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Abstract—Checkpoints are widely used to improve the per-
formance of computer systems and programs in the presence of
failures, and significantly reduce the cost of restarting a program
each time that it fails. Application level checkpointing has been
proposed for programs which may execute on platforms which
are prone to failures, and also to reduce the execution time of
programs which are prone to internal failures. Thus we propose
a mathematical model to estimate the average execution time of a
program that operates in the presence of dependability failures,
without and with application level checkpointing, and use it to
estimate the optimum interval in number of instructions executed
between successive checkpoints. Specific emphasis is given on
programs with loops, whereas the results are illustrated through
simulation.
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I. INTRODUCTION

Reliability is an important requirement for modern software
applications, especially for long-running applications that have
to run frequently and repeatedly. In such applications, a single
failure may lead to the re-execution of a non-trivial number of
operations, leading to significant performance overheads. This
is more eminent in embedded software applications, which
are often long-running, while they run on environments that
are characterized by restricted resources (e.g., computational
power). In such systems, failures may occur due to complex
effects between various factors including system interactions,
network connection, software and hardware defects, and secu-
rity failures [1], [2]. Therefore, there is a need for mechanisms
able to enhance the reliability of software applications, main-
taining at same time their performance.

To address this issue, several fault tolerance mechanisms
have been proposed over the years [3]–[6]. In the present
paper, we specifically investigate the Application Level Check-
point and Restart (ALCR), which is widely used to enhance
the reliability of long-running programs [6]–[8] by periodically
saving a checkpoint (i.e., a copy) of the current execution state
of software. The most recent checkpoint is then used to restart
program execution in case of failure. Originally developed
for transaction-oriented systems and databases [9]–[13], it has
been widely adopted to improve the reliability of modern High
Performance Computing (HPC) [14], [15] software.

Long intervals of time between checkpoints will increase
the overhead associated with system restart, while short in-
tervals will increase the overhead caused by the checkpoints
themselves. The checkpoint interval must then be optimized
so as to minimize a program’s expected execution time in
the presence of failures [16]–[18]. Among the existing check-
pointing strategies, ALCR [6], [19] is prefered since it uses
a small memory footprint [7], [8], but it requires significant
expertise for the selection of source code locations in which
checkpoints should be inserted. Yet existing ALCR tools and
libraries facilitate the insertion of checkpoints in judicious
source code locations, which are normally long-running loops
since computational loops constitute a significant source of
failure-related re-executions [20], [21]. However, such tools
do not provide a method to select the inter-checkpoint interval
which has a significant impact on the average execution time
of software.

In this paper, we propose that the inter-checkpoint intervals
in specific loop be selected optimally as a function of program
failure rate, the execution cost for establishing a checkpoint,
and the execution time related to restarting the program after
a failure, based on a mathematical model. We suggest that
this approach can be implemented as an API within a broader
platform (i.e., the SDK4ED platform presented in Section III),
to help developers select the optimum checkpoint interval of
program loops.

The rest of the paper is structured as follows. In Section II
we review previous work. In Section III we give the overview
of proposed method in the context of SDK4ED project. Section
IV described mathematical model and numerical approach.
The optimum checkpoint interval is discussed in Section
IV-B. Section V presents numerical examples and Section VI
presents conclusions and future research.

II. RELATED WORK

In transaction-oriented systems, if no fault tolerance mech-
anism is adopted, all the successfully completed transactions
will need to be re-processed in case of a failure. The Check-
point and Rollback/Recovery mechanism saves a secure and
faithful copy of the system state at predetermined instants
(the checkpoints). Moreover, in transaction-oriented systems,
an “audit trail” is also kept, which contains the sequence
of transactions that were executed since the most recent



checkpoint. In case of a failure, only the transactions that were
saved in the audit trail since the most recent checkpoint are
re-executed [11]. Authors in [10], [16], [22] deal with the
hierarchies failures by using multiple level checkpoints.

The system availability, which is defined as the fraction
of time when the system is available for useful operations,
is maximized when the optimum checkpoint interval between
two successive checkpoints is selected [12]. A badly chosen
checkpoint interval results in high system response times and
long average execution times [23], [24]. Therefore, much
research has focused on how system and failure rate pa-
rameters affect its value [9], [13]. Apart from transactions-
oriented systems, in [25], [26] the impact of asynchronous
checkpointing strategies on the performance of distributed
systems has been studied.

Software applications are also often hampered by failure-
provoking implementation issues [27]. Fault tolerance mech-
anisms are required to enhance their reliability [28], [29],
and checkpointing is a useful solution [6], [14]. However,
modern applications are considerably more complex than early
transaction-oriented systems [3]. Therefore, a periodic copy
of their overall execution state should be taken, in order to
enhance their reliability [20].

Several rollback/recovery-based mechanisms for enhancing
the reliability of long-running software applications exist,
including: (i) Recovery Block schemes [3], (ii) N-Version
Programming [4], [5], and (iii) the Checkpoint and Restart
(CR) mechanism [6]. Despite their benefits, NVP and RB
approaches are characterized by high development costs [30],
which restricts their adoption to safety or reliability critical
applications [31]. Despite attempts in addressing some draw-
backs [28], [29], [31]–[33], their associated costs are still high.

CR mechanisms are generally preferred [6]–[8] since they
introduce significantly less overhead compared to other coun-
terparts [3], [4]. Mature CR tools and libraries exist for single-
process software programs [34]–[36], and current research
focuses chiefly on how to incorporate the CR mechanism in
long-running HPC applications by integrating the CR mech-
anism into libraries such as OpenMPI [14], [37], OpenCL
[15], OpenMP [20], [21], and CUDA [38]. They include
[7]: (i) system-level CR [35], (ii) library-level CR [39], and
(iii) application-level CR (ALCR) [7]. ALCR [7], [19] is
considered the most efficient, since it leaves the smallest
memory footprint [7], [8], [20], though it requires source code
modifications to insert application-level checkpoints into the
program, leading to higher development effort.

In [21] CPPC, an ALCR tool is presented to reduce the
manual effort required by the developers, by automatically
identifying judicious locations in which checkpoints can be
introduced (in fact, long-running loops) and inserting check-
points in the identified locations. In [20] an application-level
checkpointing solution for hybrid MPI-OpenMP applications
is suggested as an extension of CPPC. In [8] a library
(CRAFT) was proposed for incorporating the application-level
CR mechanism into software implemented in C++. Similarly
to CPPC [21], the proposed library reduces the development

time associated with the ALCR mechanism, by identifying
lengthy loops and the automatic insertion of application-level
checkpoints [40], [41]. In [7] a tool named ITALC is proposed
to assist developers to semi-automatically re-engineer software
by introducing application-level checkpoints in automatically
identified hotspots.

One shortcoming of existing ALCR tools and libraries
is that they do not provide recommendations regarding the
optimum checkpoint interval. To this end, we provide a numer-
ical approach for the calculation of the optimum checkpoint
interval of long-running loops, that minimizes the expected
execution time of software applications. The proposed method
can be used along with the existing ALCR libraries, in order
to enhance the performance of software applications.

III. SDK4ED OPTIMUM CHECKPOINT RECOMMENDATION

The work presented in the present paper is part of the EU-
funded H2020 SDK4ED1 project (Fig. III). The purpose of
the SDK4ED project is to develop a platform that will enable
the production of software products optimized with respect to
important quality attributes with specific emphasis on Main-
tainability2, Energy Consumption, and Dependability. In order
to achieve this, the platform will focus on the identification
of trade-offs between the aforementioned quality attributes
and to the recommendation of source code transformations
for quality enhancement. The envisaged platform, through its
recommendations, is expected to facilitate developers optimize
their code by achieving a satisfactory compromise between
these often conflicting quality factors.

Fig. 1. The high-level overview of the envisaged SDK4ED Toolkit platform.

1https://sdk4ed.eu/
2It should be noted that Maintainability is quantified by the platform using the notion

of Technical Debt (TD) [42], which is a widely-used measure of Software Quality and
especially of Software Maintainability.



The purpose of the Dependability Optimization Toolbox of
the SDK4ED platform (see Fig. III) is to provide recommen-
dations that will help developers optimize the Dependability
of software products. Emphasis is given on the attributes
of Reliability and Security, which are fundamental facets of
Dependability according to Avizenis [43]. With respect to
Reliability, emphasis is given on enhancing the reliability
of software applications using fault tolerance mechanisms,
without affecting important runtime qualities like performance
and energy consumption.

As already discussed, among the existing fault tolerance
mechanisms, ALCR is the most efficient, but it requires
significant development effort for the actual implementation
of the checkpoints. It also requires expertise for the selec-
tion of the locations in which the checkpoints should be
inserted and of their inter-checkpoint interval. To this end,
the purpose of the Dependability Optimization Toolbox is to
recommend: (i) the most suitable source code locations in
which checkpoints should be inserted, and (ii) the optimum
value of the inter-checkpoint interval that achieves a sufficient
compromise between important quality attributes like perfor-
mance and energy consumption. The work presented in the
present paper contributes towards the latter, since it proposes
a mathematical model that determines the optimum checkpoint
interval, i.e., the interval between two successive application-
level checkpoints that minimizes the average execution time
of an application.

IV. EXPECTED EXECUTION TIME OF A PROGRAM
WITHOUT AND WITH CHECKPOINTS

Consider a program P that executes a total of M instruc-
tions; it may contain loops so that M is the total number of
instructions it executes. Assume that when the execution starts,
there is an overhead associated with loading its data and code
into memory, which consumes A time units. If the program is
executed without any errors or failures, and if each instruction
is executed in c time units, then the total execution time for
P will be:

T (P ) = A+ cM. (1)

Now suppose that no failures or errors occur during the initial
and final durations A, B, however with probability g there
may be a failure in any one of the instructions. We assume
that the failure is detected after a delay which takes δ time
units.

A. Expected Execution Time Without Checkpoints

When a failure is detected, the program has to be re-
executed, and if the failures occur during further executions,
the execution may have to be repeated several times. Let τ(P )
denote the total execution time of the program, and let Eτ(P )
be its expected value. Then:

Eτ(P ) =
A+ δ

(1− g)M
+ c.

1− (1− g)M

g(1− g)M
. (2)

If a failure occurs at instruction u, this only becomes known
after δ time units, the program has to be restarted and run

again, so that the time A + c.u + δ has been wasted. When
there are no failures we see from (2) that

Eτ(P ) = A+ δ +M, (3)

since:

lim
g→0

1− (1− g)M

g(1− g)M
=M. (4)

When g is very small so that gM << 1, we can use the
following approximation directly from (2):

Eτ(P ) ≈ A+ δ + c.M

1 − g.M
. (5)

B. Optimum Checkpoints

When the program must run for a long time, i.e. M is
large, and the probability of failure g cannot be neglected,
checkpoints can be placed at periodic intervals, say after K
instructions are executed, but they result in a cost B(K) in
the amount of time needed to create the checkpoint, since the
status of the program and all its data must be saved. B(K) may
be an increasing function of K when the data that the program
has modified during the interval of execution of K instructions
needs to be saved. Thus the program will now execute a total
of M instructions in successive blocks of b(M,K) = dMK e
instructions, all of which are of length K, except for the last
one of length Ko =M −K[dMK e − 1].

Applying the previous analysis, we compute the total aver-
age execution time of the program with checkpoints:

Ecpτ(P ) =
A+ δ

(1− g)K
+

[b(M,K)− 2][B(K) + δ]

(1− g)K

+ c
[b(M,K)− 1][1− (1− g)K ]

g(1− g)K
(6)

+
B(K) + δ

(1− g)Ko
+ c

1− (1− g)Ko

g(1− g)Ko
.

Therefore optimum checkpoint interval K∗ is the value of K
that minimizes Ecpτ(P ), which can be computed numerically
from (6).

In order to better illustrate the benefit of the ALCR we also
define the percentage Gain:

Gain =
Eτ(P )− Ecpτ(P )

Eτ(P )
× 100, (7)

where Eτ(P ) is the expected execution time of the program
(or software application) P when ALCR is not used.

C. Program with a Long Loop

Suppose that a program contains a single loop with L
instructions that is executed repeatedly n times so that the
program executes M = n.L instructions. If a checkpoint
is inserted for each I loops so that the block of executed
instructions between checkpoints is of length K = I.L, then
a total of b(nL, IL) = dnI e − 1 checkpoints are placed, since



the start of the loop will in itself require a checkpoint. From
equation (8) with M = n.L and K = I.L we have:

Ecpτ(P ) =
[b(M,K)− 1][B(K) + δ]

(1− g)K
(8)

+c
[b(M,K)− 1][1− (1− g)K ]

g(1− g)K
+
B(K) + δ

(1− g)Ko

+c
1− (1− g)Ko

g(1− g)Ko
.

If the number of instructions that are executed during a single
loop iteration is L, the optimum number of iterations between
two successive checkpoints is I∗ = K∗

L .
Nested Loops: Suppose that we identify, either manually or

using an ALCR library, that the best location for adding check-
points is a loop that contains one or more internal loops. These
internal loops can be treated in a black-box manner as normal
statements (e.g. method calls), which require the execution of
a number of instructions. The number of instructions executed
in the internal loops can be used to calculate the values of L
and M of the selected outer loop yielding the optimum number
of loop iterations between checkpoints I∗.

V. NUMERICAL EXAMPLE

In this section, a numerical example is used to illustrate the
effect of the checkpoint interval K on the expected execution
time of a software application. In Figure 2, the case of
a software application with a loop having M = 1000 is
presented. This value was selected for demonstration purposes
since it led to more intuitive results. For the failure rate,
for the purposes of the present experiment we considered
g = 10−3, which is a relatively high failure probability. The
upper part of Figure 2 compares the expected execution time
of the application with and without the ALCR mechanism
for different values of K, and the lower part shows the
expected Gain of Section IV-B for different values of K.
The values that correspond to the optimum checkpoint interval
K∗ are marked within a rectangle. Figure 2 illustrates the
fact that the optimum checkpoint interval K∗ minimizes the
overall execution time of the application and maximizes the
overall expected Gain. Therefore, the ALCR mechanism will
not reduce the expected execution time of a given software
application unless the checkpoint interval is optimally selected.
Indeed, suboptimal values of the checkpoint interval K may
lead to a suboptimal reduction in the expected execution time
of the application, whereas there are also values of K that lead
to an execution time higher than the expected execution time
of the same application that does not adopt checkpointing.
This emphasizes the importance of setting K to be close or
at K∗.

The example of Figure 2 suggests that a significant reduc-
tion in the execution time of a software application can be
achieved by the ALCR mechanism, if the checkpoint interval
is selected to be at, or close to, the optimum K∗. In this
example, the Gain is approximately 40%. However, suboptimal
values of the checkpoint interval will lead to a smaller Gain or
even to an average execution time which is larger than when

Fig. 2. Comparison of the expected execution time (above), and the Gain
in the expected execution time (below), plotted versus the value of K, for a
software application having a computational loop.

ALCR is not used. Indeed, the checkpoint interval should not
be selected arbitrarily and must be tuned to a value at, or close
to, the optimum K∗.

VI. CONCLUSIONS AND FUTURE WORK

This paper has proposed a method for setting the checkpoint
intervals in ALCR for software applications which contain
long-running loops, and which run on platforms that are sub-
ject to failures. We have shown that the optimum checkpoint
interval, i.e., the interval between two successive checkpoints
that minimizes the expected execution time of the program,
depends on various parameters which can be incorporated into
a single numerical expression. These parameters include: (i)
the program failure rate, (ii) the execution cost for establishing
a checkpoint, and (iii) the execution cost for restarting a
program after a failure. The produced expression can then
be used as part of an ALCR tool to compute the optimum
checkpoint interval for each individual loop in the program.
The approach can be used through a set of MATLAB scripts
that calculate the optimum checkpoint interval of different
computational loops.



Several directions for future work can be considered. Energy
consumption is a critical property that will be affected by
checkpointing, as well as by the re-execution of a program
in case of failure. Thus in recent work [44], checkpointing
was considered from the perspective of its effect on energy
consumption. Further research is needed to see how the
checkpoint interval can be selected to achieve a compromise
between energy consumption and execution times. The issue
can become quite intricate if we consider the effect of the sec-
ondary memory medium. Since checkpointing will generally
increase the use of secondary memory, and secondary memory
related failures may increase with the amount of usage, a
platform where many applications use ALCR, may have a
failure rate which increases with usage and age. Thus a time
dependent value of the failure probability g will need to be
considered in this case. Furthermore, with rotating secondary
memories and some other devices, the use of ALCR will
also increase energy consumption. These are all questions that
require further research.

Another interesting area of investigation is the use of ALCR
to restart applications after attacks. Indeed, ALCR could per-
haps be used to disrupt the attacker, but in turn attackers may
exploit ALCR to create an increase in workload in a system,
leading to a form of Denial of Service through workload
saturation. Thus the interaction of ALCR and checkpointing
in general, and security, is also a worthwhile subject of
investigation.

The majority of the above mentioned points will be exam-
ined in the next steps of the SDK4ED project. More specifi-
cally, emphasis will be given on the applicability and the actual
implementation of the theoretical approach that is presented
in this paper. The platform will potentially manage to identify
long loops that require checkpointing and to recommend the
optimum inter-checkpoint interval that optimizes important
quality attributes like performance (i.e., execution time) and
energy consumption.
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