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Abstract—Although numerous research attempts can be found
in the related literature focusing on the ability of software-
related factors (e.g. software metrics) to indicate the existence
of vulnerabilities in software applications, none of them have
demonstrated perfect results. In addition, none of the existing
studies have focused on the popularity of software products,
which is an important characteristic of open-source software
applications and libraries. To this end, in this paper, the ability
of popularity (i.e. utilization) to indicate the existence of vulner-
abilities and, in turn, to highlight the internal security level of
software products is investigated. For this purpose, a relatively
large software repository based on well-known libraries retrieved
from the Maven Repository was constructed and its security was
analyzed using a widely-used open-source static code analyzer.
Correlation analysis was employed in order to examine whether
a statistically significant correlation exists between the security
and popularity of the selected software products. The preliminary
results of the analysis suggest that popularity may not constitute
a reliable indicator of the security level of software products. To
the best of our knowledge, this is the first study that examines
the relationship between the popularity of software products and
their security level.
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I. INTRODUCTION

Software security is a matter of major concern for software
development companies that wish to provide highly secure
services to their clients. The term secure software is commonly
used to describe software products that encompass as few
vulnerabilities as possible [1]. Most of the vulnerabilities are
introduced into software products due to insecure choices
made by their developers during the implementation phase
[2], [3]. Hence, appropriate mechanisms are required to assist
developers in avoiding the introduction of security issues,
as well as in mitigating vulnerabilities early enough in the
software development cycle.

Vulnerability prediction is considered an effective mecha-
nism for facilitating the production of more secure software
products [4]. In fact, vulnerability prediction is a relatively new
area of research, which focuses on predicting the existence
of vulnerabilities in software products (e.g. [5], [6]), or in
individual software modules (e.g. [7]–[11]). This information
can be leveraged by developers and project managers to aid
decision making regarding the product implementation. For
instance, it can be used for selecting between software artifacts
(products or modules) that provide the same functionality, or
for prioritizing testing and inspection efforts by allocating lim-
ited test resources to high-risk areas (i.e. potentially vulnerable

parts) of the overall software product. The research in the
field of vulnerability prediction focuses chiefly on examining
the ability of specific software-related factors (e.g. software
metrics) to indicate the existence of vulnerabilities in software,
as well as on building vulnerability prediction models (e.g.
[5]–[11]), based on these factors.

An important factor of software products (especially of
open-source software applications and libraries) is their popu-
larity (i.e. utilization). There is a common truism in software
engineering community stating that the more popular a soft-
ware product is, the more bug-free it is expected to be. This
belief is based on the fact that, since popular applications
are used by a multitude of users, they are expected to be
more well-developed and extensively tested [2], [3]. In fact,
popularity is commonly used in practice, for facilitating the
selection among third-party components that provide similar
functionalities [2], [12], [13].

However, although this belief seems to be intuitive and
has been evaluated by several empirical studies (e.g. [14]),
it is not clear if it also holds for the case of software
security. In other words, no empirical evidence exists in the
related literature supporting the belief that popular software
applications are also highly secure (i.e. vulnerability free).
On the contrary, numerous examples of well-known software
applications containing severe vulnerabilities exist (e.g. [15],
[16]), which render the empirical evaluation of this conviction
a topic of high interest.

Although several studies have extensively examined the
ability of common software metrics and other factors to
indicate the existence of vulnerabilities in software products
[5]–[11] (and, thus, their internal security level), no attempts
can be found specifically investigating the relationship
between the popularity of software applications and their
security. To this end, the present research aims to provide an
answer to the following research question:

RQ: Is the popularity of software products a reliable
indicator of their security level?

For this purpose, a relatively large software repository (com-
prising approximately 2 million lines of code) was constructed
based on well-known Java libraries retrieved from the Maven
Repository1 and analyzed using a popular static code analyzer
to determine their security level. Subsequently, statistical anal-

1https://mvnrepository.com/



ysis was employed to investigate whether statistically signif-
icant positive correlation exists between their popularity and
their security level. To the best of our knowledge, the present
work, constitutes the first study that specifically investigates
the relationship between the popularity of software products
and their security level (i.e. existence of vulnerabilities), while
it uses a significantly larger repository compared to similar
attempts in the field of vulnerability prediction [5]–[11]. The
related work, experiment setup, results, and conclusions are
presented in the rest of the paper.

II. RELATED WORK

A. Existence of Vulnerabilities in Popular Software Products

As already mentioned, popular software applications are
usually expected to be more well-developed, and therefore
considerably free from important bugs, including security vul-
nerabilities [2], [3]. However, as can be seen by the National
Vulnerability Database (NVD)2, a large number of its entries
correspond to severe vulnerabilities that belong to popular
software applications. Additionally, as discussed in the rest of
this section, several real-world examples and empirical studies
have highlighted the existence of important security issues
even in well-known software products.

HeartBleed [15] and Equifax Breach [16], constitute two of
the most representative real-world examples of security issues
caused by vulnerabilities located in well-known software prod-
ucts. In particular, HeartBleed [15], is a serious vulnerability
found in OpenSSL, which is an open-source library that
allows secure communication between two peers based on
the well-known SSL/TLS protocol. This vulnerability, which
was caused by improper input validation, led to information
leakage, allowing malicious individuals to retrieve sensitive
information. Similarly, Equifax Breach [16], allowed criminals
to expose the data of more than 145 million Equifax customers,
and was caused by a vulnerability located in Apache Struts 2,
a popular framework for building large-scale web applications.
In particular, this vulnerability allowed adversaries to perform
remote code execution attack to Apache Servers and steal
confidential information. Both Heartbleed and Equifax Breach
are registered in the Common Vulnerabilities and Exposure3

(CVE) database as CVE-2014-0160 and CVE-2017-5638 re-
spectively.

Several empirical studies have highlighted the existence of
important vulnerabilities in popular reusable software artifacts,
and especially in software libraries. For instance, in [17]
Lisvits et al., by evaluating their custom context-sensitive
static code analyzer on 9 open-source software applications,
identified 29 unreported vulnerabilities, two of which were
found in widely-used Java libraries. In addition, an extensive
analysis of the Java libraries located at Maven Repository
[18] revealed that malicious code issues are highly prevalent
in these software artifacts, whereas important security issues,
such as lack of input sanitization/validation are also common.

2https://nvd.nist.gov/
3http://cve.mitre.org/cve/

The existence of security issues in well-known reusable third-
party components is important, since their vulnerabilities are
actually vulnerabilities of the products using them [13], [19].

Although several studies have extensively investigated the
potential existence of vulnerabilities in popular software ap-
plications, none of them examined the relationship between
their popularity and the volume of their security issues. To
this end, the present study attempts to determine whether the
popularity of software applications is closely related to their
security level (i.e. vulnerability density).

B. Vulnerability Prediction

Several research endeavors have been conducted focusing
on the ability of common software metrics to indicate the
existence of vulnerabilities in software products, in an attempt
to provide a mechanism able to highlight the internal security
of software products [6]–[11]. However, existing attempts are
hindered by a set of shortcomings that the present study tries to
tackle. Firstly, the majority of existing research works focused
chiefly on coupling, cohesion and complexity (CCC) metrics
[7]–[9], as well as on metrics related to the developers’ activity
and code churn [10]. Nevertheless, since none of the previous
attempts led to perfect results, there is a strong need for
incorporating factors that have not been examined before [7],
[20]. Towards this end, our work extends previous studies by
including the popularity (i.e. utilizability) of software libraries,
which is a previously uninvestigated factor.

Another issue is the relatively small size of the repositories
that were used for the conduction of the previous studies. In
fact, the vast majority of the previous empirical studies (e.g.
[6]–[11]) were based on a highly limited number of software
products (often one or two software products), with the only
exception of [11], in which 14 open-source web applications
were used for the needs of the analysis. Our study is based on
a repository of 20 open-source software libraries, comprising
approximately 2 million lines of code. Hence, the present
analysis constitutes one of the largest studies in terms of code
base size that can be found in the related literature.

The relationship between the popularity and quality of
software components has extensively been studied in the
related literature. In [21] the popularity of a wide range of
software libraries retrieved from the Maven Repository (i.e.
their utilization by open-source Sourcerer [22] applications)
was compared to their quality (i.e. defect density). However,
only negligible positive correlations were observed between
the two factors, indicating that popular software libraries are
not necessarily of better quality. Similarly, in a recent study
[23], a highly sophisticated hierarchical software quality model
was employed to assess the quality of a set of Java libraries
retrieved from the Maven Repository. A comparison between
their quality score and their reputation (i.e. total number of
downloads) revealed that no statistically significant positive
correlation exists between their quality and popularity. Finally,
in [14], an analysis conducted on a large number of Android
applications using static code analysis revealed that a strong
relationship exists between specific bug categories and the



user-defined ratings of the applications, which are sufficient
indicators of their reputation. Hence, although significant con-
tributions have been made regarding the relationship between
the popularity and quality of software products, no similar
attempts exist focusing on software security. To the best of
our knowledge, this is the first study that investigates the re-
lationship between the popularity and the security of software
products. This constitutes the main novelty of the present study
compared to the aforementioned research attempts.

III. EXPERIMENT SETUP AND METHODOLOGY

A. Benchmark Repository

The first step of the experiment was the construction of the
appropriate repository of software products. For this purpose,
the top 20 Java libraries (that could be analyzed by the selected
tools) were retrieved from the Maven Repository, which is the
largest online source of Java libraries, leading to a repository
of approximately 2 million lines of code. These libraries are
widely used by millions of developers around the world,
and therefore they constitute sufficient representatives of real-
world software products. In fact, the reasoning behind the
selection of the Maven Repository was that it has been widely
used in the related literature for similar research purposes (e.g.
[18], [21], [23]).

It should be noted that the purpose of the present study is to
investigate whether the popularity (i.e. utilization) of software
products in general, can be used as an indicator of their internal
security. Software libraries were selected as the basis of the
present analysis, since they constitute representative examples
of popular applications, in which popularity is used as a
criterion for their selection [2], [12], [13]. Therefore, software
libraries were used only as a proof-of-concept, and, thus, no
library-specific conclusions are expected to be reached by the
present study.

Modern software development is based on the reusability
of third-party components (i.e. software libraries and reusable
source code fragments), while their popularity is often used as
a criterion for selecting between components that provide sim-
ilar functionality. This reusability-based engineering approach
is commonly adopted for the development of software appli-
cations, regardless of their type or their adopted programing
language. Hence, the results of the analysis are expected to be
independent of the benchmark context, and, thus, generalizable
to different types of software applications. In other words,
although the present analysis is based on software libraries, its
results are expected to be of high interest for software applica-
tions in general. Finally, similar observations are expected to
be made, if different types of software products (e.g. reusable
open-source software artifacts) were used for the construction
of the benchmark upon which the present analysis is based.

B. Indicators of Software Security and Popularity

The next step of the experiment was the selection of
appropriate indicators for software security and popularity. As
an indicator of popularity, the total number of the downloads
of each library as reported by the Maven Repository was used.

Hence, the popularity of software products corresponds to their
utilization, an approach commonly used in the related literature
for quantifying product popularity (e.g. [18], [21], [23]).

As an indicator of software security, the Static Analysis
Vulnerability Density (SAVD) [11] was selected. The SAVD
is the Vulnerability Density metric [24] (i.e. the total number
of vulnerabilities that a software product contains per thousand
lines of code) calculated based on the security-related results
produced by static analysis. The Vulnerability Density is a
widely-accepted measurement for quantifying the internal se-
curity level of software products. Using static analysis results
to quantify the Vulnerability Density is a common approach
in the related literature. For instance, in [11] and [6] the
authors used the SAVD of software products as an indicator
of their security and calculated the correlation between a set
of product-level software metrics in an attempt to investigate
their ability to indicate the existence of vulnerabilities. In
[25], the authors constructed a dataset of software products
and measured their security status using the SAVD, which
was quantified through a commercial static code analyzer.
They subsequently used this dataset to produce vulnerability
predictors based on text mining. Finally, in a recent attempt
[26], a subset of this dataset was used in order to investigate
the ability of text mining-based Deep Neural Networks to
indicate the existence of vulnerabilities in software products.

Static analysis is a testing technique that searches for
potential software bugs (including vulnerabilities) in software
products by analyzing their source code without requiring
its execution [1]. Automatic static analysis (ASA) is consid-
ered an important technique for adding security during the
software development process. This belief is expressed by
several experts in the field of software security (e.g. [27],
[28]), while almost all the well-established secure software
development lifecycles (SDLCs), including the well-known
Microsoft’s SDL [29], [30], OWASP’s OpenSAAM4, and Cig-
ital’s Touchpoints [1], propose the adoption of static analysis
as the main mechanism for adding security during the coding
(i.e. implementation phase) of the SDLC. In addition, ASA is
a security activity commonly adopted by major technological
firms like Google, Microsoft, Adobe and Intel, as reported by
the BSIMM5 initiative. In fact, ASA has been found effective
in detecting security bugs that can lead to severe vulnerabilities
like cross-site scripting and SQL Injection, early enough in the
SDLC [27], [28]. These vulnerability types are included in
the lists of the top most dangerous vulnerabilities maintained
by OWASP6 and CWE. Although the major drawback of
ASA is the generation of a large number of false positives,
the security-related static analysis results have been found
effective in indicating the existence of actual vulnerabilities
(e.g. [31], [32]). All the information presented above justifies
the quantification of the Vulnerability Density metric using
static analysis results.

4http://www.opensamm.org/
5https://www.bsimm.com/
6https://www.owasp.org/index.php/Main Page



In the present work, we decided to quantify SAVD using
the security-related bug patterns provided by FindBugs [33],
which is an open-source static code analyzer, widely utilized
in the related literature for security auditing purposes. In fact,
FindBugs has extensively been used both in academia (e.g.
[34]) and in the industry (e.g. Google [35]), for detecting
software bugs and security issues, as well as for quantifying
both the defect and the vulnerability density of software
products. For the purposes of the present study, the tool
was properly configured in order to detect and report only
software bugs that belong to the security-related bug categories
provided by FindBugs, which are: Performance, Malicious
Code, Multithreaded Correctness, and Security. The latter bug
category is provided by FindSecurityBugs7, which is a popular
FindBugs plugin.

C. Statistical Analysis

Finally, two individual rankings of the selected libraries
were exported, one based on their popularity and another based
on their security (i.e. SAVD). The two rankings were compared
using the Spearman’s rank correlation coefficient (ρ) [36],
which is a non-parametric and non-sensitive to outliers test,
commonly used in the related literature for comparing different
rankings (e.g. [7], [11], [20], [23]). The thresholds proposed
by Cohen et al. [37] were used in order to characterize the
strength of the calculated correlation. According to Cohen
et al. [37], a correlation value higher than 0.5 is considered
strong, between 0.3 and 0.5 is considered moderate, and below
0.3 is considered low. The statistical significance of the results
was tested at 95% level of confidence.

IV. RESULTS AND DISCUSSION

The selected software libraries along with their final
rankings are presented in Table I. As stated previously,
the Spearman’s rank correlation coefficient between the
two rankings was initially calculated, to get an idea of
the relationship between their popularity and security.
Subsequently, in order to reach safer conclusions regarding
the RQ of the present study, the following hypothesis (and
its corresponding null hypothesis) was formulated and tested
with confidence level 95% (p = 0.05):

H1: A statistically significant correlation exists between
the two rankings.

H0: No statistically significant correlation exists between
the two rankings.

For the popularity of the libraries to be a reliable indicator of
their security level, the null hypothesis has to be rejected.

The calculated Spearman’s rank correlation coefficient be-
tween the two rankings was found to be ρ = −0.17. The nega-
tive correlation value indicates that more popular libraries (that
belong to the studied repository) tend to be more vulnerable

7https://find-sec-bugs.github.io/

and thus less secure. However, this relationship was found to
be weak, according to the thresholds proposed by Cohen et
al. [37]. This contradicts the belief that widely-used software
products are more likely to be secure, and, in turn, the ability
of popularity to indicate security.

Nevertheless, in order to reach safer conclusions, the null
hypothesis was tested. Due to the large p-value (i.e. p =
0.45 > 0.05), the null hypothesis cannot be rejected. Since
we cannot reject the null hypothesis, we cannot conclude that
“there is a statistically significant correlation between the two
rankings”. Hence, the present study does not provide empirical
evidence supporting the belief that the popularity of software
products is an indicator of their security. Therefore, popularity
may not be used as a reliable indicator of software security.

It should be noted that failing to reject the null hypothesis
does not necessarily mean that we should accept it. However,
in this case, similarly to other related research attempts (e.g.
[7]–[9]), failing to reject the null hypothesis puts under ques-
tion the reliability of the studied factor (here the popularity
of software products) in indicating software security (i.e.
vulnerabilities).

V. CONCLUSION

The purpose of the present study was to investigate whether
the popularity (i.e. utilization) of software products, can also
indicate the existence of vulnerabilities, and therefore highlight
their internal security level. For this purpose, a relatively large
repository of software products was constructed (comprising
approximately 2 million lines of code), based on software
libraries retrieved from the Maven Central Repository. The
total number of their downloads was used as a measure of their
popularity, while their Static Analysis Vulnerability Density
(SAVD) [11], calculated based on the security-related static
analysis results produced by FindBugs [33], as a measure of
their security level. Two individual rankings were produced,
one based on the popularity of the studied libraries and another
one based on their security level, and were compared using
the Spearman’s rank correlation coefficient [36]. Hypothesis
testing was also applied in order to reach safer conclusions.
The preliminary results of the analysis suggest that the pop-
ularity of software products may not be used as a reliable
indicator of their security. To the best of our knowledge, the
present work constitutes the first study that investigates the
relationship between the popularity of software products and
their security level.

Although the present study contributes to the validation
of the non-reliability of popularity in indicating software
security, in order to reach safer conclusions and investigate
the generalizability of the results, further work is required.
More specifically, similarly to relevant studies [10], [38], the
analysis should be replicated by also considering additional
types of software products (along with software libraries).
This is expected to enhance the reliability of the produced
results, since more application types (for which popularity
is an important characteristic) will be examined. Moreover,
the results of the present study led to the identification of



TABLE I: THE RANKINGS OF THE SELECTED SOFTWARE LIBRARIES BASED ON THEIR POPULARITY AND SECURITY (I.E. SAVD).

Software Product Version SAVD Popularity
Ranking

Security
Ranking

JUnit 4.12 0.963507 1 7
SLF4j 1.7.25 14.77713 2 20
Clojure 1.9.0 0.097005 3 1
Logback Classic 1.2.3 1.976059 4 13
Javax Servlet 4.0.0 5.798502 5 19
Jackson Databind 2.9.3 0.347916 6 2
Commons Logging 1.2 3.644431 7 16
Apache HttpClient 4.5.4 3.854823 8 17
Commons Codec 1.11 0.753417 9 5
Osgi Core 6.0.0 1.855288 10 12
Jackson Core 2.9.3 0.795044 11 6
Hamcrest 1.3 1.023734 12 9
Log4j Core 2.10 2.127574 13 14
Google Guice 4.1.0 1.087039 14 10
Maven Project 3.0 2.544228 15 15
Maven Core 3.5.2 1.506344 16 11
Apache Http Core 4.4.8 0.548506 17 3
Commons Http Client 3.1 3.897551 18 18
Hyper SQL 2.4.0 0.613571 19 4
Javax Mail 1.5.0.b01 1.020057 20 8

an interesting direction for future research, i.e., on whether
it is reasonable to use popularity as a criterion for selecting
between software libraries that provide similar functionality.
Although the present analysis was based on software libraries,
no library-specific conclusions can be reached, since this
would require more elaborate and finer-grained experiments.
For example, this would require the re-execution of the same
analysis for different repositories, each one of them containing
libraries of the same functionality. Hence, the present work
raises the awareness of the aforementioned issue, which is
part of our planned future research activities.
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