
The SDK4ED Approach to Software Quality Optimization and
Interplay Calculation

Marija Jankovic∗, Dionysios Kehagias∗, Miltiadis Siavvas∗, Dimitrios Tsoukalas∗, Alexander Chatzigeorgiou†,
∗ Centre for Research and Technology Hellas, Thessaloniki, Greece

† Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece
jankovicm@iti.gr, diok@iti.gr, siavvasm@iti.gr, tsoukj@iti.gr, achat@uom.gr

Abstract—While necessary for the successful embedded
software development and maintenance, software quality
optimization is a complex activity with immense issues. Various
design and run-time qualities should be continuously monitored
and optimized during the whole Software Development Life
Cycle (SDLC). Moreover, embedded software engineers and
developers need to manage complex interdependences, and
inherent trade-offs between design and run-time qualities. The
paper presents an innovative approach and integrated platform
to resolve these complexities. The proposed approach is a
result of the European research project SDK4ED (Software
Development Toolkit for Energy Optimization and Technical
Debt Elimination). The paper identifies existing challenges in the
domain of embedded software quality optimization and points
at the benefits of the new approach.

Keywords—quality optimization, embedded systems, technical
debt, energy efficiency, dependability

I. INTRODUCTION

The software engineering research has been focused on the
improvement of software quality in various phases of Software
Development Life Cycle (SDLC), from requirements specifica-
tion to final integration and testing activities [1], [2]. However,
to ensure software quality in today’s sophisticated IoT-based
platforms, which often include various embedded devices, is
still challenging. Embedded system applications should satisfy
strict run-time constraints, such as energy efficiency, perfor-
mance, and reliability. As most of the embedded devices are
battery dependent, the need for ultra-low power consumption
is of supreme importance. To reduce the embedded system
power consumption, various techniques at both hardware and
system level should be combined.

Investment in the embedded software quality is gaining
more interest, as the hardware limitations are usually more
challenging and costlier to implement. Moreover, the life-time
expectancy of embedded systems is continuously increasing,
and brownfield systems should be maintained in parallel with
the design and implementation of the greenfield ones. As a
consequence, maintenance is characterized as one of the most
time and cost demanding activities in the SDLC [3]. Still, most
of the embedded software companies trade design-time quality
to shorten product time-to-market development cycle. More-
over, to satisfy the ultra-low power operation requirement,
embedded software developers are opting for non-clean and
unconventional code development. As a consequence, these
actions are leading to increased technical debt, which can be

characterized as a financial overhead in future maintenance
activities because of shortcuts taken during development [4].

However, there is currently a lack of support in the broader
embedded systems industry settings to find the right bal-
ance between often conflicting design (e.g., maintainability)
and run-time (e.g., energy-efficiency, performance) quality
attributes. Specifically, the lack of methods and supporting
tools presents a problem for a broad community of embedded
software engineers and developers. To address these needs,
the SDK4ED project will develop a novel Embedded Systems
(ES) specific development platform for automatic optimiza-
tion of various design-time and run-time quality attributes.
Moreover, SDK4ED platform is going to support advanced
trade-off analysis between selected design-time and run-time
constraints.

In summary, this paper presents the SDK4ED approach to
enable the detailed specification and implementation of an
innovative platform for low-power embedded systems design
and analysis to support quality optimization and provide trade-
off recommendations. It discusses the current issues from a
low-power embedded systems point of view and gives the
recommendations for the application of the novel approach.

The rest of the paper is structured as follows. Section
II discusses related work. Section III presents the SDK4ED
objectives, while Section IV describes the overall approach.
Section V illustrates the SDK4ED high-level conceptual ar-
chitecture. Finally, conclusions and plans are summarized in
Section VI.

II. RELATED WORK

In this section, we discuss the state of the art of existing
software quality models and indicators. The most well-known
standard to measure software product quality is the interna-
tional ISO/IEC 25010 standard [1]. Although ISO/IEC 25010
defines eight quality attributes and relevant sub-categories, its
main drawback is that it does not specify which metrics should
be used for software quality measurement.

A. Design-time Software Quality Attributes

The embedded software community often overlooks the
importance of design-time qualities and related quality models
and metrics. Although there are various metrics for assessing
software maintainability and reusability in the literature
[5], [6], these metrics are still lacking precision and do not

take into account software development history and partic-
ular domain-specific characteristics of software. Recently the
Technical Debt (TD) Metaphor has been introduced to express
in monetary terms the additional maintenance cost caused by
presence of inefficiencies in an existing software system [4].
Several empirical studies have indicated the importance of
efficient TD management [3], [7]. Various tools have been
introduced to estimate the principal of Technical Debt, that
is, the effort required to resolve all identified issues and
bring a software system to a near-optimum state in terms of
internal software quality [8]. However, the underlying rule-
sets are generic and domain-agnostic and, as a result, the
identified technical debt liabilities may or may not be relevant
to embedded system applications.

According to [9], one of the most critical systems property
is the dependability, which covers various system quality
attributes (i.e., security, reliability, and availability). The
security of software applications is a broad aspect that can be
treated both as a design-time and as a run-time quality attribute
[10]. Traditionally, software security, as a run-time attribute,
was considered as an added feature in the overall SDLC [11].
However, the inadequacy of external protection mechanisms
to fully protect software applications against attacks forced
software development enterprises to shift their focus towards
security by design, which corresponds to building software
applications that are highly secure initially [12]. Measuring
software security is important for decision-making. Although
mature techniques for measuring the external security of
software products exist (e.g. the Attack Surface Metrics), no
well-accepted models can be found in the related literature
for quantifying the internal software security [13]. Apart
from these issues, no security assessment model specifically
focusing on evaluating the security level of low-power em-
bedded system applications exists in the related literature.
The identification of potential indicators of vulnerabilities is
another research topic that has recently attracted the attention
of the research community [12]. Although several software-
related factors have been studied for their ability to indicate
the existence of vulnerabilities in software products in general,
no studies have particularly focused on IoT-based embedded
system applications [12].

SDK4ED will contribute novel methods and tools for im-
proving and optimizing design software qualities and espe-
cially maintainability, security by design and reliability.

B. Run-time Software Quality Attributes

Energy efficiency is an important run-time quality, and its
optimization is a main objective of many studies in the relevant
literature [14]. The problem of efficient energy management
of IoT embedded devices is studied in [15]. Energy consump-
tion occurs at hardware level, but in the embedded software
domain, it is software executing on programmable hardware
platforms that determines the overall energy consumption. The
SDK4ED will build upon the large amount of existing software
optimization techniques to reduce the energy consumption on
low-power devices (e.g., loop unrolling) [14]. It is important to

point that software optimization to increase performance, and
consequently reduce energy consumption often fails to provide
design guidelines and might incur TD [16]. In other words,
current state of practice in embedded system design often
completely neglects the notion of TD resulting in systems that
are very expensive to reuse and maintain.

C. Trade-offs Between Run-time and Design-time Quality At-
tributes

The interrelationships between various design-time qualities
have been studied in relevant literature. For example, authors
in [17] have performed an empirical study to evaluate the inter-
play between software security and technical debt. Similarly,
the relationships between multiple run-time quality attributes
have been the subject of several studies [18], [19].

To the best of our knowledge, the SDK4ED is going to be
the first platform that will handle the interplay between vari-
ous, and often conflicting quality attributes such as maintain-
ability, dependability, and energy efficiency. However, there
are several studies with the focus on the interplay between
design-time and run-time qualities [16], [20], [21]. The authors
in [16] state that the consequences of various techniques
that embedded software developers apply to improve run-
time qualities such as energy consumption or performance
might affect the design-time qualities of the software (e.g.,
maintainability or reliability). Likewise, the various refactoring
techniques for source code optimization might have direct
negative or positive consequences on the run-time quality
attributes. The authors in [16] have concluded that various
interconnections between design and run-time qualities exist,
and pointed out the need for further investigation in this field.

III. OBJECTIVES OF THE PROJECT

The SDK4ED will address the challenges discussed in the
previous sections under a common integrated platform, by
pursuing a number of technical, business and social objectives.

A. Technical Objectives

SDK4ED should provide novel methods and services/tools
integrated under common platform, which will continuously
monitor and manage software qualities at different software
development phases (design, implementation, etc.) and levels
of granularity (component, class, method, etc.). Envisioned
SDK4ED platform should enable embedded systems industries
to deliver quickly high-quality software by maximizing levels
of important run-time and design-time quality parameters with
emphasis on maintainability, security, reliability and energy
consumption. Moreover, it should include support for con-
tinuous optimization of trade-offs between various design-
time and run-time qualities by applying big data and software
analytics technologies. This is particularly important, since
the application of refactoring activities, like repaying TD on
selected components, might affect their run-time qualities (e.g.,
energy efficiency or execution performance).

B. Business Objectives

SDK4ED should establish set of forecasting methods and
best practices to assist embedded system engineers and project
managers in making decisions regarding the choices for soft-
ware quality improvements like TD refactoring. Moreover,
SDK4ED should demonstrate the usability and efficiency
of delivered set of methods and tools, through number of
representative use cases, which should be deployed in a real
operational environment.

C. Social Objectives

We consider it important to establish a culture of paying
attention to accumulated TD at all levels of SDLC. Thus,
we have set the objective to illustrate the importance of
TD and demonstrate the benefits of proper TD management
for low-energy software application development. The most
convincing approach to illustrate the importance of TD is to
empirically quantify its impact on the cost of developing and
maintaining embedded system software.

IV. OVERALL APPROACH

SDK4ED has an agile, user-centered methodology, which
ensures the acceptance and usability of produced outcomes.
The envisioned SDK4ED platform aims at facilitating the
high-level needs of all stakeholders involved in the design,
development and deployment of low-power embedded systems
like software engineers, quality managers, project managers,
and embedded system engineers as illustrated in Figure 3. In
the present section, we briefly present the main phases and
steps of the overall SDK4ED development approach.

A. Conceptual Design

1) Functional, non-functional, and hardware requirements
specification: We derived functional requirements based
on the results of the empirical study performed together
with the use case providers. According to the guidelines
suggested in [22], [23], we designed an exploratory, embedded
and multiple-case study. The goal of the case study was
to understand the needs and challenges faced by embedded
systems developers, system engineers and quality managers.
Particularly, we designed the questionnaire with the goal to
identify desired use case provider’s design-time and run-
time qualities and complex interrelationships between required
trade-off decisions. First, data were collected using both in-
terview and focused group instruments [24], [25]. Second, the
data collection analysis was performed according the recom-
mendations in [26], [27]. Next, the functional requirements of
the SDK4ED platform were documented following the IEEE
29148-2011 standard guidelines [28]. Similarly, the overall
elicitation process of non-functional requirements was based
on the well-established ISO/IEC 25010 standard, which con-
stitutes the de facto standard for software quality evaluation
and modelling [1]. Based on quality aspects described in [1],
we selected seven representative non-functional requirements
categories (maintainability, serviceability and manageability,
performance, reliability, availability, security and usability).

The elicited non-functional requirements were prioritized us-
ing MoSCoW technique [29], which led to the definition
of the final subset of 65 non-functional requirements, where
42 were considered highly significant from end-user point
of view. Besides, we had to perform the detailed analysis
and specification of hardware requirements. Specifically,
we identified the requirements of the SDK4ED use case
applications, taking into account required run-time qualities
that should be monitored. The analysis showed that the current
use case platforms do not support measurement of run-time
energy and power consumption. Finally, a list of monitors and
additional functionalities, which should be supported by the
SDK4ED platform, has been compiled.

2) System analysis and architecture specifications: Con-
sidering specific functional, non-functional and hardware re-
quirements, based on IEEE 1471 standard recommendation,
we have selected three viewpoints for envisioned SDK4ED
platform (i.e., logical, functional and deployment) [30]–[33].
Logical viewpoint is designed starting from functional re-
quirements specification. For the initial system analysis and
design, we have selected Data Flow Diagram (DFD) technique,
which provides a convenient graphical means for analyzing
the system’s structure at different levels of abstraction [33],
[34]. At the top level of abstraction, the SDK4ED system is
represented as a black box using a context diagram illustrated
in Figure 1. The SDK4ED context diagram was useful to:
(1) visualize the scope of the system, (2) highlight the roles
that interact with the system, (3) and to summarize input and
output flows. For example, it is obvious that SDK4ED user
(e.g., embedded system developer) requests the TD feedback
from the SDK4ED platform, and receives the appropriate TD
assessment result. Moreover, the context diagram indicates
that various external tools (e.g., static code analysis) will be
employed to perform required code analysis. Context diagram
is further elaborated and decomposed into corresponding Level
1 and Level 2 diagrams, which where useful for SDK4ED
component identification and specification. Actually, the re-
sulting high-level SDK4ED conceptual diagram, which is
given in Figure 1, maps the SDK4ED processes from the
Level 1 into conceptual entities (i.e., modules) and connections
between them (i.e., associations).

Another useful viewpoint was functional, where we defined
interactions and interfaces between components using both
high-level system and specific MVC-based SDK4ED sequence
diagrams [35], [36]. Finally, we specified run-time and
deployment viewpoint to provide indicative software and
hardware specifications for each system component.

B. Technical Development

1) Research and innovation to implement the architecture:
Research and innovation to implement the architecture. In this
step, two essential activities are of interest. The first one, which
is the most important task, is to define an appropriate list
of indicators for each software quality. For that purpose, we
have performed the following activities for the core quality
attributes, i.e., maintainability, dependability and energy ef-

Fig. 1. The Level Zero Data Flow Context Diagram of the SDK4ED Platform

ficiency. First, we conducted a detailed state-of-the-art study
to select candidate indicators for realization in the SDK4ED
platform. To achieve this goal, we used various sources (i.e.,
existing scientific literature, tool-kits and services available on
the web). As a result, we defined the initial set of indicators,
and specified the gaps that should be addressed as part of
the SDK4ED project. However, the final set of indicators is
selected based on the analysis of industrial partner’s needs
through a number of relevant empirical studies. The selected
indicators for inclusion in the SDK4ED platform are specified
per programming paradigm (i.e., object-oriented and non-
object oriented) and language (Java, C, C++). Moreover, we
discussed the existing tools that might be reused or extended
and indicate novel tools that should be developed.

In the second task, appropriate optimization techniques
and algorithms will be investigated. In particular, the goal is
to examine the suitability of existing approaches first, and,
if necessary, to develop novel optimization techniques for
all selected TD, security and energy efficiency indicators.
Furthermore, in this task, we will perform a design space
exploration that will allow the users to choose the Pareto
optimal point in terms of TD, energy efficiency and security
optimizations.

2) Development of toolkits for handling quality require-
ments: Development of toolkits is an ongoing activity. We
selected the micro-service architectural pattern as the one that
best meets the functional and non-functional requirements of
the SDK4ED platform [37]–[39].

Six core quality attributes (agility, portability, testability,
performance, scalability and ease of development) were se-
lected as a basis for analysis. A number of advantages have
contributed to the selection of micro-service architecture over
layered, event-driven, micro-kernel and SOA architectural
styles [38]. As illustrated in the Figure 2, each of the core

Fig. 2. High-level view of the SDK4ED Platform using micro-service pattern

modules, namely TD Management, Energy Optimization, De-
pendability Optimization, Forecaster and Decision Support
are going to be implemented as individual services. The
different services will be available to the users through Web
UI or relevant APIs. Moreover, the ability to exploit the
independent micro-services rather than complete functionality,
will greatly facilitate the implementation, deployment, testing
and eventually use of the platform.

3) System integration and testing strategy: System integra-
tion and testing strategy will be implemented on top of con-
tinuous integration principle, and will include three different
levels of testing (i.e., unit level testing, integration testing and
system testing).

C. Proof-of-Concept

1) Deployment of the pilot case studies in a real industrial
environment: The representative use cases from the UAV (Un-
manned Aerial Vehicle), health-care and automotive industries
will be deployed in a real operational environment to assess the
impact of the project’s innovations, and practical advantages.

2) End-user verification and validation acceptance based
on the fulfillment of KPIs (Key Performance Indicators): We
will pay specific attention to provide high-quality educational
service and supporting training materials. Two sets of training
materials will be produced. A first set of the general training
materials will be delivered after the integration of individ-
ual architectural components, and will incorporate detailed
instructions followed by examples. However, towards the end
of the project, training material will be specialized for specific
target groups of users.

V. SDK4ED INTEGRATED PLATFORM

The SDK4ED platform will provide recommendations for
the code optimization by parsing software artifacts (e.g.,
source code, design models or test cases) and analyzing these
items from the perspective of various TD, energy and software
security indicators. The high-level architecture of SDK4ED
system, including the five core modules and their relationships
to the external sources of information, are represented in
Figure 3.

A. TD Management Module

The main goal of the TD management module is to provide
efficient support for TD quantification, prioritization and han-

Fig. 3. The high-level overview of the envisaged SDK4ED Toolkit platform

dling in Embedded Software systems. Specifically, TD man-
agement module will be comprised of four main components:
TD principal, TD interest, TD on new code estimation and
Extraction of refactoring opportunities.

TD principal component will provide support for quantifi-
cation of the effort that is required to address the difference
between current and optimal level of design-time quality.
TD Principal is often quantified through popular state-of-the-
art tool SonarQube1. We are planning to extend the Sonar-
Qube to support quantification of the TD principal indicators
(e.g., long method identification, effort to resolve inefficiency
in minutes/currency, etc.). However, several limitations that
should be addressed have been identified. For example, while
Java programming language is well supported, we need to
provide an appropriate rule configuration specifically for C
and C++ that can be tailored to the needs of the corresponding
embedded system developer (e.g., by enabling/disabling rules
to be checked).

TD interest component will handle the additional effort that
needs to be spent on maintaining the software because of
decayed design-time quality. TD Interest estimation is vital, as
it dictates the management decisions to repay TD. However,
TD interest lacks appropriate quantification, and novel tools
need to be implemented for both Java and C++ programming
languages.

TD on the new code estimation component will monitor the
evolution of the TD principal by comparing each code revision
to the existing one. SonarQube aims to provide this feature but
is not yet operational. The SDK4ED TD management toolkit
will address this gap, by providing support for quantification
of novel TD density on new code indicator.

Extraction of refactoring opportunities will provide sup-
port for both orthogonal and interdependent refactoring. Or-
thogonal refactoring component will show total number of
refactoring for each quality attribute, which can be applied

1https://www.sonarqube.org/

without having side effects on other software qualities. On the
contrary, interdependent refactoring component will indicate
suggestions that have possible side effects on other qualities.

B. Dependability Module

The main goal of the Dependability module is to provide
full support for the assessment of the dependability of the
embedded software solutions. Towards this direction, we have
specified four components: Quantitative Security Assessment,
Vulnerability Prediction, Exploitable Vulnerability Identifica-
tion and Optimum Checkpoint Recommendation.

Quantitative Security Assessment component will imple-
ment the novel hierarchical security assessment model based
on static analysis alerts and software metrics, which we
initially developed for the quantification of the security level of
software applications written in Java programming language.
Afterwards, we extended the model to support the evaluation
of software applications in C and C++ programming lan-
guages. We performed thorough evaluation of the proposed
model, based on large volume of empirical data [40], [41].

Vulnerability Prediction component will be focused on the
prediction of the existence of security issues or vulnerabilities.
Specifically, we will implement a novel static-analysis model
for prioritizing testing efforts, by identifying potentially vul-
nerable software components. We will focus our effort primar-
ily on achieving a satisfactory trade-off between vulnerability
prediction accuracy and performance.

Exploitable Vulnerability Identification component will im-
plement the novel model for the assessment of the security-
related artifacts produced by automatic static analysis tools.
The purpose of the model is to enable identification of ex-
ploitable vulnerabilities, i.e., the vulnerabilities that are more
likely to cause actual security issues.

Optimum Checkpoint Recommendation component will fo-
cus on identifying judicious locations for adding checkpoints
and provide recommendations regarding their optimum inter-
checkpoint interval. These recommendations are expected to
enhance the reliability of the produced software without af-
fecting other quality attributes like performance and energy
consumption.

C. Energy Optimization Module

The aim of the Energy Optimization module will be based
on two core components: Consumption Analysis and Energy
Optimization. Consumption Analysis component will provide
energy consumption analysis in both horizontal and vertical
layers of the underlying architecture.

Energy Optimization component will provide relevant tools
for energy estimation, optimization and measurement. The
final set of indicators has been selected and its applicability in
the context of the SDK4ED pilot use cases has been validated
based on several empirical case studies. The indicators are
grouped into four categories namely, CPU-related, Memory-
related, Multithreading-related and related to accelerators.

D. Forecaster Module

Forecaster module will provide support for prediction of
the three core quality attributes targeted by the SDK4ED
platform: Technical Debt, Energy and Dependability. As a
first step towards TD Forecasting component realization, we
have developed and applied specific time series models for
TD forecasting. Currently, we are investigating the ability of
popular methods, such as Causal or Associative models as
well as Machine Learning models, such as Support Vector
Regression, Regression Trees, or Artificial Neural Networks to
forecast the evolution of TD and Dependability indicators [42].
The special emphasis will be placed on modeling software
evolution on the system level, rather than predicting the
evolution of individual system properties.

E. Decision Support Module

The main purpose of the decision support module is to
facilitate the decision-making process of various stakeholders
involved in the development and maintenance of embedded
software applications. Specifically, the end users are going to
have an overview of the alternatives for improving the current
software design. In particular, the module will have two core
components: Refactoring Suggestions and Quality Attribute
Impact Estimation.

Refactoring Suggestions component will provide semi-
automated support for decision-making process on deciding
on the refactoring priority. The ranking of the suggestions
will be formulated based on TD, energy and dependability
benefits/costs. As indicated in Figure 3, Decision Support
module will receive required inputs from all other modules.

Quality Attribute Impact Estimation component will imple-
ment a trade-off management strategy. Having in mind that
TD, energy efficiency and dependability of embedded systems
are contradicting qualities, the component will provide two
main functions. First, design-search space under at least two
search parameters (i.e., TD, energy, dependability) will be
provided. Next, the results will be formulated in the form of
the Pareto frontier consisting of the Pareto efficient allocations,
depicted graphically. The work on the investigation of the
existence of the relations and trade-offs between optimizations
for eliminating TD, and for improving energy efficiency and
security is an ongoing activity. The current results have been
reported in [16].

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an innovative approach to
design-time (i.e., maintainability, dependability) and run-
time (energy-efficiency, performance) optimization, and in-
terplay calculation. The three main phases of the SDK4ED
project approach (conceptual design, technical implementation
and proof-of-concept) are described, and corresponding steps
within each phase are explained. The expected outcome of
the project is the ES-specific integrated platform, which will
be implemented on the top of novel quality models for
quantification of specified indicators (e.g., software security
model) and advanced optimization algorithms.

SDK4ED detailed system architecture is specified, follow-
ing the rules of the micro-service architectural pattern, which
is selected as a most appropriate option for the implementation
effort. A comprehensive state-of-the-art study is performed,
and suitable indicators are suggested for each core quality
attribute. Future work is planned in several directions. We
plan to use the experience and results from the specification
of suitable quality indicators as a valuable input for the devel-
opment of required optimization techniques and algorithms.
Another planned activity is specification and implementation
of trade-offs between each refactoring suggestion for TD,
security and energy efficiency. In parallel with aforementioned
research challenges, we will continue with the implementation
of individual modules.

In summary, through technological innovations it intro-
duces, the SDK4ED integrated platform is expected to:

• provide practical guidance and prompt support to ES soft-
ware developers and engineers for monitoring, quantifi-
cation, optimization, and forecasting of desired software
qualities;

• efficient decision support for handling the interplay be-
tween various run-time and design-time quality attributes;

• accelerate the transition from embedded software analysis
and design to production;

• facilitate the production of secure embedded software
products with an emphasis on reliability and fully au-
tomated quantitative security assessment.

ACKNOWLEDGMENT

Work reported in this paper has received funding from
the European Union Horizon 2020 research and innova-
tion programme under grant agreement No. 780572 (project:
SDK4ED).

REFERENCES

[1] ISO/IEC, “ISO/IEC 25010 - Systems and software engineering - Systems
and software Quality Requirements and Evaluation (SQuaRE) - System
and software quality models,” Tech. Rep., 2011.

[2] M. G. Siavvas, K. C. Chatzidimitriou, and A. L. Symeonidis, “Qatch -
an adaptive framework for software product quality assessment,” Expert
Systems with Applications, vol. 86, pp. 350 – 366, 2017.

[3] T. Amanatidis, N. Mittas, A. Chatzigeorgiou, A. Ampatzoglou, and
L. Angelis, “The developer’s dilemma: factors affecting the decision to
repay code debt,” in Proceedings of the 2018 International Conference
on Technical Debt - TechDebt ’18. Gothenburg, Sweden: ACM Press,
2018, pp. 62–66.

[4] A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou,
“The financial aspect of managing technical debt: A systematic literature
review,” Information and Software Technology, vol. 64, pp. 52–73, Aug.
2015.

[5] M. Riaz, E. Mendes, and E. Tempero, “A Systematic Review of Software
Maintainability Prediction and Metrics,” in Proceedings of the 2009
3rd International Symposium on Empirical Software Engineering and
Measurement, ser. ESEM ’09. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 367–377.

[6] A. Ampatzoglou, S. Bibi, A. Chatzigeorgiou, P. Avgeriou, and I. Stame-
los, “Reusability Index: A Measure for Assessing Software Assets
Reusability,” in New Opportunities for Software Reuse, ser. Lecture
Notes in Computer Science, R. Capilla, B. Gallina, and C. Cetina, Eds.
Springer International Publishing, 2018, pp. 43–58.

[7] A. Ampatzoglou, A. Michailidis, C. Sarikyriakidis, A. Ampatzoglou,
A. Chatzigeorgiou, and P. Avgeriou, “A Framework for Managing
Interest in Technical Debt: An Industrial Validation,” in Proceedings
of the 2018 International Conference on Technical Debt, ser. TechDebt
’18. New York, NY, USA: ACM, 2018, pp. 115–124, event-place:
Gothenburg, Sweden.

[8] D. Tsoukalas, M. Siavvas, M. Jankovic, D. Kehagias, A. Chatzigeorgiou,
and D. Tzovaras, “Methods and tools for td estimation and forecasting: A
state-of-the-art survey,” in 2018 International Conference on Intelligent
Systems (IS). IEEE, 2018, pp. 698–705.

[9] I. Sommerville, Software Engineering, 9th ed. USA: Addison-Wesley
Publishing Company, 2010.

[10] G. McGraw, Software Security: Building Security In. Addison-Wesley
Professional, 2006.

[11] B. Chess and B. Arkin, “Software Security in Practice,” IEEE Security
Privacy, vol. 9, no. 2, pp. 89–92, Mar. 2011.

[12] M. Siavvas, E. Gelenbe, D. Kehagias, and D. Tzovaras, “Static Analysis-
Based Approaches for Secure Software Development,” in Security in
Computer and Information Sciences, ser. Communications in Computer
and Information Science, E. Gelenbe, P. Campegiani, T. Czachórski,
S. K. Katsikas, I. Komnios, L. Romano, and D. Tzovaras, Eds. Springer
International Publishing, 2018, pp. 142–157.

[13] P. K. Manadhata and J. M. Wing, “An Attack Surface Metric,” IEEE
Transactions on Software Engineering, vol. 37, no. 3, pp. 371–386, May
2011.

[14] Q. Xia, W. Liang, Z. Xu, and B. Zhou, “Online Algorithms for Location-
Aware Task Offloading in Two-Tiered Mobile Cloud Environments,”
in 2014 IEEE/ACM 7th International Conference on Utility and Cloud
Computing, Dec. 2014, pp. 109–116.

[15] F. Samie, L. Bauer, and J. Henkel, “IoT technologies for embedded
computing: A survey,” in 2016 International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), Oct.
2016, pp. 1–10.

[16] L. Papadopoulos, C. Marantos, G. Digkas, A. Ampatzoglou, A. Chatzi-
georgiou, and D. Soudris, “Interrelations between Software Quality Met-
rics, Performance and Energy Consumption in Embedded Applications,”
in Proceedings of the 21st International Workshop on Software and
Compilers for Embedded Systems - SCOPES ’18. Sankt Goar, Germany:
ACM Press, 2018, pp. 62–65.

[17] M. Siavvas, D. Tsoukalas, M. Jankovic, D. Kehagias, A. Chatzigeorgiou,
D. Tzovaras, N. Anicic, and E. Gelenbe, “An Empirical Evaluation of
the Relationship between Technical Debt and Software Security,” 9th
International Conference on Information Society and Technology, 2019.

[18] S. Cho and R. G. Melhem, “On the interplay of parallelization, program
performance, and energy consumption,” IEEE Transactions on Parallel
and Distributed Systems, vol. 21, no. 3, pp. 342–353, 2010.

[19] Kihwan Choi, R. Soma, and M. Pedram, “Fine-grained dynamic voltage
and frequency scaling for precise energy and performance tradeoff based
on the ratio of off-chip access to on-chip computation times,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 24, no. 1, pp. 18–28, Jan 2005.

[20] M. F. Oliveira, R. M. Redin, L. Carro, L. da Cunha Lamb, and F. R. Wag-
ner, “Software quality metrics and their impact on embedded software,”
in 2008 5th International Workshop on Model-based Methodologies for
Pervasive and Embedded Software. IEEE, 2008, pp. 68–77.

[21] R. Verdecchia, R. A. Saez, G. Procaccianti, and P. Lago, “Empirical
evaluation of the energy impact of refactoring code smells.” in ICT4S,
2018, pp. 365–383.

[22] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research
in Software Engineering: Guidelines and Examples, 1st ed. Hoboken,
N.J: Wiley, Apr. 2012.

[23] P. Brereton, B. Kitchenham, D. Budgen, and Z. Li, “Using a Protocol
Template for Case Study Planning,” Evaluation and Assessment in
Software Engineering, p. 8, 2008.

[24] J. Kontio, J. Bragge, and L. Lehtola, “The Focus Group Method as
an Empirical Tool in Software Engineering,” in Guide to Advanced
Empirical Software Engineering, F. Shull, J. Singer, and D. I. K. Sjøberg,
Eds. London: Springer London, 2008, pp. 93–116.

[25] D. McDonagh-Philp, M. Mdrs, and A. Bruseberg, “Using Focus Groups
to Support New Product Development,” Institution of Engineering
Designers Journal, p. 6, 2000.

[26] B. Glaser and A. Strauss, The Discovery of Grounded Theory: Strategies
for Qualitative Research. New Brunswick: Routledge, Jan. 2000.

[27] H. Boeije, “A Purposeful Approach to the Constant Comparative Method
in the Analysis of Qualitative Interviews,” Quality and Quantity, vol. 36,
no. 4, pp. 391–409, Nov. 2002.

[28] “IEEE 29148-2011 - ISO/IEC/IEEE International Standard - Systems
and software engineering – Life cycle processes –Requirements
engineering.” [Online]. Available: https://standards.ieee.org/standard/
29148-2011.html

[29] D. Clegg and R. Barker, Case Method Fast-Track: A Rad Approach,
1st ed. Wokingham, England ; Reading, Mass. : Berkshire, UK ;
Redwood Shores, CA, USA: Addison-Wesley, Sep. 1994.

[30] “IEEE 1471-2000 - IEEE Recommended Practice for Architectural
Description for Software-Intensive Systems.” [Online]. Available:
https://standards.ieee.org/standard/1471-2000.html

[31] P. Kruchten, “The 4+1 View Model of architecture,” IEEE Software,
vol. 12, no. 6, pp. 42–50, Nov. 1995.

[32] N. Rozanski and E. Woods, Software Systems Architecture: Working
With Stakeholders Using Viewpoints and Perspectives, 1st ed. Upper
Saddle River, NJ: Addison-Wesley Professional, Apr. 2005.

[33] D. Avison and G. Fitzgerald, Information Systems Development:
Methodologies, Techniques and Tools, 4th ed. London: McGraw-Hill
Education / Europe, Middle East & Africa, Mar. 2006.

[34] T. Hathaway and A. Hathaway, Data Flow Diagrams - Simply Put!:
Process Modeling Techniques for Requirements Elicitation and Workflow
Analysis. BA-EXPERTS, Mar. 2015.

[35] A. Aguiar, A. Sousa, and A. Pinto, “Use-Case Controller,” in EuroPLoP,
2001.

[36] E. Gamma, R. Helm, R. Johnson, J. Vlissides, and G. Booch, Design
Patterns: Elements of Reusable Object-Oriented Software, 1st ed. Read-
ing, Mass: Addison-Wesley Professional, Nov. 1994.

[37] E. Wolff, Microservices: Flexible Software Architecture, 1st ed. Boston:
Addison-Wesley Professional, Oct. 2016.

[38] M. Richards and O. Media, “Software Architecture Patterns,” p. 55.
[39] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen, “Microser-

vice Architecture: Aligning Principles, Practices, and Culture,” p. 146.
[40] M. Siavvas, “Static Analysis for Facilitating Secure and Reliable

Software,” Ph.D. dissertation, Department of Electrical and Electronic
Engineering, Imperial College London, 2019.

[41] M. Siavvas, D. Kehagias, D. Tzovaras, and E. Gelenbe, “A hierarchical
model for quantifying software security based on static analysis alerts
and software metrics,” Journal of Systems and Software, 2019, (under
review).

[42] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “Statistical and
machine learning forecasting methods: Concerns and ways forward,”
PloS one, vol. 13, no. 3, p. e0194889, 2018.

