledge dissemination and education
• Task 5.1 – Education in reactor dynamics, neutron noise and diagnostics
• Task 5.2 – Knowledge dissemination
• Task 5.3 – Communication

TUD EPFL ISTec

4 acquisition systems



Data acquisition systems (DAQ)

TUD Pulse-mode DAQ (1 channel): ORTEC Easy-MCS multichannel scaler
and MAESTRO software

EPFL Pulse- (4 ch.) and current-mode (4 ch.) DAQ:

- ORTEC PCI-based multichannel scalers and LabVIEW routines

- Lecroy Wavesurfer 10 oscilloscope

ISTec SIGMA industry-grade current-mode system (16 ch.), used with
Robotron 20046 frequency to voltage converters for pulse-mode.

1 A. Rais et al., “Towards the validation of neutron noise simulators: comparative assessment of data acquisition systems”, M&C 2019, Portland (USA), 25-29 August 2019



First AKR-2 campaign
6-15 March 2018



AKR-2 Characteristics

• Thermal, zero-power reactor

• Homogeneous uranium-oxide, 
polyethylene core

• U-235 enrichment of 19.8 % 
(ca. 790 g) 

• Graphite reflector

• Φmax= 2.7 ∙ 107 cm-2.s-1

• 𝑃therm,max = 1.4 W (2W)



Fuel Reflector Control- and Safety rods Experimental Channels Shielding

AKR-2 Components



AKR-2 Kinetic Parameters & ZPTF

Estimate

Generation

time

Λ 57.29561 x 10-6 s

Beta effective 𝛽eff 0.00766

Precursor 𝜷𝐞𝐟𝐟 𝝀𝒊
(s-1)

1 0.00027 0.01334

2 0.00137 0.03273

3 0.00133 0.12079

4 0.00296 0.30293

5 0.00123 0.85011

6 0.00050 2.85508

MCNP 6.0
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AKR-2 Locality of Perturbations
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AKR-2 Perturbation systems
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Linear moving absorber

• Drive: pneumatic

• Distance: fixed, 20 cm

• Frequency: 0.08 to 0.71 Hz

• Motion profile: fixed, trapeze
(jump)

• Total reactivity: 𝜌´t=0.0126 $



AKR-2 Perturbation systems
Rotating absorber

MCNP simulation of the flux in the tangential channel 3-4
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AKR-2 Perturbation systems
Rotating absorber

MCNP simulation of the flux in the tangential channel 3-4

Measured reactivity of the rotating absorber
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Total reactivity: 𝜌´t=0.0109 $



AKR-2 Position of detectors

1

2

3

1 3to He-3 proportional counter



AKR-2 Position of detectors
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AKR-2 Position of detectors

31 to He-3 proportional counter

4 Fission chamber

5 6& Fission chamber, wide range

7 γ- compensated ion chamber, 

power range
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IsTec EPFL TUD Comparable

23 10 4 4 (10)

AKR-2 Measurement Campaign

Linear Moving Absorber (Pile Oscillator)

Reactor Power: 0.8 to 2.0 W; Perturbation frequency: 0.08 to 0.71 Hz

Rotating Absorber

Reactor Power: 0.2 to 2.0 W; Perturbation frequency: 0.2 to 2.0 Hz

Static measurements of ISTec (and TUD) at different power levels

IsTec EPFL TUD Comparable

18 17 16 15 (17)



First CROCUS campaign
17-21 September 2018



The CROCUS reactor

• Reactor type
LWR with partially submerged core

Room T (controlled) and atmospheric P

Forced water flow (160 l.min-1)

• Operation
100 W (zero-power reactor)

i.e. maximum 2.5×109 cm-2.s-1

Control: B4C rods and spillway

• Core dimensions
⌀60 cm/100 cm

• Fuel lattices
2-zone: 336/176 rods actually

Inner:  UO2 1.806 wt% 1.837 cm

Outer: Umet 0.947 wt% 2.917 cm
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⇔ ±0.2 pcm



The CROCUS reactor

• Reactor type
LWR with partially submerged core

Room T (controlled) and atmospheric P
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CROCUS Kinetic Parameters & ZPTF

Estimate

Generation time Λ 47.82 ± 0.05 µs

Beta effective 𝛽eff 759 ± 7 pcm

MCNPv5-1.6

JEFF 3.1.1

Estimated APSD from an efficient detector (10-5)ZPTF



Fuel rods oscillator

Design for investigating power fluctuations
induced by fuel oscillations

• COLIBRI experimental program in CROCUS

• Up to 18 Um rods, ±2.5 mm (i.e. 8 pcm), 2 Hz

• Authorization in July 2018 for step-by-step
loading and testing procedure, from in-air out
of the vessel to critical operation1

• d

1 V. Lamirand et al., “The COLIBRI experimental programme in the CROCUS reactor: development and licensing of a fuel rods oscillator,” RRFM/IGORR 2019, Swemieh

(Jordan), 24-28 March 2019

View of the oscillation device

for testing in the vessel



Fuel rods oscillator

Design for investigating power fluctuations
induced by fuel oscillations

• COLIBRI experimental program in CROCUS

• Up to 18 Um rods, ±2.5 mm (i.e. 8 pcm), 2 Hz

• Authorization in July 2018 for step-by-step
loading and testing procedure, from in-air out
of the vessel to critical operation1

• d

1 V. Lamirand et al., “The COLIBRI experimental programme in the CROCUS reactor: development and licensing of a fuel rods oscillator,” RRFM/IGORR 2019, Swemieh

(Jordan), 24-28 March 2019

View of the oscillation device

for testing in the vessel

Presentation on 
Thursday at 14:40 

(Europa)



Fuel rods oscillator

Specifications
• No elements in the active zone

• Rigid transmission top to bottom, with Al beam

• Fuel rods lifted for oscillation: 10 mm

• Signal outputs
• Motor’s position from control

• Motor’s rotation via inductive captor

• Position at device bottom via cable detector

All signals collected by the operation software,

+ extraction of the inductive captor’s output.

s
Oscillator with core structures,

and few pins inserted in the device



Fuel rods oscillator

Specifications
• No elements in the active zone

• Rigid transmission top to bottom, with Al beam

• Fuel rods lifted for oscillation: 10 mm

• Signal outputs
• Motor’s position from control

• Motor’s rotation via inductive captor

• Position at device bottom via cable sensor

All signals collected by the operation software,

+ extraction of the inductive captor’s output.

s

Cable (blue) and inductive captor (bottom, red) signals

provided by the control (1 rod in air, ±1.5 mm and 1 Hz)

Motor, inductive captor and pins, and measuring cable
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Experimental locations and associated detectors
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Control rod operation

Water level: 1000 mm
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Detection instrumentation
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Safety Monitor

Photonis CFUM21 235U FC

⌀25.4 x 120 mm

10-2 nth
-1
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Detection instrumentation

Experimental locations and associated detectors

C
O

L
IB

R
I

Monitor

Merlin Gerin CC54 10B CIC

⌀50 x 355 mm

3×10-14 A.nth
-1

Monitor CFUM21 235U FC (W)
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Detection instrumentation
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Photonis CFUL01 235U FC

⌀48 x 211 mm

1 nth
-1

Monitor CC54 10B CIC (N)

Monitor CFUM21 235U FC (W)
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Detection instrumentation
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Transcommerce Int. MN-1 BF3

⌀7.5 x 100 mm

10-2 nth
-1

Monitor CC54 10B CIC (N)

Monitor CFUM21 235U FC (W)

CFUL01 235U FC (W) #654
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Monitor CC54 10B CIC (N)

Monitor CFUM21 235U FC (W)
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MN-1 BF3 (SW) #G45270
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Detection instrumentation

Experimental locations and associated detectors
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Photonis CFUF34 FC

⌀4.7 x 27 mm

10-3 nth
-1

BF3 (NW) #G20056

BF3(COLIBRI) #G20055

Monitor CC54 10B CIC (N)

Monitor CFUM21 235U FC (W)

CFUL01 235U FC (W) #654

MN-1 BF3 (SW) #G45270
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Experimental setup

Experimental locations and associated detectors

Monitor CC54 10B CIC (N)

CHC 1 

BF3 (NW) #G20056

ch. 1

CFUL01 235U FC (W) #654

ch. 597

Monitor CFUM21 235U FC (W)

CHI 1

BF3(COLIBRI) #G20055

ch. 2

MN-1 BF3 (SW) #G45270

ch. 4

MN-1 BF3 (NE) #G47349

ch. 3

Monitor CFUM21 235U FC (E)

CHI 2 

CFUL01 235U FC (E) #653,  

ch. 596

CFUF34 235U MFC (CC)

TRAX

Monitor CC54 10B CIC (S)

CHC 2

Control rod operation
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In addition from COLIBRI:

- Inductive captor

- Cable coder via software

- Motor position output only
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Acquisition
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- Inductive captor

- Cable coder via software

- Motor position output only

TUD
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Acquisition

Experimental locations and associated detectors
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Measurements
Static measurements

Reactor: same, but variable control rod insertion

Setup: 18 rods oscillation, 30 min to 2 h measurements

COLIBRI measurements

Amplitude

(mm)

Frequency (Hz)

0.1 0.5 1 1.5 2

±0.5 ✓ ✓ ✓

±1.0 ✓ ✓ ✓ ✓ ✓

±1.5 ✓ ✓ ✓ ✓ ✓

±2.0 ✓ ✓ ✓

Reactor: 100 mW stable power, 20°C, 1000 mm water level, control rod operation



Measurements

18 rods at ±1.5 mm and 1 Hz



Measurements

Preliminary results for COLIBRI with 18 rods at ±2 mm and 1 Hz

modelled with CORE SIM (courtesy DREAM, Chalmers University)



Conclusions and outlook

CORTEX: an H2020 collaborative project for innovative core monitoring techniques

• The two first campaigns in AKR-2 and CROCUS were carried out successfully

• Data processed and distributed along a technical report to the Consortium

• Qualification study of TUD and EPFL acquisition systems with respect to ISTec

• On-going analysis of the experimental data, with uncertainty quantification

• Iteration with the modellers for the design and preparation of the next campaigns:

• October 2019 for COLIBRI in CROCUS

• Spring 2020 for AKR-2

• Upgrades of the perturbation devices and instrumentations

• Development of miniature fiber-coupled scintillators for core-mapping
• A
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CORTEX: an H2020 collaborative project for innovative core monitoring techniques

• The two first campaigns in AKR-2 and CROCUS were carried out successfully

• Data processed and distributed along a technical report to the Consortium

• Qualification study of TUD and EPFL acquisition systems with respect to ISTec1

• On-going analysis of the experimental data, with uncertainty quantification
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• October 2019 for COLIBRI in CROCUS
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• Development of miniature fiber-coupled scintillators for core-mapping
• A Presentation on Thursday by F. Vitullo at 15:20 (#04-1456, Europa)



Measurements

18 rods at ±1.5 mm and 1 Hz



Thank you!


