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Abstract—Mitigating software vulnerabilities typically requires
source code refactorings for implementing necessary security
mechanisms. These mechanisms, although they enhance software
security, they usually execute a large number of instructions,
adding a performance/energy penalty to the overall applica-
tion. Conversely, source code transformations are extensively
performed by developers in order to improve the runtime quality
of applications, in terms of performance and energy efficiency.
These transformations may indirectly affect software security,
since they may lead to the introduction of new security issues. In
this work, we empirically examine the impact of source code-level
energy/performance optimizations on software security and vice
versa. The preliminary results of the empirical study suggest
that the energy-related transformations may indirectly affect
software security, whereas the incremental addition of security
mechanisms may lead to an important increase in the energy
consumption of software applications.

Keywords—software security, energy consumption, performance,
trade offs

I. INTRODUCTION

Software security is an aspect of major concern for software
applications since the exploitation of a single vulnerability
may lead to far-reaching consequences [1]. Most of the soft-
ware vulnerabilities stem from a small number of common
programming errors [2]–[4]. In order to mitigate these errors
and protect software applications against critical vulnerabili-
ties, appropriate security mechanisms should be implemented.
However, this necessitates source code transformations (i.e.,
refactorings), which may negatively affect important runtime
attributes like performance and energy consumption. This
overhead may be important for applications running on plat-
forms that are characterized by restricted energy capacity and
computational power, such as embedded systems.

Nowadays there is a large variety of heterogeneous embed-
ded computing architectures that promise to offer increased
computing capabilities. However, energy consumption is a
very critical parameter for embedded systems. As a result,
from the embedded software perspective, a plethora of tech-
niques and tools are used in order to efficiently exploit the
characteristics of heterogeneous architectures and resources.
At the source code level, transformations are performed in
order to improve the memory utilization [5], to increase

performance, to eliminate system calls or to accelerate the
application utilizing the heterogeneity in a proper way to build
accelerators [6]. These transformations may have an important
impact on software security, a fact that can not be neglected
in order to build secure and reliable applications.

In the present paper, we empirically investigate the inter-
relationships between software security and energy consump-
tion. More specifically, we examine whether source-to-source
transformations performed for improving software security
(i.e., for mitigating existing vulnerabilities) may affect the en-
ergy consumption of software applications, as well as whether
transformations applied for improving energy consumption
may influence software security.

For this purpose, a set of security and energy source
code optimizations (i.e., transformations) are applied on a set
of software applications retrieved from popular benchmarks.
Subsequently, the energy consumption and the security level
of the transformed applications are measured using popular
tools. The outputs of these tools are used to reach interesting
conclusions about the relationships between these two quality
attributes. To the best of our knowledge, this is the first
study that investigates the interdependencies between software
security and energy consumption at the source code level.

The rest of the paper is structured as follows. Section II
discusses how the present work advances the current literature,
whereas in Section III a set of typical source-to-source trans-
formations for improving energy consumption and software
security are presented. Section IV provides a description of the
conducted experiments, along with a discussion of their main
results. Finally, Section V summarizes the work conducted and
concludes the paper.

II. RELATED WORK

The inter-relationships between different quality attributes
(i.e., non-functional requirements) is an interesting topic in
the software engineering literature. However, design-time and
runtime quality attributes are normally studied separately. For
instance, a large number of research endeavors can be found
in the related literature focusing on the interdependencies
between the performance, the energy consumption, and the re-
liability of software applications [7], which are typical runtime



qualities. Similarly, the inter-relationships between design-
time qualities, such as Software Security and Maintainability
have been individually studied. For example, in a recent study
[8], the relationship between Technical Debt [9], which is
a measure of software quality, and Software Security was
empirically evaluated.

To the best of our knowledge, there are only a few known
studies that investigate the relationship between runtime and
design-time qualities such as [10], [11] and [12], that em-
phasize most on Maintainability and Energy Consumption.
More specifically, in [12], the authors empirically evaluated
the impact that energy-related transformations may have on
the Technical Debt of software applications, and conversely
the effect that code refactorings for quality improvement
may have on energy consumption. Similarly, in the present
paper the impact of energy-related transformations on software
security, as well as the energy consequences of security-related
transformations are empirically examined.

In fact, several studies have investigated the impact of
security mechanisms on the energy consumption of software
applications. However, existing studies are limited on the
energy consumption of individual encryption algorithms [13]–
[15], or of broader security protocols [16]–[18], without fo-
cusing on the impact that actual security-relevant source code
transformations for mitigating common vulnerabilities may
have on the energy consumption of software applications. In
addition, no research endeavors can be found focusing on the
impact that energy-related transformations may have on the
security of software applications.

To the best of our knowledge, this is the first study that
specifically investigates the inter-relationships between the
runtime attribute of energy consumption and the design-time
attribute of software security. It should be noted that in the
present study we emphasize on Software Security, which is a
design-time quality attribute, and not on the runtime security,
which is often termed Application Security [2].

III. TRANSFORMATIONS FOR ENERGY AND SECURITY
IMPROVEMENT

The work presented in the present paper is part of the
EU-funded H2020 SDK4ED1 project (Fig. 1). The purpose
of the SDK4ED project is to develop a platform that will
enable the identification of trade-offs among important design-
time and runtime software quality attributes, with emphasis on
Maintainability, Security, Reliability, and Energy Consump-
tion. The envisaged platform, through its recommendations, is
expected to facilitate developers optimize their code by achiev-
ing a satisfactory compromise between these often conflicting
quality criteria. In the present section, we present a set of
indicative source-to-source transformations for reducing the
energy consumption of software application, as well as a set
of typical security mechanisms that should be implemented in
the source code for enhancing the protection against common
vulnerabilities.

1https://sdk4ed.eu/

Fig. 1: The high-level overview of the envisaged SDK4ED Toolkit platform.

A. Security Transformations

As already mentioned, software vulnerabilities are normally
software bugs with security implications [19]. In Table I we
present some indicative examples of common vulnerabilities,
along with the source code transformations that are required
for their mitigation. It should be noted that emphasis is given
on the most popular vulnerabilities, as reported by the OWASP
Top 102 and CWE/SANS Top 253 lists of security risks. The
Common Weakness Enumeration (CWE) IDs of each one of
the presented vulnerabilities are also provided in order to
help the reader find more detailed information. CWE4 is a
dictionary of common weaknesses that can lead to important
vulnerabilities.

The first vulnerability presented in Table I is OS Com-
mand Injection. This vulnerability arises when the software
product constructs an OS command using user-defined (i.e.,
tainted) inputs, without proper validation or neutralization.
This could allow attackers to execute unexpected and dan-
gerous commands directly on the operating system. In the
given example, the p variable receives user-defined data from
a user request, and these data are directly used for executing
a command. In order to mitigate this issue, the user-defined
input should be checked for illegal characters (i.e., input
validation), and in case that illegal characters are present, it
should be sanitized by removing these illegal characters (i.e.,
input sanitization/neutralization). In addition, instead of string
concatenation, the final command should be constructed by
using a special method (i.e., parameterization). Alternatively,
the command and the data could be passed as individual

2https://www.owasp.org/index.php/Category:OWASP Top Ten Project
3http://cwe.mitre.org/top25/
4https://cwe.mitre.org/



parameters to a ProcessBuilder object instead of using the
Runtime.exec() method.

The second vulnerability is the Cross-site Scripting vul-
nerability. Similarly to OS Command Injection, this vulner-
ability arises when the software product does not neutralize
or incorrectly neutralizes user-supplied inputs before they are
placed in output that is used as a web page. This allows
attackers to potentially inject malicious scripts into otherwise
benign websites, which are then executed at the client side.
In the given example, the user-defined variable data is written
directly to an HTML response, without proper validation and
neutralization. This issue is avoided by properly neutralizing
the user-defined input by escaping (i.e., encoding) special
HTML characters before writing them to the HTML page.

The third vulnerability example is the Buffer Overflow
vulnerability, which is popular in unsafe programming lan-
guages like C and C++. This security issue arises when the
software application does not perform bounds checking and
allows input to write beyond the end of an allocated buffer,
overwriting in that way adjacent memory locations. These
locations may contain data or executable code, leading the
program to unexpected behavior including memory access
errors, incorrect results and crashes. In the given example,
the function fun() receives a parameter str and copies this
parameter to the buffer array, without checking their bounds,
potentially leading to an overflow. This issue is addressed
by properly checking the sizes of the two buffers before
performing the copy.

From the above examples it is clear that in order to mitigate
vulnerabilities source code transformations are required for
adding appropriate security mechanisms. These mechanisms
range from simple security-relevant checks to special methods
provided by security-relevant APIs (e.g., sanitization algo-
rithms, encoding methods, etc.). In all these cases, additional
source code is added to the application, which is expected to
have an impact on the performance and the energy consump-
tion of the applications. This is more eminent in the case of
library-specific methods, since they usually execute a large
number of instructions behind the scenes, adding execution
time and energy overheads to the overall application.

Another interesting observation is that in order to achieve
sufficient protection against specific vulnerabilities, multiple
security mechanisms should be inserted. For instance, in order
to achieve sufficient protection against the OS Command
Injection vulnerability, the mechanisms of input validation,
input sanitization, and parameterization could be applied in
conjunction. The incremental addition of security mechanisms
is expected to introduce additional overheads to the applica-
tion.

Although these observations are highly intuitive, they are
not supported in the literature by measurements on actual
applications. Hence, in the present paper, we attempt to
empirically evaluate the impact that the addition of security
mechanisms may have on the energy consumption of software
applications.

B. Energy Transformations

Performance and energy consumption are very critical pa-
rameters for modern embedded devices and consequently, a
large variety of methodologies and techniques have been pro-
posed in order to optimize them. Most of them require source
code transformations [20]. In this sub-section, we will try to
present a set of indicative source-to-source transformations for
reducing energy consumption and boosting performance. The
discussed transformations are summarized in Table II.

The first category of energy/performance optimization tech-
niques, at application level, aims to improve the memory
hierarchy utilization and/or to exploit the parallel processing
capabilities of multi-core embedded systems [5]. Since the
energy consumed by memory references depends on whether
the access hits or misses in the cache memory, we might
claim that the cache behaviour is very important for optimizing
energy/performance. Typical examples of these techniques are
the loop transformations that target to improve the cache
performance, through the data locality, as well as to expose
parallelism and to reduce the overhead of the loops, that are
usually very computationally expensive parts of an application.
Furthermore, due to the fact that each memory access has
a cost in terms of energy and performance, this kind of
transformations aims also to improve the memory utilization
and to reduce memory allocation and memory accesses. A
simple example is to avoid the unnecessary reassignment of
variables. Considering the case that this variable is an array,
their impact may be significant. Another typical example of
these methods is to switch from dynamic memory allocation
to static and vice versa. On the one hand, static memory
allocation increases memory requirements. However, in some
cases, performance is expected to improve, due to the fact that
dynamic memory allocations impose overhead. On the other
hand, if the memory requirements are high and taking into
account the limited resources of low-cost embedded systems,
no proper utilization of the static allocated memory could run
the risk of running out of memory.

A massive improvement of the performance and reduction
of energy consumption can be achieved by using accelera-
tors [21]. Nowadays, a plethora of heterogeneous embedded
computing architectures provides increased performance at
constrained energy consumption. A complementary infras-
tructure, which is part of modern heterogeneous System-on-
Chip embedded devices usually includes both CPU and GPU
or CPU and FPGA. This kind of chips offers additional
computation capabilities and the possibility of performance
optimization, through offloading heavy parts of the application
to the GPU or FPGA. This is the second category of energy
transformations presented in this manuscript. Offloading parts
of an application on an accelerator cannot be considered
as a trivial task, due to the large number of source code
refactorings that has to be performed. Depending on the kind
of accelerator different tools and programming or hardware
description languages have to be used in a proper way. Table
II Category 3 presents two very simple examples of adding



TABLE I: Indicative source code transformations for mitigating common vulnerabilities.

Before After

Vulnerability 1: OS Command Injection
Impacts: Confidentiality, Integrity, Availability, Non-repudiation
Relevant CWE(s): CWE-78

. . .
S t r i n g p = r e q u e s t . g e t P a r a m e t e r ( ” param ” ) ;
Runtime r t = Runtime . ge tRun t ime ( ) ;
r t . exec ( ” cmd . exe / c echo ” + p ) ;
. . .

. . .
S t r i n g p = r e q u e s t . g e t P a r a m e t e r ( ” param ” ) ;

/ / I n p u t V a l i d a t i o n
i f ( p . c o n t a i n s I l l e g a l C h a r s ( ) ) {

/ / I n p u t S a n i t i z a t i o n / N e u t r a l i z a t i o n
S t r i n g p = S a n i t i z e I n p u t . r e p l a c e I l l e g a l C h a r s ( p ) ;

}

/ / P a r a m e t e r i z a t i o n
S t r i n g command = ”cmd . exe / c echo %s ” ;
command . f o r m a t (”% s ” , p ) ;

Runtime r t = Runtime . ge tRun t ime ( ) ;
r t . exec ( command ) ;
. . .

Potential Mitigation: Input Validation; Input Sanitization/Neutralization; Parameterization

Vulnerability 2: Cross-site Scripting (XSS)
Impacts: Confidentiality, Integrity, Availability, and Access Control
Relevant CWE(s): CWE-79, CWE-82, CWE-85, CWE-89, CWE-692

. . .
S t r i n g d a t a = r e q u e s t . g e t P a r a m e t e r ( ” param ” ) ;
i f ( d a t a != n u l l ) {

r e s p o n s e . g e t W r i t e r ( ) . p r i n t l n (”<br>” + d a t a ) ;
}
. . .

. . .
S t r i n g d a t a = r e q u e s t . g e t P a r a m e t e r ( ” param ” ) ;
i f ( d a t a != n u l l ) {

/ / I n p u t E s c a p i n g / Encoding
d a t a = S t r i n g E s c a p e U t i l s . e scapeHtml ( d a t a ) ;
r e s p o n s e . g e t W r i t e r ( ) . p r i n t l n (”<br>” + d a t a ) ;

}
. . .

Potential Mitigation: Input Escaping/Encoding

Vulnerability 3: Buffer Overflow
Impacts: Confidentiality, Integrity, and Availability
Relevant CWE(s): CWE-120, CWE-129, CWE-131

. . .
vo id fun ( c h a r ∗ s t r ) {

c h a r b u f f e r [ 1 0 ] ;
s t r c p y ( b u f f e r , s t r ) ;

}
. . .

. . .
vo id fun ( c h a r ∗ s t r ) {

c h a r b u f f e r [ 1 0 ] ;
/ / Bounds Checking
i f ( s i z e o f ( s t r ) <= s i z e o f ( b u f f e r ) ) {

s t r c p y ( b u f f e r , s t r ) ;
}

}
. . .

Potential Mitigation: Bounds Checking
Note: The above examples are written in Java and C/C++ programming languages. However, these snippets are modified for better illustration, and therefore they may not be directly
executable. They should be treated as pseudocodes.

vectors kernels in GPUs (CUDA and OpenCL). The whole
application needs to be transformed into a version that offers
the capability of running in parallel in order to be supported by
the kernels. The procedure written in these kernels is executed
in all the GPU threads. The required data need to be copied
from the host (CPU) to GPU and vice versa. As a result, a
large number of transformations in the source code need to be
performed.

From the above analysis and the examples presented in
Table II, it is obvious that the performance/energy-related
transformations do not seem to have a direct impact on soft-
ware security. More specifically, no vulnerabilities like those
presented in Section III-A seem to be directly introduced.
However, since code refactoring is required, security issues can

be indirectly introduced. In fact, code refactoring is considered
an important source of vulnerabilities, as several studies have
highlighted that modified code is more prone to security issues
[22]. Hence, an indirect impact of energy transformations on
software security is expected to be observed.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In the present section, the relationship between software
security and energy consumption is empirically evaluated. In
particular, we initially investigate the indirect impact that the
energy-relevant transformations may have on the security of
software applications. Subsequently, we examine the effect
that the implementation of common software security mech-
anisms may have on the energy consumption of the software



TABLE II: Indicative source code transformations for improving energy/performance

Before After

Category 1: Loop transformations and Memory Optimization
Potential optimizations: Better cache performance, data locality, exposing parallelism, loop CPU cycles reduction, memory accesses reduction
1a Loop Merge:

f o r ( i =0 ; i<N; i ++) {
/ / do some th ing . . .

}
f o r ( i =0 ; i<N; i ++) {

/ / do some th ing e l s e . . .
}

f o r ( i =0 ; i<N; i ++) {
/ / do some th ing . . .
/ / do some th ing e l s e . .

}

1b Loop Tiling:

f o r ( i =0 ; i<MAX; i ++) {
f o r ( j =0 ; j<MAX; j ++) {

A[ i ] [ j ] = A[ i ] [ j ] + B[ i ] [ j ] ;
}

}

f o r ( i =0 ; i<MAX; i +=BLOCK SIZE ) {
f o r ( j =0 ; j<MAX; j +=BLOCK SIZE ) {

f o r ( i i = i ; i i <i +BLOCK SIZE ; i i ++) {
f o r ( j j = j ; j j <j +BLOCK SIZE ; j j ++) {

A[ i i ] [ j j ] = A[ i i ] [ j j ] + B[ i i ] [ j j ] ;
}

}
}

}
1c Loop Unrolling:

f o r ( i =0 ; i <100; i ++) {
A[ i ] = B[ i ] ;

}

f o r ( i =0 ; i <100; i +=4) {
A[ i ] = B[ i ] ;
A[ i +1] = B[ i + 1 ] ;
A[ i +2] = B[ i + 2 ] ;
A[ i +3] = B[ i + 3 ] ;

}
1d Unnecessary reassignment removal:

f o r ( i =0 ; i<N; i ++){
f o r ( j =0 ; j<N; j ++){

a = a r r [ i ] ;
. . .

}
}

f o r ( i =0 ; i<N; i ++){
a= a r r [ i ] ;
f o r ( j =0 ; j<N; j ++){

. . .
}

}
1e Dynamic to static allocation:

x =( i n t ∗ ) m a l lo c (10∗ s i z e o f ( i n t ) ) ;
i f ( x==NULL) {

/ / e r r o r message .
}
f r e e ( x ) ;

i n t x [ 1 0 ] ;

Category 2: Offloading on Accelerators of modern heterogeneous devices (e.g. GPUs)
Potential optimizations: A massive performance/energy improvement through the exploitation of the high parallel processing capabilities of accelerators
3a Simple OpenCL vector addition kernel example:

f o r ( i =0 ; i<N; i ++){
c [ i ] = a [ i ] + b [ i ] ;

}

k e r n e l vo id Add ( g l o b a l c o n s t f l o a t ∗a , g l o b a l
c o n s t f l o a t ∗b , g l o b a l f l o a t ∗c )
{

i n t i = g e t g l o b a l i d ( 0 ) ;
c [ i ] = a [ i ] + b [ i ] ;

}
3b Simple CUDA vector addition kernel example:

f o r ( i =0 ; i<N; i ++){
c [ i ] = a [ i ] + b [ i ] ;

}

g l o b a l vo id Add ( f l o a t ∗a , f l o a t ∗b , f l o a t ∗c )
{

i n t i = b l o c k I d x . x ∗ blockDim . x + t h r e a d I d x . x ;
c [ i ] = a [ i ] + b [ i ] ;

}

applications. In the following, a detailed discussion of the
experiments setup and their main results is provided.

A. Impact of Energy Transformations on Software Security

The purpose of the present experiment is to empirically
evaluate the indirect impact that the energy-related source-to-
source transformations may have on the security of software
applications. More specifically, we examine whether the trans-
formations that are performed on a set of software applications

for improving their energy consumption may affect their
security level and in which ways.

For the purposes of the present experiment, 17 applications
(i.e., benchmarks) were retrieved from the Rodinia Suite [23].
Rodinia is a popular benchmark suite that provides a set
of applications for the study of heterogeneous systems. The
benchmark provides publicly available programs in multiple
versions, coupled with sets of data. Each application has
different inherent architectural characteristics, that affect paral-
lelization, synchronization, data transfers, and communication



and as a result, the performance and power consumption.
Rodinia is a widely-used suite especially by researchers in
the field of embedded systems and it is considered as a
reliable benchmark for demonstrating, testing and presenting
research results and comparisons. Each Rodinia application
includes CPU and GPU versions of the same applications.
The GPU version exhibits remarkable speed-ups as well as
reduced energy consumption compared to the CPU versions.
For example, Fig. 2 presents the energy consumption of 5
Rodinia applications with significant savings. The energy was
measured in NVIDIA Jetson TX1 Module.
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Fig. 2: Energy consumption improvement for the GPU version of some
indicative benchmarks of the Rodina suite

In order to assess the security level of the selected ap-
plications the CppCheck5 static analysis tool was utilized.
CppCheck is a popular open-source static code analyzer that
is able to detect a large number of software bugs, including
security-related issues (i.e., potential vulnerabilities) in C/C++
software applications. The tool was properly configured in
order to search only for security-relevant issues, and partic-
ularly for Buffer Overflows, I/O Issues, String Issues, Null
Pointer Dereferences, Resource Handling Issues, and Excep-
tion Handling Issues. As an indicator of software security the
total number of potential vulnerabilities reported by CppCheck
was used. More specifically, the tool was employed to analyze
the 17 selected software applications before and after the
application of the energy-related source code transformations
(i.e., the CPU and GPU versions of the selected Rodinia
applications). The total number of potential vulnerabilities
detected by the tool are presented in Table III.

As can be seen by Table III, 13 applications have more
issues after the code transformations, two have exactly the
same number of issues, whereas there are also two applica-
tions (namely srad and streamcluster) that the energy-related
transformations lead to a reduction in their number of potential
vulnerabilities. Hence, we can observe that in the vast majority
of the studied applications the energy-related transformations
lead to an increase in the number of security issues reported
by the CppCheck tool.

In order to reach safer conclusions hypothesis testing
is applied. More specifically, the following null hypothesis
(along with its alternative hypothesis) is formulated and tested

5http://cppcheck.sourceforge.net/

TABLE III: The number of security-relevant issues (i.e., po-
tential vulnerabilities) of the applications provided by the Ro-
dinia suite, before and after the performance/energy-relevant
transformations (i.e., offloading to GPU), as reported by the
CppCheck static code analyzer.

Project Name Security Issues (before) Security Issues (after)
backprop 0 7
bfs 0 6
cfd 0 11
hearwall 3 8
hotspot 0 0
hotspot3D 0 7
kmeans 0 13
lavaMD 4 7
leukocyte 88 90
lud 12 13
myocyte 21 21
srad 18 6
streamcluster 24 20
nn 2 9
nw 0 1
particlefilter 0 14
pathfinder 0 2

at the 95% confidence interval (a = 0.05):

H0: No statistically significant difference is observed
between the number of security issues before and after
the energy-related transformations.

H1: A statistically significant difference is observed
between the number of security issues before and after
the energy-related transformations.

Since we have a repeated measures test, the paired t-test
was used. In order to apply the paired t-test, the differences
between the security scores of the applications presented in
Table III before and after the acceleration should follow a
normal distribution. After applying the Kolmogorov-Smirnov
Normality test, we reached the conclusion that the distribution
of the differences does not differ significantly from the normal
distribution, which means that the paired t-test could be
applied. The calculated p-value of the paired t-test was found
to be 0.02797, which is smaller than the threshold of 0.05. This
led us to the rejection of the null hypothesis, indicating that
a statistically significant difference exists between the number
of security issues that the applications contain before and after
the acceleration.

From the above analysis, we can conclude that the energy-
related transformations may have an indirect impact on soft-
ware security, since they may lead to the introduction of new
security issues. However, there are also cases in which the
number of security issues may be reduced after the accel-
eration. This situation normally arises when the acceleration
requires the removal of software components that happen to
be prone to security issues.



B. Impact of Security Transformations on Energy Consump-
tion

In the present section, we empirically evaluate the impact
that security-relevant source code transformations may have on
the energy consumption of software applications. More specif-
ically, we examine whether the additional mechanisms that
are incrementally added to a given application for enhancing
its protection against specific types of vulnerabilities affect its
overall energy consumption. A positive answer to this question
will provide empirical support to the intuitive observations that
were made in Section III-A, regarding the negative impact of
security mechanisms on energy consumption.

In the present experiment, emphasis is given on two specific
types of vulnerabilities, namely OS Command Injection and
Cross-site Scripting (XSS). Both vulnerabilities are caused
by not properly validating and neutralizing user-defined
inputs. The reasoning behind the selection of these two types
of vulnerabilities is that similar security mechanisms are
commonly used for their mitigation. In particular, in the
present work we focus on the following commonly applied
security mechanisms:

• Input Validation: The user-defined data are checked in
order to determine whether they contain illegal characters.

• Input Sanitization: The user-defined data are properly
sanitized (i.e., neutralized) by removing illegal characters.

• Input Encoding: The user-defined data (and/or com-
mand) are properly encoded before being executed in the
command line or added in an HTML page.

• Parameterization: String concatenation is avoided.

More information about the aforementioned types of vul-
nerabilities and their associated security mechanisms can be
found in Section III-A. At this point, it should be noted that
for the case of Input Encoding, the encoding features provided
by the OWASP’s ESAPI6 library were utilized.

For each one of these vulnerabilities two applications were
retrieved, one from the OWASP Benchmark7 and another one
from the Juliet Test suite [24], which are popular benchmarks
of Java programs with known vulnerabilities. In brief, these
applications receive user-defined data as input and they di-
rectly use these data (i) for constructing a command that
is executed on the command line (OS Command Injection
examples), and (ii) for constructing an HTML web page (XSS
examples). These four applications were used as the basis of
our experiment.

For the purposes of the experiment, the four applications
were modified by adding the aforementioned security mech-
anisms. More specifically, for each one of the four subject
applications, the security mechanisms presented in the above-
mentioned list were added in an incremental manner. After the
addition of each security mechanism, the energy consumption

6https://www.owasp.org/index.php/Category:OWASP Enterprise Security API#tab=
Home

7https://www.owasp.org/index.php/Benchmark

of the application was measured. The measurement was per-
formed (through a power monitoring sensor) on the ARMv8
ARM Cortex-A57 processor. Additional results regarding the
CPU cycles and memory accesses were measured using Linux
Perf: a hardware performance counter tool used in Linux
systems gathering information from the hardware 8. The results
of the analysis are presented in Fig. 3 and Fig. 4.
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Fig. 3: Impact of Input validation, Parameter Sanitization, Encoding and
Parameterization on Energy Consumption
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Parameterization on CPU cycles and memory accesses

As can be seen in Fig. 3, each one of the added security
mechanisms leads to an increase in the energy consumption
of the software applications. More specifically, we might
conclude that a higher energy overhead is added by the Input
Encoding check. This is clearly shown in Cross-site Scripting
example. Fig. 4 quantifies the average number of execution
cycles and memory accesses in order to perform each security
check. Taking into account these results, we conclude that the
Input Encoding overhead is occurred due to the fact that the
memory accesses, and consequently the CPU cycles increase
a lot in this step. In order to explain this increment, we have to
consider the fact that the encoding features are provided by the
ESAPI library. Both the library and the validation properties
are loaded from the memory. Based on the analysis depicted
in Fig. 3, we might also conclude that for the OS Command
Injection checks the Parameterization check has a larger effect
in energy consumption compared with the case of XSS. This
effect is caused by the utilization of the ProcessBuilder library.

From the above analysis, several observations can be made.
First of all, each security transformation (i.e., implemented

8https://perf.wiki.kernel.org/index.php/Tutorial



security mechanism) leads to an increase in the energy con-
sumption of the application. Secondly, although the individual
mechanisms seem to add small overhead, their incremental
addition leads to a significant increase in the overall energy
consumption of the application. In fact, the more the security
checks that are added (i.e., the stronger the protection of the
application against specific vulnerabilities) the higher its en-
ergy consumption. Hence, in order to achieve higher security,
the energy efficiency of the application should be sacrificed. In
platforms with restricted resources (e.g., embedded systems),
a trade-off between energy consumption and security could
be achieved by reducing the number of implemented security
mechanisms, so as to maintain the energy consumption/over-
head below a predefined threshold. Finally, the examples pre-
sented in this section exhibit a single vulnerability. However,
in a large real-world software application the same type of
vulnerability may exist in different source code locations.
Hence, the implementation of these mechanisms for each one
of the existing vulnerabilities are expected to further increase
the energy consumption of the broader application.

V. CONCLUSION

In the present paper we empirically evaluated the inter-
relationships between the runtime quality attribute of energy
consumption and the design-time attribute of software security.
In particular, we initially examined the impact that energy-
related source-to-source transformations may have on software
security and we discovered a statistically significant difference
between the number of security issues that the applications
contain before and after the energy optimization (in fact,
GPU acceleration). Furthermore, we investigated the impact
of security checks on energy consumption, concluding that
although each transformation seems to add a small energy
overhead, their incremental addition leads to a significant
increase in the overall energy consumption.

Several directions for future work can be identified. First
of all, a more elaborate empirical study will be conducted
in order to investigate the generalizability of the conclusions
reached by the present work. In addition, the broader in-
vestigation of the inter-relationships between design-time and
runtime quality attributes including Software Security, Energy
Consumption, and Maintainability is another interesting topic
that requires further investigation.
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