
Application of BagIt-Serialized Research Object
Bundles for Packaging and Re-execution of

Computational Analyses
Kyle Chard

Computation Institute
University of Chicago

Chicago, IL
chard@uchicago.edu

Niall Gaffney
Texas Advanced Computing Center

University of Texas at Austin
Austin, TX

ngaffney@tacc.utexas.edu

Matthew B. Jones
NCEAS

University of California at Santa Barbara
Santa Barbara, CA

jones@nceas.ucsb.edu

Kacper Kowalik
NCSA

University of Illinois at Urbana-Champaign
Urbana, IL

kowalikk@illinois.edu

Bertram Ludäscher
School of Information Sciences

University of Illinois at Urbana-Champaign
Champaign, IL

ludaesch@illinois.edu

Timothy McPhillips
School of Information Sciences

University of Illinois at Urbana-Champaign
Champaign, IL

tmcphill@illinois.edu

Jarek Nabrzyski
Center for Research Computing

University of Notre Dame
South Bend, IN

jaroslaw.nabrzyski.1@nd.edu

Victoria Stodden
School of Information Sciences

University of Illinois at Urbana-Champaign
Champaign, IL
vcs@stodden.net

Ian Taylor
Center for Research Computing

University of Notre Dame
South Bend, IN

ian.j.taylor@gmail.com

Thomas Thelen
NCEAS

University of California at Santa Barbara
Santa Barbara, CA

thelen@nceas.ucsb.edu

Matthew J. Turk
School of Information Sciences

University of Illinois at Urbana-Champaign
Champaign, IL

mjturk@illinois.edu

Craig Willis†
School of Information Sciences

University of Illinois at Urbana-Champaign
Champaign, IL

willis8@illinois.edu

†Corresponding author

Abstract—In this paper we describe our experience adopting
the Research Object Bundle (RO-Bundle) format with BagIt
serialization (BagIt-RO) for the design and implementation of
“tales” in the Whole Tale platform. A tale is an executable
research object intended for the dissemination of computational
scientific findings that captures information needed to facilitate
understanding, transparency, and re-execution for review and
computational reproducibility at the time of publication. We
describe the Whole Tale platform and requirements that led to
our adoption of BagIt-RO, specifics of our implementation, and
discuss migrating to the emerging Research Object Crate (RO-
Crate) standard.

Index Terms—Reproducibility of Results, Standards, Packag-
ing, Interoperability, Software, Digital Preservation

I. INTRODUCTION

Whole Tale (http://wholetale.org) is a web-based, open-
source platform for reproducible research supporting the cre-
ation, sharing, execution, and verification of “tales” [2], [5].
Tales are executable research objects that capture the code,
data, and environment along with narrative and workflow
information needed to re-create computational results from
scientific studies. A goal of the Whole Tale platform is to pro-
duce an archival package that is exportable, publishable, and

can be used for verification of computational reproducibility,
for example as part of the peer-review process.

Since its inception, the Whole Tale platform has been
designed to bring together existing open science infrastructure.
Researchers can ingest data from various scientific archival
repositories; launch popular analytical tools (such as Jupyter
and RStudio); create and customize computational environ-
ments (using repo2docker1); conduct analyses; create/u-
pload code and data; and publish the resulting package back
to an archival repository. Tales are also downloadable and re-
executable locally, including the ability to retrieve remotely
published data.

With the May 2019 release of version 0.7 of the platform
we adopted the Research Object Bundle BagIt serialization
(BagIt-RO) format [17]. By combining the BagIt-RO serial-
ization with our repo2docker-based execution framework and
the BDBag tools [4], we were able to define and implement
a standards-compliant, self-describing, portable, re-executable
research object with the ability to retrieve remotely published
data.

1https://repo2docker.readthedocs.io/



In this paper we describe the Whole Tale platform and
requirements that led to our adoption of the the BagIt-RO
format. The paper is organized as follows. In Section II,
we present a motivating example of the use of the Whole
Tale platform followed by a brief description of the system
architecture in Section III. In Section IV we outline the
requirements that led to our adoption of the BagIt-RO format.
In Section V we describe our implementation in more detail
followed by a discussion and conclusions.

II. EXAMPLE SCENARIO: ANALYZING SEAL MIGRATION
PATTERNS

We begin with a motivating example to illustrate the end-to-
end Whole Tale workflow for creating, exporting, and publish-
ing a tale based on existing data archived using the Research
Workspace2, a DataONE member node. This example is based
on tutorial material described in [14].

A research team is preparing to publish a manuscript
describing a computational model for estimating
animal movement paths from telemetry data. The
source data for their analysis, tracking data for
juvenile seals in Alaska [3], has been published in
Research Workspace, a DataONE network member.
Using the Whole Tale platform, the researchers
register the external dataset. They then create a new
tale by launching an RStudio environment based on
images maintained by the Rocker Project [1]. Using
the interactive environment, they clone a Github
repository, modify an R Markdown document, cus-
tomize the environment by specifying OS and R
packages via repo2docker configuration files, and
execute their code to generate outputs. They down-
load the package in a compressed BagIt-RO format
and run locally to verify their tale. Finally, they enter
descriptive metadata and publish the final package
back to DataONE to archive the package and obtain
a persistent identifier to include in publication.

This scenario is further illustrated in Figure 1.

III. SYSTEM ARCHITECTURE

This section provides a brief overview of the Whole Tale
system architecture illustrated in Figure 2. Whole Tale pro-
vides a scalable platform based on the Docker Swarm con-
tainer orchestration system, exposing a set of core services
via REST APIs and Single Page Application (SPA). Key
components include:

• Whole Tale Dashboard: An Ember.js single page appli-
cation

• Whole Tale API: A REST API built using the Girder3

framework to expose key features including authentica-
tion, user/group management, tale lifecycle, data manage-
ment, and integration with remote repositories

2https://www.researchworkspace.com
3https://girder.readthedocs.io

• Whole Tale File System: A custom filesystem based on
WebDav and FUSE used to mount user and registered
data into running container environments

• Image registry: A local Docker registry used to host
images associated with tales

• Jobs and task Management: A task distribution and
notification framework based on Girder and Celery

• Data Management System (DMS): A system for fetch-
ing, caching, and exposing externally published datasets

Several aspects of the Whole Tale system are related to
the BagIt-RO serialization format including filesystem orga-
nization, user-defined environments, metadata as well as the
export and publication functions. We describe these in more
detail below.

1) Tale workspace: Each tale has a workspace (folder)
that contains user-created code, data, workflow, documen-
tation and narrative information. The workspace also con-
tains repo2docker-compatible configuration files defining the
tale environment, described below. This appears as the
workspace folder mounted into the running tale environ-
ment (i.e., container)

2) External data: Optionally, each tale can include refer-
ences to externally published data. The data is then registered
with the Whole Tale system and managed by the DMS.
Externally referenced data appears in the data folder, a
sibling to the workspace.

3) Environment customization: Users can optionally cus-
tomize the tale environment using repo2docker-compatible
configuration files. Whole Tale extends repo2docker via the
repo2docker_wholetale4 package, which adds build-
packs to support Rocker, Spark, and OpenRefine images.

4) Metadata: Tales have basic descriptive metadata in-
cluding creator, authors, title, description, keywords as well
as information about the selected environment, licenses, and
associated persistent identifiers. The tale metadata is included
in the metadata directory both in the manifest.json and
environment.json files. The license is included in the
BagIt payload directory, but not as part of the tale workspace.

5) Exporting tales: Tales can be exported in a BagIt-
RO serialized archive that contains the contents of the tale
workspace (code, local data, narrative, workflow, repo2docker
configuration files) as well as references to external data, tale
metadata, and a script to run the tale locally. BDBag [4] is used
to materialize “holey” bags by downloading files specified in
the fetch.txt file, initially via HTTP(S) and eventually
via DOI, Globus, Agave schemes.5 The script to run locally
(run-local.sh) is stored at the root of the exported BagIt
archive.

Table I describes the contents of an exported tale in
the BagIt-RO format. A complete example is available at
https://doi.org/10.5281/zenodo.2641314.

4https://github.com/whole-tale/repo2docker wholetale
5BagIt-Profile-Info example available at

https://raw.githubusercontent.com/fair-research/bdbag/master/profiles/bdbag-
ro-profile.json



Register telemetry 
dataset by digital object 
identifier:
doi:10.24431/rw1k118 

Create a Tale, entering 
a name and selecting 
the RStudio (Rocker) 
environment

A container is launched 
based on selected 
environment with an empty 
workspace and external 
data mounted read-only 

Upload/create R 
Markdown notebook 
and install.R script

Execute code/scripts 
to generate results/ 
outputs

Export the Tale in 
compressed BagIt-RO 
format to run locally for 
verification.

Publish the Tale a 
Data ONE member 
node generating a 
persistent identifier.

Enter descriptive 
metadata including 
authors, title, description, 
and illustration image

schema:author
schema:name
schema:category
pav:createdBy
schema:license

Re-execute in 
Whole Tale

Fig. 1. Example Scenario Tale Creation and Publishing Workflow.

Fig. 2. Whole Tale System Architecture

IV. REQUIREMENTS

The scenario described in Section II highlights key require-
ments of the Whole Tale platform that led to our selection of
the BagIt-RO serialization. These requirements include:

1) Interoperability with archival repositories: In the
scenario, data is referenced from and the resulting
tale published to an archival repository. In addition to
DataONE network members, we are working on support
for Dataverse network members, Dryad, and Zenodo.
We must adopt standard formats and vocabularies to
facilitate interoperability including the use of supported
archival formats and identifiers (e.g., digital object iden-
tifiers).

2) Interoperability with source code management
(SCM): Github is central to the workflow for the re-
searchers in the scenario. The tale format must support
publishing research objects that are based on content
managed in SCM repositories.

File Description
bag-info.txt Bag metadata using the bdbag-ro-

profile
bagit.txt Bag declaration
data/
LICENSE
workspace/
apt.txt
postBuild
requirements.txt
wt_quickstart.ipynb

Payload directory containing tale li-
cense and workspace contents including
repo2docker compatible configuration
files.

fetch.txt Fetch file
manifest-[md5,
sha256].txt

Payload manifest (checksums)

metadata/
manifest.json
environment.json

Tag directory containing RO
manifest.json and Whole Tale
environment metadata (required
by repo2docker wholetale)

tagmanifest-[md5,
sha256].txt

Tag manifest (checksums)

README.md Tale top-level readme
run-local.sh Tale local execution script

TABLE I
EXPORTED TALE CONTENTS

3) Ability to reference external data: The source dataset
used in the scenario has been published in an archival
repository. When running the tale via the Whole Tale
web service or locally, externally referenced data must
be resolved prior to re-execution. Whole Tale currently
supports HTTP(S) resources as well as those published
via Globus and in the future via the Agave Platform.

4) Ability to add metadata: The tale format
must support all metadata attributes required by
DataCite (https://schema.datacite.org) and schema.org
(https://schema.org/Dataset) as well as attributes specific
to the Whole Tale platform. In the future, we expect to
also support additional metadata required by researchers



in specific domains.
5) Ability to export and re-execute: One feature of the

system is the ability for users to export tales to a
local machine. To re-run locally, we must be able to
rebuild the environment (e.g., via Docker/repo2docker)
and fetch remote data as needed.

6) Simplicity and understandability: When users view
the contents of an exported or published tale, they should
be able to easily understand the contents and how to
explore or re-execute the tale.

7) Interoperability with search engines: Google recently
unveiled Dataset Search which parses and aggregates
JSON-LD embedded on dataset landing pages as an
effort to lower barriers for finding datasets. Choosing
JSON-LD as a representation for tale metadata provides
flexibility in case we decide to expose tale information
for Google. It also allows for further integration with
third party publishers such as Dataverse and DataONE
who may expose such metadata for Google.

The following requirements will be addressed in future
releases of Whole Tale and relate to our selection of the BagIt-
RO serialization format:

1) Ability to store provenance information: In future
releases, tales will include computational and archival
provenance information. We anticipate incorporating this
information via standard models such as ProvONE [9].

2) Verifiability: Currently Whole Tale supports validation
through re-execution of tales via a web based service
or after exporting locally. Future releases will include
information to allow the automatic re-execution and ver-
ification of included results/outputs and computational
workflows.

3) Versioning: Since researchers iterate on their tales, share
them and extend them, it is important to be able to
version them over time.

In the next section, we discuss our adoption of the BagIt-RO
model.

V. ADOPTING THE BAGIT-RO MODEL

Whole Tale uses the RDF data model to encode tale
information for export and exchange. We selected a JSON-LD
representation for human readability, extensibility, compatibil-
ity with Whole Tale APIs, and potential interoperability with
search engines and third party publishers. After developing an
ad-hoc internal format, we explored emerging standards in the
research object space and settled on BagIt-RO for serialization.
Using the RO-Bundle specification and BagIt serialization in
conjunction with the BDBag tools met many of our initial
requirements. Additional tale metadata attributes which were
not included in the BagIt-RO model could be added using
vocabularies such as schema.org. Throughout this section, we
use the manifest.json from the above example, with a
complete listing included in Appendix A.

A. Filesystem Artifacts

One strong point of RO-Bundle is that it treats file system
artifacts as aggregates of the manifest. Doing so satisfies
our requirement of being able to track where files belong,
enabling us to both export and re-import tales even in the
case where we must publish a hierarchical structure to a
repository that can only represent a flat structure. In the case
of Whole Tale, artifacts include data that were retrieved from
external repositories as well as files that the user created or
uploaded into the tale workspace. The tale workspace contents
are included in the payload data/workspace directory and
the external data are fetched into the payload data/data
directory, mirroring filesystem organization on the web-based
platform.
"aggregates": [
{
"uri": "../data/workspace/wt_quickstart.ipynb"

},
{
"uri": "../data/workspace/apt.txt"

}
]

Workspace artifacts are easily described with a single URI
entry. Some files, such as the system generated README.md
are tagged with additional metadata as shown below. In this
case the additional metadata specifies the “type” of the file as
a “HowTo”.
{
"@type": "HowTo",
"uri": "../README.md"

}

B. External data

Whole Tale supports two types of external data: data that
reside in a repository identified by persistent identifier (e.g.,
DOI) and data that exists at a generic HTTP(S) address. In
addition to including information about external data in the
manifest.json, the URL for each remote file, regardless
of type, is included in the fetch.txt for retrieval using
BDBag tools.

Generic HTTP(S) Data: For data that does not belong
to a remote repository, a simple bundle is created in the
aggregation section. The URI points to the HTTP(S) address
where the file may be retrieved and the bundle object holds
the information where the file should appear on the filesystem.
This combination of information allows us to retrieve the file
and place it in the correct folder (i.e., data/data).

Repository Data: For datasets that have been published
to research repositories, additional metadata can be ingested
when files are registered with the system. The individual files
are described with a single bundle object, and linked to an
additional structure that describes the dataset in more detail.

The following snippet describes a remote dataset that resides
in DataONE and the aggregation recording the relationship
between a file in that dataset and its ultimate location after
retrieval in the payload ”data” directory:
"dataset": [
"@type": "Dataset",



"identifier": "doi:10.5065/D6862DM8",
"name": "Humans and Hydrology at High Latitudes...",
"@id": "doi:10.5065/D6862DM8"
],
"aggregates": [
{

"size": 1558016,
"schema:isPartOf": "doi:10.5065/D6862DM8",
"uri": "https://cn.dataone.org/cn/v2/resolve/urn

:...",
"bundledAs": {

"filename": "usco2000.xls",
"folder": "../data/data/"

}
}

]

C. Describing the Computing Environment

Whole Tale uses a customized version of the Binder
repo2docker package. In addition to including configuration
files in the workspace, Whole Tale exports information about
the environment including runtime information in the tale. One
shortcoming of the BagIt-RO model is that there is no well-
defined place for this metadata. To address this need, we define
an additional tag file, environment.json, which encodes
sufficient information about the environment so that it can be
re-created. The metadata contained in this file is represented
as JSON and is not yet described using standard vocabularies
due as we were unable to identify a suitable convention.

D. Describing Additional Attributes

A number of properties that describe additional tale at-
tributes (e.g., authors, keywords, description, license) are de-
fined at the manifest root. Schema.org’s vocabulary is used to
describe these general metadata fields.

Attributing authorship to a tale is a requirement for tracking
researcher contributions and is also used during metadata
generation with publishers. The Provenance, Authoring, and
Versioning (PAV) vocabulary is used instead of schema be-
cause it is already included in by RO-Bundle:

{
"@id": "https://orcid.org/0000-0002-7523-5539",
"@type": "schema:Person",
"schema:familyName": "DeBruine",
"schema:givenName": "Lisa"

}

E. Provenance Tracking

A planned feature of Whole Tale is the ability to track
executions and steps in researchers’ workflows based on
techniques used to capture computational provenance [6],
[15], [25], [26]. The BagIt-RO model includes the ability
to provide provenance information through the inclusion of
the provenance.json file. However, this is intended to
capture more archival provenance information and it is un-
clear whether computational provenance should be included
here. Whole Tale plans to use the ProvONE model [9], an
extension to W3C PROV6 derived from an earlier version [16],
combining retrospective provenance and workflow models.

6https://www.w3.org/TR/prov-overview/

Fig. 3. Provenance rendering of a file in DataONE

The URI of each file in the manifest can be referenced
inside the provenance.json file, enabling rich linkings
of information. This information can also be transcribed to
publisher-specific formats, provided that they support PROV.
Figure 3 illustrates how provenance information is rendered
in DataONE.

VI. DISCUSSION

In this section, we highlight and discuss several issues
related to our implementation of BagIt-RO that we hope will
be of interest to workshop participants and possible input into
current work on the RO-Crate specification. We discuss the
importance of re-executability; the ability to reference and
retrieve external data; the relationship between tales and source
control repositories; and our ongoing work on computational
provenance and verification workflows.

A. Executable research objects

Tales are executable research objects. By this we mean that
the research object itself may be built and re-executed for
exploration, re-use, reproducibility, and verification. This is
no longer a unique capability as many systems have recently
been developed to support the creation of similar artifacts
[6], [13], [26]. Executable research objects contain not only
data, code, and documentation, but also information about
the computational environment. This executability leads to
additional capabilities, such as generation and comparison of
computational provenance or methods of automated verifica-
tion.

The FAIRDOM infrastructure initiative has made use of
the Research Object framework to employ a standards based
method to group its components into container platforms
including BagIt [18]. We extend this approach into the Whole
Tale framework and include the capability for externally
referenced data and general research pipelines. Our efforts
generalize those of ReproZip, which gathers and bundles
dependencies for command line executions [6]. The Collective
Knowledge (CK) framework gathers research objects with
unique IDs and metadata in the JSON format but does not
ensure re-executability [12]. Sciunits on the other hand are



self-contained bundles aimed to re-execute regardless of de-
ployment, and targeted at scientific experiments [25], [26].

B. External data

In the Whole Tale platform, users are presented with a fixed
filesystem hierarchy that includes “workspace” and “data”
directories. The workspace directory contains code, local data,
and additional files (e.g., documentation) and the sibling ”data”
directory contains externally referenced data files (read-only).

In our v0.7 release, the BagIt payload directory of an
exported tale similarly contains “workspace” and “data” di-
rectories. The manifest.json contains information about
remotely registered datasets that is also included in the BagIt
fetch.txt. When BDBag tools are used to fetch remote
datasets, they are downloaded to the payload/data directory,
matching the online filesystem organization and system ca-
pabilities. The concept of the fetch.txt, while primitive,
is surprisingly effective when used with BDBag. We also
foresee taking advantage of other BDBag capabilities, such
as transferring Globus data or using DOI resolution. However,
there is redundancy in tracking external information in both
in the BagIt fetch.txt and the RO manifest.json.

C. Relationship to SCM

Many researchers use source control repositories (e.g.,
GitHub) to organize and collaborate on research projects.
Repositories can be released and published via external tools
such as Zenodo or Whole Tale. In the Whole Tale platform, the
“workspace” directory can be mapped to a version controlled
repository. This raises the question of whether or not the
workspace (or repository) should contain everything, includ-
ing information currently stored in the manifest.json
or environment.json. This information is essential to
the understandability and re-executability of the tale, but is
currently modeled as external to the primary tale contents
(as is common with descriptive metadata). During the local
execution process, for technical reasons we bind mount files
from the “metadata” directory into the workspace to support
building the tale image. In future releases, we are considering
exposing the manifest information along with computational
provenance information (below) as part of the workspace
instead of external to it. This means that even simple metadata
would be in the workspace and easily added to version control.

D. Reproducibility and computational provenance information

Computational provenance refers to methods of capturing
provenance (“the source or origin of an object”) for com-
putational tasks [11] and is a subset of the larger notion of
reproducibility of data- and computationally-enabled results
[19], [21]–[24]. We are beginning to explore methods of
capturing and storing computational provenance information
to enable reproducibility on computational findings in tales.
In the RO-Bundle specification, provenance information is
defined as “describing creators, dates, and sources” and is
more concerned with the provenance of the research object
itself, which we term archival provenance. Computational

provenance information is internal to the tale and could be
generated by the user or the Whole Tale system directly.
We view computational provenance information as a key
component of transparency for evaluation and verification of
tales and part of enabling reproducibility.

E. Supporting reproducibility via verification workflows

Research communities and journals are increasingly adopt-
ing artifact review processes that include re-execution of
computational analysis in support of reproducibility [20].
Examples include the workflow implemented by the Odum
Institute for the American Journal for Political Science [7], the
Journal of the American Statistical Association7, Biostatistics
[10], and the ACM Transactions on Mathematical Software
(TOMS) Replicated Computational Results8 program. We see
tales and related research objects being used to simplify and
possibly automate aspects of the verification process. Having
a standard format for the exchange of research objects that fits
into these enhanced curatorial and verification workflows may
significantly reduce the burden on research communities.

F. BagIt Understandability

One drawback of the BagIt serialization is that the BagIt
configuration is foregrounded and difficult to understand for
the average researcher/user while the “payload” directory,
which contains their work, is less apparent and confusingly
named “data”. Although out of scope for the RO discussion,
we are supportive of the idea of a “.bagit” directory that
contains the relevant configuration information and is largely
hidden from the average user.

G. Migrating to RO-Crate

Since our adoption of the BagIt-RO model, the community
has moved forward on the Research Object Crate (RO-Crate)
specification9. In this section, we report the results of a
preliminary analysis of changes needed to migrate to the new
format. Doing so will require versioning the tale export format
and we are unlikely to make changes until the community
settles on a near-final version of the specification.

RO-Crate 0.2-DRAFT introduces the following changes
from the RO-Bundle 1.0:

• Addition of ro-crate-metadata.jsonld (RO-
Crate Metadata File). The relationship to the RO-Bundle
manifest.json is unclear, since the RO-Crate Meta-
data File “does not necessarily list or describe all files
in the package.” We have viewed the manifest.json
as an inventory of all files in the RO (excluding those
introduced by BagIt).

• The RO-Crate metadata file changes vocabulary from
the set used by RO-Bundle to primarily schema.org, no
longer using ore:aggregates. This also adds support
for referencing external datasets, a feature not available
in RO-Bundle but added in our tale format.

7https://magazine.amstat.org/blog/2016/07/01/jasa-reproducible16/
8http://toms.acm.org/replicated-computational-results.cfm
9https://researchobject.github.io/ro-crate/



• The “bagged” RO-Crate structure will differ from
the BagIt-RO structure as the “metadata” folder
is no longer included. Our assumption is that
the ro-crate-metadata.jsonld along with our
environment.json will now be included in the BagIt
payload. We’ve come to a similar conclusion about the
tale format – that this metadata belongs in the payload
not external to it.

• It is unclear whether there will be support for separate
provenance metadata or whether this will need to be
included in the payload.

RO-Crate promises many benefits that align with Whole
Tale, namely the adoption of schema.org as the primary
vocabulary and its ability to be used alongside a variety of
serialization formats.

VII. CONCLUSIONS

By implementing an extension to RO-Bundle with BagIt
serialization and leveraging existing open science infrastruc-
ture tools including repo2docker and BDBag, we were able to
effectively create an exportable, publishable, and executable
research object package, in short taking a step toward the
publication of “really reproducible research” [8]. While not a
perfect fit, BagIt-RO met many of our platform requirements.
We expect to continue work in this area as we add support for
computational provenance information and automated verifi-
cation and hope to contribute to the use cases and discussions
that inform the development of a broader community standard.

ACKNOWLEDGMENT

This work is supported by National Science Foundation
Award OAC-1541450.

REFERENCES

[1] C. Boettiger and D. Eddelbuettel. An introduction to rocker: Docker
containers for R. CoRR, abs/1710.03675, 2017.

[2] A. Brinckman, K. Chard, N. Gaffney, M. Hategan, M. B. Jones,
K. Kowalik, S. Kulasekaran, B. Ludäscher, B. D. Mecum, J. Nabrzyski,
et al. Computing environments for reproducibility: Capturing the “whole
tale”. Future Generation Computer Systems, 94:854–867, 2019.

[3] M. Cameron, J. London, K. Frost, A. Whiting, and P. Boveng. Satellite
Telemetry Dataset (Raw): Juvenile Bearded and Spotted Seals, 2004-
2006, Kotzebue, Alaska, 2018.

[4] K. Chard, M. D’Arcy, B. Heavner, I. Foster, C. Kesselman, R. Madduri,
A. Rodriguez, S. Soiland-Reyes, C. Goble, K. Clark, E. W. Deutsch,
I. Dinov, N. Price, and A. Toga. I’ll take that to go: Big data bags
and minimal identifiers for exchange of large, complex datasets. In
2016 IEEE International Conference on Big Data (Big Data), pages
319–328, Dec 2016.

[5] K. Chard, N. Gaffney, M. B. Jones, K. Kowalik, B. Ludäscher,
J. Nabrzyski, V. Stodden, I. Taylor, M. J. Turk, and C. Willis. Imple-
menting computational reproducibility in the whole tale environment.
In Proceedings of the 2nd International Workshop on Practical Repro-
ducible Evaluation of Computer Systems, P-RECS ’19, pages 17–22,
New York, NY, USA, 2019. ACM.

[6] F. Chirigati, R. Rampin, D. Shasha, and J. Freire. Reprozip: Computa-
tional reproducibility with ease. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD ’16, pages 2085–2088,
New York, NY, USA, 2016. ACM.

[7] T.-M. Christian, S. Lafferty-Hess, W. G. Jacoby, and T. Carsey. Opera-
tionalizing the replication standard. IJDC, 13(1):114–124, 2018.

[8] J. F. Claerbout and M. Karrenbach. Electronic documents give repro-
ducible research a new meaning. In SEG Technical Program Expanded
Abstracts 1992, pages 601–604. Society of Exploration Geophysicists,
1992.

[9] V. Cuevas-Vicenttı́n, B. Ludäscher, P. Missier, K. Belhajjame, F. Chiri-
gati, Y. Wei, S. Dey, P. Kianmajd, D. Koop, S. Bowers, I. Altintas,
C. Jones, M. B. Jones, L. Walker, P. Slaughter, B. Leinfelder, and
Y. Cao. Provone: A prov extension data model for scientific workflow
provenance. https://purl.dataone.org/provone-v1-dev, May 2016.

[10] D. L. Donoho. An invitation to reproducible computational research.
Biostatistics, 11(3):385–388, 07 2010.

[11] J. Freire, D. Koop, E. Santos, and C. T. Silva. Provenance for
computational tasks: A survey. Computing in Science & Engineering,
10(3):11–21, May 2008.

[12] G. Fursin, A. Lokhmotov, D. Savenko, and E. Upton. A collective
knowledge workflow for collaborative research into multi-objective
autotuning and machine learning techniques. CoRR, abs/1801.08024,
2018.

[13] Jupyter-Project. Binder 2.0 - reproducible, interactive, sharable environ-
ments for science at scale. 17th Python in Science Conference, 2018.

[14] J. M. London and D. S. Johnson. Alaska bearded and spotted seal exam-
ple dataset and analysis. https://github.com/jmlondon/crwexampleakbs,
2019.

[15] T. McPhillips, S. Bowers, K. Belhajjame, and B. Ludäscher. Retro-
spective provenance without a runtime provenance recorder. In 7th Intl.
Workshop on Theory and Practice of Provenance (TaPP), 2015.

[16] P. Missier, S. Dey, K. Belhajjame, V. Cuevas-Vicenttı́n, and
B. Ludäscher. D-PROV: Extending the PROV Provenance Model with
Workflow Structure. In Proc. 5th Workshop on the Theory and Practice
of Provenance (TaPP), 2013.

[17] S. Soiland-Reyes, M. Gamble, and R. Haines. Research object bundle
1.0, researchobject.org recommendation. https://w3id.org/bundle/2014-
11-05/, 2014.

[18] N. Stanford, F. Bacall, M. Golebiewski, O. Krebs, R. Kuzyakiv,
Q. Nguyen, S. Owen, S. Soiland-Reyes, J. Straszewski, D. van Niekerk,
A. Williams, K. Wolstencroft, L. Malmström, B. Rinn, J. Snoep,
W. Müller, and C. Goble. FAIRDOM: Reproducible Systems Biology
through FAIR Asset Management. In Reproducibility, Standards and
SOP in Bioinformatics: Combined CHARME – EMBnet and NETTAB
Workshop, 2016.

[19] V. Stodden. Reproducible research: tools and strategies for scientific
computing. Computing in Science and Engineering, 14:11–12, 2012.

[20] V. Stodden, P. Guo, and Z. Ma. Toward reproducible computational
research: an empirical analysis of data and code policy adoption by
journals. PLOS ONE, 8(6):e67111, June 2013.

[21] V. Stodden, F. Leisch, and R. D. Peng. Implementing Reproducible
Research. CRC Press, Apr. 2014.

[22] V. Stodden, M. McNutt, D. H. Bailey, E. Deelman, Y. Gil, B. Hanson,
M. A. Heroux, J. P. Ioannidis, and M. Taufer. Enhancing reproducibility
for computational methods. Science, 354(6317):1240–1241, 2016.

[23] V. Stodden and S. Miguez. Best practices for computational science:
Software infrastructure and environments for reproducible and extensible
research. Journal of Open Research Software, 2, 2014.

[24] V. Stodden, S. Miguez, and J. Seiler. Researchcompendia.org: Cy-
berinfrastructure for reproducibility and collaboration in computational
science. Computing in Science and Engineering, 17(1):12–19, 2015.

[25] D. H. T. That, G. Fils, Z. Yuan, and T. Malik. Sciunits: Reusable research
objects. CoRR, abs/1707.05731, 2017.

[26] Z. Yuan, D. H. T. That, S. Kothari, G. Fils, and T. Malik. Utilizing
provenance in reusable research objects. Informatics, 5:14, 2018.



VIII. APPENDIX A

{
"createdBy": {

"@type": "schema:Person",
"schema:givenName": "Craig",
"@id": "willis8@illinois.edu",
"schema:email": "willis8@illinois.edu",
"schema:familyName": "Willis"

},
"schema:description": "Demonstration of how to use

Whole Tale to develop custom analysis and
visualization for data published externally via
DataONE. See https://wholetale.readthedocs.io/en/
stable/users_guide/quickstart.html for more
information.",

"@context": [
"https://w3id.org/bundle/context",
{

"schema": "http://schema.org/"
},
{

"Datasets": {
"@type": "@id"

}
}

],
"schema:author": [

{
"@type": "schema:Person",
"schema:givenName": "Craig",
"@id": "https://orcid.org/0000-0002-6148-7196",
"schema:familyName": "Willis"

}
],
"schema:version": 7,
"schema:identifier": "5cb4ffead9323600016c4d4c",
"schema:image": "http://use.yt/upload/dc1da723",
"Datasets": [

{
"@type": "Dataset",
"identifier": "doi:10.5065/D6862DM8",
"name": "Humans and Hydrology at High Latitudes

: Water Use Information",
"@id": "doi:10.5065/D6862DM8"

}
],
"createdOn": "2019-04-15 22:04:26.970000",
"schema:name": "Example Water Tale",
"schema:category": "Examples",
"aggregates": [

{
"uri": "../data/workspace/wt_quickstart.ipynb"

},
{

"uri": "../data/workspace/apt.txt"
},
{

"uri": "../data/workspace/requirements.txt"
},
{

"uri": "../data/workspace/postBuild"
},
{

"size": 1558016,
"schema:isPartOf": "doi:10.5065/D6862DM8",
"uri": "https://cn.dataone.org/cn/v2/resolve/

urn:uuid:62e1a8c5-406b-43f9-9234-1415277674
cb",

"bundledAs": {
"filename": "usco2000.xls",
"folder": "../data/data/"

}
},
{

"schema:license": "CC-BY-4.0",
"uri": "../data/LICENSE"

},
{

"@type": "schema:HowTo",
"uri": "../data/README.md"

}
],

"@id": "https://data.wholetale.org/api/v1/tale/5
cb4ffead9323600016c4d4c"

}


