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Abstract—Checkpointing is commonly adopted for enhancing
the performance of software applications that operate in the
presence of failures. Among the existing checkpointing strategies,
Application-level Checkpoint and Restart (ALCR) is considered
the most efficient, since it leaves smaller memory footprint, but it
requires significant development effort. Although existing ALCR
tools and libraries manage to reduce the effort required for
implementing the checkpoints, they do not provide recommen-
dations regarding their inter-checkpoint interval. To this end, in
the present paper, we develop a mathematical model to estimate
the optimum checkpoint interval, i.e., the interval between two
successive checkpoints that minimises the average execution time
of the application. The case of programs with loops and nested
loops is also discussed. The results are illustrated with several
numerical examples.

Index Terms—Cloud Computing, Software Reliability, Roll-
Back Recovery, Application Level Checkpoints, Optimum Check-
points, Program Loops

I. INTRODUCTION

Cloud and Fog Computing allows diverse software ap-
plications to run on complex interconnected systems where
reliability and security can be of significant concern. Major
failures in such systems occur [1], due to complex effects
between various factors including human decisions and sys-
temic interactions in the architecture, the software systems,
and network connections [2] and security failures [3]. A recent
report [4] states that “The main problems affecting the cloud
are insecure interface APIs, shared resources, data breaches,
malicious insiders, and misconfiguration issues” including
active adversarial mechanisms [5]. Clearly, Cloud providers
will do their best to improve the security and reliability of their
platforms. However, we also need methods that can limit the
average execution time of applications that run on the Cloud
and Fog despite the intermittent failures of the platforms. This
is particularly of interest for long-running applications or those
that are run frequently and repeatedly.

Application Level Checkpoint and Restart (ALCR) is widely
used to enhance the reliability of long-running programs [6]–
[8] by periodically saving a copy or checkpoint of the current
execution state of software. The most recent copy is then
used to restart program execution in case of failure. Originally
developed for transaction-oriented systems and databases [9]–
[13], it has been widely adopted to improve the reliability
of modern High Performance Computing (HPC) [14], [15]
software. Long intervals of time between checkpoints will
increase the overhead associated with system restart, while

short intervals will increase the overhead caused by the
checkpoints themselves. The checkpoint interval must then be
optimized so as to minimize a program’s expected execution
time in the presence of failures [16]–[18]. In [19], [20]
the impact of asynchronous checkpointing strategies on the
performance of distributed systems has been studied. Among
the existing checkpointing strategies, ALCR [6], [21] uses
a small memory footprint [7], [8], but requires significant
expertise for the selection of source code locations in which
checkpoints should be inserted. Yet existing ALCR tools and
libraries facilitate the insertion of checkpoints in long-running
loops since computational loops constitute a significant source
of failure-related re-executions [22], [23]. However such tools
do not provide a method to select the inter-checkpoint interval
which has a significant influence on the average execution time
of software.

In this paper, we propose that the inter-checkpoint intervals
in specific loops be selected optimally as a function of program
failure rate, the execution cost for establishing a checkpoint,
and the execution time related to restarting the program after
a failure, based on a mathematical model. We suggest that this
approach can be implemented as an API within an ALCR tool,
to select the optimum checkpoint interval in program loops.

In the sequel, Section II reviews earlier work. Section II-A
provides an example to help understand the ALCR mechanism
and its associated costs. Section III describes the mathematical
model and the numerical approach. The optimum checkpoint
interval is discussed in Section III-C. Section IV presents
numerical examples and Section V presents conclusions and
future research.

II. PRIOR WORK

If no fault tolerance scheme is adopted by a transaction-
oriented system, all previously executed transactions would
need to be re-executed in case of a failure. The Checkpoint
and Rollback/Recovery mechanism saves a secure and faith-
ful copy of the system state at predetermined instants (the
checkpoints) and in case of a failure, only the transactions
since the most recent checkpoint are re-executed [11]. Multiple
level checkpoints were introduced in [10], [16] to deal with
hierarchies of failures, and are also discussed in [24].

The selection of the optimum checkpoint interval (OCI)
between two successive checkpoints will maximize the overall
system or program availability [12], defined as the fraction
of time when the system is available for useful operations.



A badly chosen checkpoint interval results in high system
response times and long average execution times [25], [26].
Therefore, much research has focused on how system and
failure rate parameters affect its value [9], [13].

Software applications are also often hampered by failure-
provoking implementation issues [27]. Fault tolerance mech-
anisms are required to enhance their reliability [28], and
checkpointing is a useful solution [6], [14]. However, since
modern applications are considerably more complex than early
transaction-oriented systems [29], a periodic copy of their
overall execution state should be taken [22].

The problem of fault tolerance is more challenging in cloud-
based systems since the cloud computing architecture is highly
complex and dynamically growing [30], [31]. According to
a recent survey [32], among the traditional fault tolerance
mechanisms (e.g., [6], [29], [33]), Checkpoint and Restart
(CR) [6] is commonly used for implementing fault tolerance in
the Cloud. The CR mechanism is normally utilized in order to
restart applications in case of failures (e.g., [34], [35]), while it
is also used for migrating tasks and applications from one node
of the cloud to another (e.g., [36]) when special circumstances
impose it (e.g., node unavailability).

Mature CR tools and libraries exist both for single-process
software programs [37], and for multi-process long-running
applications (e.g., HPC applications) [23]. They are often
divided into [7]: (i) system-level CR [37], (ii) library-level
CR [38], and (iii) application-level CR (ALCR) [7]. ALCR
[7], [21] is considered the most efficient, since it leaves the
smallest memory footprint [7], [8], [22]; however it requires
manual source code modifications for introducing checkpoints
into the program.

Existing ALCR tools and libraries (e.g., [7], [8], [23], [39])
manage to reduce the manual effort required by the developers,
by (i) automatically identifying judicious locations in which
checkpoints should be inserted (in fact, long loops), and by (ii)
automating the insertion of the checkpoints into the identified
locations. However, their major shortcoming is that they do not

provide recommendations regarding the optimum checkpoint
interval, which is selected by the developers usually in an ar-
bitrary manner. Since the arbitrary selection of the checkpoint
interval may affect the performance of software applications,
in the present paper, we propose a mathematical model for
the calculation of the checkpoint interval that minimizes the
expected execution time of software applications.

A. Indicative Example

In this section, a real-world example is provided that
demonstrates how an actual ALCR library is used for adding
checkpoints in long-running loops of software applications.
This example, which is illustrated in Listing 1, is based on a
specific ALCR library called CRAFT [8]. Its main purpose is
to familiarize the reader with the technical details of the ALCR
mechanism and also to clarify why the arbitrary selection
of the inter-checkpoint interval could potentially affect the
execution time of a software application. As can be seen
by Listing 1, an important number of statements (marked
with red color) should be added to the program, in order to
insert a checkpoint in a long-running loop. These additional
statements are methods of a specific ALCR library, which
may execute computationally expensive operations behind the
scenes. For instance, the creation of a checkpoint (which corre-
sponds to the updateAndWrite() method in the given example)
usually requires multiple memory accesses, and therefore it
is expensive in terms of execution time [7], [8]. Thus the
execution time of checkpointing must be added to the overall
execution time of the software application. If failures are rare
occurrences and the cost of checkpointing is high, frequent
checkpoints will result in an average execution time of the
application that is higher than the same application which runs
without checkpoints. Hence, the checkpoint interval should
be optimally selected, in order to avoid the introduction of
execution time overhead.

#include <mpi.h>

int main(int argc, char* argv[]) {
int n=5, iteration=1;
double dbl = 0.0;
int * dataArr = new int[n];

for (; iteration <= 100; iteration++) {
// Computation-communication loop
modifyData(&dbl, dataArr);

}
return EXIT_SUCCESS;

}

#include <mpi.h>
#include <craft.h>
int main(int argc, char* argv[]) {

int n=5, iteration=1, cpFreq=10;
double dbl = 0.0;
int * dataArr = new int[n];
// ===== DEFINE CHECKPOINT ===== //
Checkpoint myCP("myCP", MPI_COMM_WORLD);
myCP.add("dbl", &dbl);
myCP.add("iteration", &iteration);
myCP.add("dataArr", &dataArr);
myCP.commit();
myCP.restartIfNeeded(&iteration);
for (; iteration <= 100; iteration++) {

// Computation-communication loop
modifyData(&dbl, dataArr);
myCP.updateAndWrite(iteration, cpFreq);

}
return EXIT_SUCCESS;

}

Listing 1: The additional code (marked with red color) that should be inserted for adding an application-level checkpoint in a
lengthy loop, using CRAFT (Adapted from [8]).



III. EXPECTED EXECUTION TIME OF A PROGRAM
WITHOUT AND WITH CHECKPOINTS

Consider a program P that executes a total of M instruc-
tions; it may contain loops so that M is the total number of
instructions it executes. Assume that when the execution starts,
there is an overhead associated with loading its data and code
into memory, which consumes A time units. If the program is
executed without any errors or failures, and if each instruction
is executed in c time units, then the total execution time for
P will be:

T (P ) = A+ cM. (1)

Now suppose that no failures or errors occur during the initial
and final durations A, B, however with probability g there
may be a failure in any one of the instructions. We assume
that the failure is detected after a delay which takes δ time
units.

A. Expected Execution Time Without Checkpoints

When a failure is detected, the program has to be re-
executed, and if the failures occur during further executions,
the execution may have to be repeated several times. Let τ(P )
denote the total execution time of the program, and let Eτ(P )
be its expected value. Then:

Eτ(P ) = (1− g)M (A+ c.M + δ)

+

M∑
u=1

(1− g)u−1g[A+ c.u+ δ + Eτ(P )], (2)

= A+ (1− g)Mc.M + δ + [1− (1− g)M ]Eτ(P )

+c[
1− (1− g)M

g
−M(1− g)M ], hence

Eτ(P ) =
A+ δ

(1− g)M
+ c.

1− (1− g)M

g(1− g)M
. (3)

If a failure occurs, this only becomes known after δ time
units, and the program has to be restarted and run again, so
that the time A+ c.u+ δ has been wasted. When there are no
failures we see from (3) that

Eτ(P ) = A+ δ +M, (4)

since:

lim
g→0

1− (1− g)M

g(1− g)M
=M. (5)

When g is very small so that gM << 1, we can use the
following approximation directly from (3):

Eτ(P ) ≈ A+ δ + c.M

1 − g.M
. (6)

B. Estimating the Failure Probability g

In order to use the above expressions, we will need (1 −
g)M the probability that no error or failure will occur during
the program’s execution, and the probability that at least one
failure occurs during the program’s execution is F = 1− (1−
g)M . Note that the notion of a failure,in this case, is that of any
event that stops the execution of the program and which arises

from the program’s execution environment, i.e. the platform.
If gM << 1 then F ≈ gM .

The value of g can be estimated as follows. Take a simple
linear code that executes M instructions, and then repeats
the execution, i.e., a single loop containing M sequential
instructions. This code should not contain any ALCR or other
checkpointing constructs.

1) Run the program repeatedly. Each time the program
returns to the first instruction, increment the counter
N ← N + 1.

2) If the program execution stops, increment a counter
NF ← NF + 1. Update g ≈ NF

N.M .
3) Then restart the program at its initial instruction and set

N ← N + 1.

C. Optimum Checkpoints

When the program must run for a long time, i.e. when M
is large of failure Mg cannot be neglected, checkpoints can
be placed at periodic intervals, say after K instructions are
executed, but they result in a cost B(K) in the amount of
time needed to create the checkpoint, since the status of the
program and all its data must be saved. B(K) may be an
increasing function of K when the data that the program has
modified during the interval of execution of K instructions
needs to be saved. Thus the program will now execute a total
of M instructions in successive blocks of b(M,K) = dMK e
instructions, all of which are of length K, except for the last
one of length Ko =M −K[dMK e − 1].

Applying the previous analysis, we compute the total aver-
age execution time of the program with checkpoints:

Ecpτ(P ) =
A+ δ

(1− g)K
+ c

1− (1− g)K

g(1− g)K
(7)

+ [b(M,K)− 2][
B(K) + δ

(1− g)K
+ c

1− (1− g)K

g(1− g)K
]

+
B(K) + δ

(1− g)Ko
+ c

1− (1− g)Ko

g(1− g)Ko
,

=
A+ δ

(1− g)K
+

[b(M,K)− 2][B(K) + δ]

(1− g)K

+ c
[b(M,K)− 1][1− (1− g)K ]

g(1− g)K

+
B(K) + δ

(1− g)Ko
+ c

1− (1− g)Ko

g(1− g)Ko
.

Therefore optimum checkpoint interval K∗ is the value of K
that minimizes Ecpτ(P ), which can be computed numerically
from (7).

In order to better illustrate the benefit of the ALCR we also
define the percentage Gain:

Gain =
Eτ(P )− Ecpτ(P )

Eτ(P )
× 100, (8)

where Eτ(P ) is the expected execution time of the program
(or software application) P when ALCR is not used.



D. Program with a Long Loop

Suppose that a program contains a single loop with L
instructions that is executed repeatedly n times so that the
program executes M = n.L instructions. If a checkpoint
is inserted for each I loops so that the block of executed
instructions between checkpoints is of length K = I.L, then
a total of b(nL, IL) = dnI e − 1 checkpoints are placed, since
the start of the loop will in itself require a checkpoint. From
equation (9) with M = n.L and K = I.L we have:

Ecpτ(P ) =
[b(M,K)− 1][B(K) + δ]

(1− g)K
(9)

+c
[b(M,K)− 1][1− (1− g)K ]

g(1− g)K
+
B(K) + δ

(1− g)Ko

+c
1− (1− g)Ko

g(1− g)Ko
.

If the number of instructions that are executed during a single
loop iteration is L, the optimum number of iterations between
two successive checkpoints is I∗ = K∗

L .
Nested Loops: Suppose that we identify, either manually or

using an ALCR library, that the best location for adding check-
points is a loop that contains one or more internal loops. These
internal loops can be treated in a black-box manner as normal
statements (e.g., method calls), which require the execution of
a number of instructions. The number of instructions executed
in the internal loops can be used to calculate the values of L
and M of the selected outer loop yielding the optimum number
of loop iterations between checkpoints I∗.

IV. NUMERICAL EXAMPLES

In this section, a set of numerical examples illustrate the
effect of the checkpoint interval K on the expected execution
time of a software application. In Figure 1, the case of a
software application with a relatively small loop having M =
1000 is presented. The upper part of Figure 1 compares the
expected execution time of the application with and without
the ALCR mechanism for different values of K, and the lower
part shows the expected Gain of Section III-C for different
values of K. The values that correspond to the optimum
checkpoint interval K∗ are marked within a rectangle. Figure
1 illustrates the fact that the optimum checkpoint interval K∗

minimizes the overall execution time of the application and
maximizes the overall expected Gain. Therefore, the ALCR
mechanism will not reduce the expected execution time of a
given software application unless the checkpoint interval is
optimally selected. Indeed, for some poorly chosen values
of K, the expected execution time of the application with
checkpointing is higher than the expected execution time of
the same application without checkpoints. Similar observations
can be made for software with longer loops in Figures 2, 3 and
4. This emphasizes the importance of setting K to be close or
at K∗.

The examples of Figures 1, 2, 3 and 4 show that a significant
reduction in the execution time of a software application
can be achieved by the ALCR mechanism, if the checkpoint

Fig. 1: Comparison of the expected execution time (above),
and the Gain in the expected execution time (below), plotted
versus the value of K, for a software application having a
small computational loop with M = 1000.

interval is selected to be at, or close to, the optimum K∗. In
these examples, the Gain ranges from 40% to 60%. However,
suboptimal values of the checkpoint interval will lead to a
smaller Gain or even to an average execution time which is
larger than when ALCR is not used. Indeed, the checkpoint
interval should not be selected arbitrarily and must be tuned
to a value at, or close to, the optimum K∗.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a method for determining the
checkpoint intervals in ALCR for software applications that
contain long-running loops, and which run on platforms sub-
ject to failures. We have shown that the optimum checkpoint
interval which minimizes the expected execution time of the
program, depends on various parameters which can be incor-
porated into a single numerical expression. The expression
can then be used to compute the optimum checkpoint interval
for each individual loop in the program. The approach can
be used through a set of MATLAB scripts that calculate the
optimum checkpoint interval of different computational loops.
Our results were illustrated via a set of numerical examples.



Fig. 2: Comparison of the expected execution time (above),
and the Gain in the expected execution time (below), plotted
versus the value of K, for a software application having a
medium length computational loop with M = 104.

Several directions for future work can be considered. Firstly,
energy consumption is a critical property that will be affected
by checkpointing, as well as by the re-execution of a program
in case of failure. Hence, further research is needed to see
how the checkpoint interval can be selected to achieve a com-
promise between energy consumption and execution times.
Secondly, an interesting topic would be to consider the effect
of the secondary medium. Since checkpointing will generally
increase the use of secondary memory, and secondary memory
related failures may increase with the amount of usage, a
platform where many applications use ALCR, may have a
failure rate which increases with usage and age. Thus a time
dependent value of the failure probability g will need to be
considered in this case. Finally, as far as security is concerned,
ALCR can be used to disrupt attackers (e.g., [40]), while it
can be also exploited by malicious individuals to increase the
workload of the system, potentially leading to a form of Denial
of Service through workload saturation. Thus the interaction
of ALCR and checkpointing in general, and security, is also
a worthwhile subject of investigation.

Fig. 3: Comparison of the expected execution time (above),
and the Gain in the expected execution time (below), plotted
versus the value of K, for a software application with a large
computational loop having M = 105.
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