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Abstract

We propose a learning approach to corner detection for
event-based cameras that is stable even under fast and
abrupt motions. Event-based cameras offer high tempo-
ral resolution, power efficiency, and high dynamic range.
However, the properties of event-based data are very dif-
ferent compared to standard intensity images, and simple
extensions of corner detection methods designed for these
images do not perform well on event-based data. We first
introduce an efficient way to compute a time surface that is
invariant to the speed of the objects. We then show that
we can train a Random Forest to recognize events gen-
erated by a moving corner from our time surface. Ran-
dom Forests are also extremely efficient, and therefore a
good choice to deal with the high capture frequency of
event-based cameras—our implementation processes up to
1.6Mev/s on a single CPU. Thanks to our time surface for-
mulation and this learning approach, our method is signifi-
cantly more robust to abrupt changes of direction of the cor-
ners compared to previous ones. Our method also naturally
assigns a confidence score for the corners, which can be
useful for postprocessing. Moreover, we introduce a high-
resolution dataset suitable for quantitative evaluation and
comparison of corner detection methods for event-based
cameras. We call our approach SILC, for Speed Invariant
Learned Corners, and compare it to the state-of-the-art with
extensive experiments, showing better performance.

1. Introduction
By capturing very efficiently local illuminance

changes (’events’), event-based cameras [32, 46, 53]
open the door to novel very fast and low-power com-
puter vision algorithms able to deal with large dynamic
ranges [6, 27, 48, 5]. However, because the events are
created asynchronously, as shown in Fig. 1 (a), novel
algorithms have to be developed to perform fundamental
computer vision tasks that are typically performed on
regular frame images.

One of the main fundamental tasks is feature point

(a) Events (b) evFAST [39] (c) evHarris [61] (d) Ours

Figure 1: (a) Stream of events generated by an event-based
camera moving in front of a checkerboard pattern. Black
dots represents events with a negative polarity, white dots
events with a positive polarity. (b-c) Standard event-based
corner detectors [39, 61] are not robust to direction changes
of the camera, and the corners cannot be reliably tracked
over time without a very complex tracking scheme. (d) By
training a classifier to detect corners from event-based data,
our method can reliably detect corners under even abrupt
changes of direction. A simple nearest neighbor tracker pro-
duces continuous trajectories of the corners over time.

detection, which is important for applications with very
strong dynamics such as UAV navigation, where motion
blur makes classical frame-based approaches less robust,
or visual odometry in High Dynamic Range (HDR) con-
ditions, among others. Inspired by the vast literature on
frame-based feature point detection, some works adapted
frame-based corner detector to event-based data. Typically,
a local spatial descriptor is built around an event, for exam-
ple by cumulating events in a given time window [61], or by
considering the times of arrival of the events [39]. Then, a
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classical test, such as [26] can be applied to this 2D spatial
neighborhood. However, the resulting detectors do not take
into consideration the specific characteristics of event-based
data, such as different noise patterns, responses to changes
of direction, illumination changes, etc. Even if efforts have
been made in order to design better tests for event-based
cameras [39, 4], hand-crafted detectors remain unstable and
corners can not be reliably detected over time Fig. 1 (b-c).

In this paper, we propose a learning approach to event-
based feature detection. We train a classifier to label in-
dividual events as generated by a moving feature point or
not. The main advantage of taking a learning approach is
to obtain more stable corners: As shown in Fig. 1, a typi-
cal error made by previous detectors is that they are sensi-
tive to changes of the apparent motion of the feature points.
This is because corners in event-based cameras are not in-
variant under changes of direction, by contrast to corners in
intensity images. Previous detectors also often erroneously
detect points along edges because of noisy events, while
such points cannot be detected in a stable way. Learning
makes the detection more robust to motion changes and
noise, without having to manually design an ad hoc method.

Our classification approach relies on a novel formulation
of the Time Surface [7, 39], which is another contribution
of this work. The Time Surface is a representation that ac-
cumulates the information from events over time, and is a
common tool used in event-based vision, including to detect
corner points. In our work, we also use a Time Surface as
input to the classifier, but we show how to efficiently create
a Time Surface that is invariant to the objects’ speed. Pre-
vious work [3] already introduced a method for computing
a time surface invariant to speed, however it is still too slow
to compute, and incompatible with the high frequency of
event-based cameras. The invariance to speed of our Time
Surface is important both to achieve classification perfor-
mance and also to keep the classifier small, which makes
computation fast.

One critical aspect of our learning-based approach is in-
deed that classification must be performed extremely fast,
otherwise we would lose the advantage of the capture effi-
ciency of event-based cameras. We therefore chose to use a
Random Forest, as Random Forests are very efficient with-
out having to use a GPU (unlike Deep Networks), which
would be counter-productive since we target low-power ap-
plications. In fact, parallelizing computation as done by
GPUs is not well adapted to the sparse and asynchronous
nature of the events. Our current implementation processes
up to 1.6 · 106 events per second on a single CPU.

To evaluate the quality of our detector, we also release a
new high-resolution benchmark dataset. We propose a met-
ric which is independent of ground truth keypoints extracted
from gray level images, which are often used but would
introduce a strong bias in the evaluation. Specifically, we

compare our approach to different detectors in combina-
tion with a simple nearest neighbor based tracking, showing
that, thanks to the temporal continuity of the events, a very
simple tracking rule can lead to state-of-the-art results.

2. Event-based cameras
Standard frame-based cameras capture visual informa-

tion by acquiring snapshots of the observed scene at a fixed
rate. This might result in motion blur for highly dynamic
scenes and in redundant data generation for static ones. By
contrast, event-based cameras [32, 46, 53], a relatively re-
cent type of cameras, adaptively record information from a
scene, depending on the content. More precisely, each pixel
in an event-based sensor is independent from the rest of the
pixel array. When a change in the log-luminosity intensity
at a location surpasses a threshold, the corresponding pixel
emits an event. An event contains the 2D location of the
pixel, the timestamp of the observed change and its polar-
ity, i.e. a binary variable indicating whether the luminos-
ity increased or decreased. Thanks to these characteristics,
event-based cameras have temporal resolution in the order
of the microsecond, high dynamic range, and are well suited
for low-power applications.

Some types of event-based cameras also provide gray-
level measurements together with the change detection
events. The DAVIS [10] sensor for example, is a 240× 180
sensor able to output intensity frames at standard frame
rates. The ATIS sensor [46] instead provides asynchronous
intensity measurements in form of time differences at the
same temporal resolution of the events. Our method can
be applied to any type of event-based cameras and does not
require gray-level information at run time. Intensity infor-
mation has been used in this work only to build the dataset
used to train our classifier, as explained in Section 4.4.

Finally, we note that the spatial resolution of event-based
cameras, still limited to low resolution, is likely to soon
reach standard resolutions of frame-based cameras [58]. As
a consequence, event-based algorithms will have to process
constantly increasing event rates. In this work, we use and
release the first event-based dataset acquired with a HVGA
(480×360) sensor, showing that our algorithm is suited to
real time and high data rate applications.

3. Related work
In this section, we review related work on event-based

feature detection, machine learning approaches applied to
event-based cameras and to feature point detection.

Event-based Features Detection Event-based feature
detection methods can be divided into two categories. The
first class of methods [14, 43, 29] aims at detecting a partic-
ular pattern in the stream of events by applying local tem-
plate matching rules. For example, a blob detector [29] can



be obtained by using a gaussian correlation kernel. When
enough events are received in the receptive field of the ker-
nel, a feature event is generated. The method is generalized
to generic shapes, like corners or T-junctions. In [14] in-
stead, corners are identified as intersection of local velocity
planes, which are obtained by fitting a plane on the spatio-
temporal distribution of events. This class of methods is
very efficient, but it is sensitive to noise and requires care-
ful tuning of the model parameters.

The second class of methods instead, relies on the adap-
tation of classical frame-based corner detectors to event-
based data. The basic principle behind these approaches
is to build a local representation around an event and then
apply classical corner tests on it. For example, in [61] the
Harris corner detector is applied to images obtained by cu-
mulating a fixed number of events in a local spatial window.
The Surface of Active Events (or Time Surface, presented
in Sec. 4.2) is a common representation used in event-based
vision [7, 39, 65, 55]. It has been used in [39] for corner
detection, where the FAST algorithm [50] is adapted to the
pattern of Time Surface of a moving corner. In [4] this for-
mulation has been extended to corners with obtuse angles.
These methods lose accuracy mostly in case of changes of
feature point motion direction, because event-based data do
not share the same characteristics as standard intensity im-
ages. In particular, the corner appearance in a stream of
events depends on its motion, as shown in Fig. 2. As a
consequence, the constant appearance assumption made in
frame-based vision does not hold in the event-based case.

To overcome this problem, some works rely on gray
level images [60, 28, 34, 23]. In these approaches, feature
points are detected in the images using standard techniques,
and then tracked in between by using the event stream.
These methods have the same limitation as frame-based ap-
proaches, namely they lose accuracy in presence of motion
blur, HDR situations, and increase data rate and the power
consumption. Moreover, they require either an event-based
sensors able to acquire graylevel information, or a careful
synchronization of event-based and frame-based sensors.
By contrast, our method requires at run time only a single
and purely event-based sensor. We claim that the time infor-
mation carried by the events is sufficient to reliably detect
feature points, without the need of intensity information.
We propose to use a machine learning approach to learn the
appearance of the features directly from the input data.

Finally, many works focus on the problem of event-based
feature tracking [20, 42, 28, 24, 64, 3]. Our method can be
combined with any of these tracking algorithms. However,
thanks to the high temporal resolution of the event-based
cameras, given our stable and efficient feature detector, the
problem of data association is made much simpler and a
simple nearest neighbor matching rule is sufficient in our
experiments to obtain accurate results.

Figure 2: (Top) In a classical frame-based camera, the ap-
pearance of a corner, such as the one in the red square, is
invariant under camera motions. (Bottom) In the case of an
event-based camera, instead, the same corner can generate
vert different pattern of the events depending on its motion.
The four panels show 40ms of events generated by the cor-
ner on the top while rotating the camera at different speeds.

Learning from Events Machine learning approaches for
event-based cameras can also be divided in two categories.
In the first category [31, 45, 15, 55, 35, 36, 65, 12], the
events from the camera are accumulated for a given period
of time, or for a fixed number of events, to build a dense rep-
resentation. This representation can then be effectively pro-
cessed by standard Computer Vision techniques, like Con-
volutional Neural Networks (CNNs).

In [36] for example, the input events are summed into
histograms and the obtained images are used to predict the
steering angle of a car using a CNN. Similarly, in [65], his-
tograms and time surfaces are used to predict the optical
flow. In [15, 47, 55], dense descriptors are built by com-
paring and averaging the timings of the events in local win-
dows. The descriptors are then passed to a classifier, such
as an SVM or a neural network, for object recognition or
other vision tasks. Even if these approaches reach good per-
formance and are efficient, they increase the latency of the
system by requiring an artificial accumulation time.

A second class of methods avoids this limitation by pro-
cessing the input event-by-event [25, 33, 44, 41, 30]. The
most common model used in event-based cameras are Spik-
ing Neural Networks [44, 38, 8, 54, 37, 9, 51, 13], which
have been proven to reach good accuracy for simple clas-
sification tasks. However, these approaches are difficult to
scale because of the large event rate of the event-based cam-
eras. Hardware implementations and neuromorphic archi-
tectures [52, 22, 1, 17] have been proposed to overcome
this bottleneck. However, these architecture are not large
enough to support large networks and high-resolution event-
based cameras as input.

By contrast our classifier is applied event-by-event,
keeping the original time resolution of the camera, while
running on a standard CPU.



Learning Frame-based Keypoint Detection. A number
of works in frame-based computer vision focus on the prob-
lem of learning feature points, as we do here for event-based
computer vision. One of the first approaches using machine
learning for corner detection is FAST [50], where a decision
tree is used to generalize brightness tests on contiguous cir-
cular segments introduced in [49]. The motivation for using
learning in FAST was to speed up the detection by early
rejection of non-corner points. Other authors [57, 19] also
showed how to learn a fast approximation of existing de-
tectors. But other authors follow this direction by training
efficient ensembles of decision trees. For example, in [59],
the WaldBoost algorithm [56] is used to learn detectors for
specific tasks.

More recent works rely on Deep Learning models [62,
2, 63]. For example, in [62], a regressor is trained to detect
stable points under large illumination changes. In [18], a
fully-convolutional model is trained with self-supervision
to jointly predict interest points and descriptors.

4. Method
In this section, we first introduce our speed invariant for-

mulation of the time surface, then we formalize the problem
of learning a feature detector from the output of an event-
based camera. Finally, we explain how to create a dataset
for training a corner events detector. An overview of our
method is given in Fig. 5.

4.1. Asynchronous Event-based Representation of
a Visual Scene

As described in Section 2, the output of an event-based
camera is an asynchronous stream of events {ei}i∈N. Each
event ei represents a contrast change at a given pixel and at
a given time and can be formalized as

ei = (xi, yi, ti, pi) , (1)

where (xi, yi) are the pixel coordinates of the event, ti ≥ 0
is the timestamp at which the event was generated, and
pi ∈ {−1, 1} is the polarity of the event, with −1 and +1
meaning respectively that the luminosity decreased or in-
creased at that pixel.

Given an input event ei, event-based corner detectors
typically rely on a spatio-temporal neighborhood of events
around ei to build a local descriptor. The descriptor is then
used to test the presence of a corner. In this work, we con-
sider as in [39] the Time Surface [7] as local descriptor.
However, we show how the variance of the standard Time
Surface formulation is not suited for stable corner detec-
tions. We therefore introduce a normalization scheme to
make the time surface invariant to speed. Moreover, we
adopt a machine learning approach and use the invariant
time surface as input to a classifier trained to discriminate
corner events.

4.2. Speed Invariant Time Surface

A common representation used in event-based vision is
the Surface of Active Events [7], also referred as Time Sur-
face [30]. The Time Surface T at a pixel (x, y) and polarity
p is defined as

T (x, y, p)← t , (2)

where t is the time of the last event with polarity p occurred
at pixel (x, y). The Time Surface, besides being very ef-
ficient to compute, has been proved to be highly discrimi-
native for several tasks [39, 55, 65]. However, we noticed
that local patches of the Time Surface can have a very large
variability. In fact, depending on the speed, the direction
and the contrast of the corners, the aspect of the time sur-
face can vary significantly. To keep the classification model
compact and efficient, it is thus important to introduce some
normalization of its input.

Inspired by [39], we notice that only relative timings,
and not absolute ones, are relevant to determine the pres-
ence of a corner. We could therefore obtain invariance by
normalizing the times of the events according to their lo-
cal speed. However, normalization techniques suitable for
intensity images cannot be applied to the time surface, as
explained in [3]. [3] proposed to sort the times of the events
in a local patch. However, sorting a local patch at every
incoming event is still too expensive, and requires to store
multiple time stamps per pixel.

Instead, we show how to obtain efficiently a Time Sur-
face that is independent of the speed, by keeping a single
value for each pixel location (x, y) and every polarity. We
call this novel formulation Speed Invariant Time Surface.

The intuition for our new formulation goes as follows:
Imagine the contour of an object moving in one direction.
We would like to capture the ’wave’ of events generated
by this contour, but this wave should have the same profile
whatever the speed of the contour. When a new event ar-
rives, we store a large value at its pixel location in the Time
Surface, and decrease the values for the surrounding loca-
tions. In this way, we progressively reduce the values for the
events previously generated by the moving contour. Since
we decrease the values by a constant factor, the slope of the
’wave’ is independent of contour’s speed.

More precisely, given a parameter r, we initialize the
Speed Invariant Time Surface S(x, y, p) to 0 for every pixel
location (x, y) and every polarity p. Then, for every incom-
ing event (x, y, p), we consider all pixel locations (x′, y′) in
its neighborhood of size (2r+ 1)× (2r+ 1). If S(x′, y′, p)
is larger than S(x, y, p), then we subtract 1 to S(x′, y′, p).
Finally, we set S(x, y, p) to (2r + 1)2. The pseudo-code of
the algorithm is given in Algorithm 1.

Fig. 3 illustrates the application of this algorithm to sev-
eral edges moving from left to right, each edge moving at a
different speed. For the standard Time Surface, each edge



Figure 3: An edge moves from position 1 to 10 at two differ-
ent speeds. It creates a slope on the Standard Time Surface
T (Top) and on the corresponding Speed Invariant Time
Surface S (Bottom). S is identical for both speeds.

generates a different slope behind it. On the Speed Invariant
Time Surface, the slope is the same for all the edges, and has
a total length of 5 pixels which is equal to the parameters r
used for this experiment. Also, the Speed Invariant Time
Surface is constant after the slope with a value of r+ 1. Fi-
nally, it can be seen that the values in the Speed Invariant
Time Surface remain between 0 and 2r + 1.

In Fig. 4, we compare the standard Time Surface, the
sorting normalization method of [3], and our Speed In-
variant Time Surface. The two normalization approaches
achieve similar results for both examples with a high con-
trast around the edge in comparison with the standard Time
Surface. Furthermore, our Speed Invariant Time Surface in-
creases this contrast by reducing the values after the edge.

Algorithm 1 Speed Invariant Time Surface

1: Output: Speed Invariant Time Surface S(x, y, p)
2: Initialization: S(x, y, p)← 0 for all (x, y, p)
3: For each incoming event (x, y, p), update S:
4: for −r ≤ dx ≤ r do
5: for −r ≤ dy ≤ r do
6: if S(x+ dx, y + dy, p) ≥ S(x, y, p) then
7: S(x+dx, y+dy, p)← S(x+dx, y+dy, p)−1

8: S(x, y, p)← (2r + 1)2

4.3. Learning to Detect Corner Points from Events

Previous corner detectors rely on hand-crafted rules
which make them unstable when the input events do not
follow their assumptions. For example, evFast is not able
to detect corners during a change of motion. In the case of
Arc , the detection of obtuse angles lead to a high number
of false detection on edges. Finally, evHarris is less robust
on fast motions and computationally too expensive. This is
why we train a classifier to detect corner points from events.
More exactly, given an incoming event ei = (xi, yi, pi, ti),
we first update our time surface S as explained in Sec-
tion 4.2, and we extract from S a local patch si of size n×n
centered on the event 2D location (xi, yi).

Standard Normalization Speed Invariant
Time Surface method of [3] Time Surface

Figure 4: Different types of Time Surfaces for two different
patches. The two last methods achieve similar results with a
high contrast around the edge in comparison with the stan-
dard Time Surface. Our Speed Invariant Time Surface is
much more efficient to compute and increases the contrast
by reducing the values after the edge.

An ideal detector F∗ taking si as input is defined as

F∗(si) =

{
1 if ei is a feature event, and
0 otherwise . (3)

In principle, any classifier could be used to implement
F , but in practice we chose a Random Forest [11] because
of its efficiency. For the sake of completeness, in the follow-
ing we briefly describe Random Forests. A Random Forest
classifier F is given by an ensemble of decision trees Fl:

F(s) =
1

L

L∑
l=1

Fl(s) . (4)

A decision tree Fl(s) classifies a sample s = (s1, . . . , sK)
by recursively branching the nodes of the tree until the sam-
ple reaches a leaf node. In each node a binary split function
is applied to the input to decide if the sample is sent to the
left or the right child node.

In practice, we use decision stumps as split func-
tions [16], where a descriptor dimension dk is compared to
a threshold th. This is computationally efficient and effec-
tive in practice [16]. The output of the tree is the prediction
stored at the leaf reached by the sample, which in our case
is the probability of the sample being a feature point.

During training, each tree is trained independently in a
greedy manner, one node at the time. For a given node, let
DN be the training set of samples that reached this node.
The optimal θ = (k, th) for the split are obtained by min-
imizing the Gini impurity index [21] by exhaustive search.
The dataset is then split in left and right DL, DR and the
children nodes are trained recursively. Training stops when
a maximum depth is reached, when a minimum number of
samples is reached or if the impurity index is too low.

A Random Forest improves the accuracy of a single de-
cision tree by training multiple trees. The trees need to be
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Figure 5: Overview of the proposed method. For each incoming event (x0, y0, t0, p0) in the input stream (a) we compute
the Speed Invariant Time Surface (b). The Speed Invariant Time Surface is used as input to a Random Forest trained to
discriminate corner points (c). If the probability returned by the Random Forest is above a threshold, the event is classified
as a corner. This generates a sparse and stable stream of corner events (d) which can be used for further processing.

uncorrelated, and this is done by randomly sampling a sub-
set of the training set for each tree and by randomly subsam-
pling a subset of the descriptors dimensions at each node.

4.4. Building a Dataset for Event-based Corner De-
tection

To train our classifier F , we need a labeled training set
{(sj , cj)}, where the binary class cj of event ej is 1 if ej
is a feature event, 0 otherwise. Building such a dataset in
the case of event-based cameras is not trivial. Manual an-
notation is impractical, since it would require to label single
events in a sequence of million of events per second.

We propose to leverage the graylevel measurement pro-
vided by a HVGA ATIS sensor, already discussed in Sec-
tion 2. For every event, we apply the Harris corner detector
to its location only, in the graylevel image. If a corner is
detected at this location, we add the event to our training set
as a positive sample, and as a negative sample otherwise.
In practice, even the Harris detector applied to graylevel
images can sometimes fail in presence of noise, and we
therefore decided to acquire our dataset by recording well
contrasted geometric patterns. Examples of this dataset are
shown in the supplemen tary material The dataset can be
downloaded at the following URL1. In this way, we greatly
reduce the number of outliers in the dataset. As we will see
in Section 6, even if the pattern we use is quite simple, the
classifier learnt on such data can generalize well in more
complex real situations. We also extend this protocol to a
DAVIS sensor. In this case the corners are detected on entire
frames at regular intervals and all the events falling within 2
pixels form a detected corner in a time interval of 5ms are
marked as corner events.

5. Evaluation of Event-based Detectors
1 http://prophesee.ai/hvga-atis-corner-dataset

Event-based Datasets for Corner Detection We evalu-
ate our method on two event-based datasets. The first is the
commonly used Event-Camera dataset [40]. It is composed
by recordings of different scenes taken with a DAVIS sen-
sor. As done by previous works, we consider the boxes,
shapes, hdr and dynamic subsets for evaluation, for
which camera poses groundtruth are provided, but we keep
the simplest shapes dataset to train our model.

The second dataset we use is a new dataset that we intro-
duce for the first time in this paper. Compared to the Event-
Camera dataset, ours was acquired using a higher resolution
HVGA ATIS sensor, thus allowing better localization and
finer feature detection, together with higher data rate. While
the Event-Camera dataset is more generic and adapted to
test visual odometry and SLAM applications, the intent of
our dataset is to specifically evaluate the accuracy of event-
based feature detection and tracking algorithms. We call
this dataset the HVGA ATIS Corner Dataset. It consists of 7
sequences of increasing difficulty, from a standard checker-
board to a complex natural image (Fig. 6). We record planar
patterns, so that ground truth acquisition is simple and the
evaluation is less affected by triangulation errors.

Evaluation Metrics Previous approaches for event-based
feature detection rely on Harris corners extracted from
graylevel images [61, 64, 23]. This approach has the
shortcoming of penalizing event-based features when not
matched to any graylevel one, even if these features might
correspond to stable points in the events stream. We notice
that our approach, since it was trained starting from Harris
corners would have an advantage when using this metric.

Other works [39] instead, consider a detected corner
valid if, when associated with nearby corners, it forms a
well localized track in space and time. This metric evalu-
ates how easy it is to track a given feature. However, it does
not take into account the correct trajectory of the feature.



We also start from the observation that a stable detector,
able to continuously identify a feature in the events stream,
would remove the need of complex tracking and data asso-
ciation methods. Therefore, in order to assess also the qual-
ity of an event-based detector, we combine it with a sim-
ple tracking algorithm based on nearest neighbor matching
in space and time. After tracking, we can evaluate the ac-
curacy of the method by computing the reprojection error
associated to the feature tracks.

In the case of the planar dataset, the reprojection error
is computed by estimating a homography between two dif-
ferent timestamps. More precisely, given two timestamps
t1 and t2, we collect all the features that fall within a 5ms
timewindow from these times. We then consider the last
feature for each track. This gives two sets of 2D corre-
spondences that can be used to estimate the homography
between the two views of the camera. We use RANSAC for
a robust estimation. Once the homography is computed, we
reproject points from time t2 to the reference time t1 and
compute the average distance between the reference points
and the projected ones. During this process, we exclude
points detected outside the planar pattern.

In the case of the Event-Camera dataset, which contains
3D scenes, the reprojection error is computed by triangulat-
ing the tracked points, using the available 3d poses. We use
the same protocol as in [3] and report also the percentage of
tracks with an error smaller than 5 pixels. Finally we com-
pare the methods in terms of computational time, as done
in [23, 3]. All our experiments were implemented in C++
and run on a Xeon CPU E5-2603 v4 at 1.70GHz.

6. Experiments
Parameters and Baselines Our method depends on few
parameters, namely the radius r used to compute the Speed
Invariant Time Surface, the size n of the classifier input
patch, and the parameters for the Random Forest. The pa-
rameters were optimized by cross-validation on the training
set of Section 4.4 to minimize the misclassification error.
Once the best parameters have been found, we fix them and
use them for all the test sequences of Section 5. For the de-
scriptor, we set r = 6 and n = 8. For the Random Forest,
we use 10 trees. We stop growing the trees when there are
less than 50 training samples in a branch.

We compare our method against previously published
event-based feature detectors: the event-based Harris detec-
tor of [61], which we denote evHarris ; the event-based Fast
of [39] evFast ; and its recent modification Arc [4]. For all
of these methods we use the publicly available implementa-
tion provided by the authors.

As done in [4], we also apply an event-based ’trail’ filter
before each detector. This filter removes the multiple events
generated by a contrast step in intensity which caused mul-
tiple threshold crossing. The timings of Table 3 are reported

taking into account this filtering.

Ablation Study In the first set of experiments, we quan-
tify the improvement brought by our Speed Invariant Time
Surface formulation against the standard Time Surface.

We train two Random Forests, one using local patches
extracted from the Time Surface of [6], and the second one
on Speed Invariant Time Surface patches. Then, we apply
these detectors to the HVGA dataset and track the features
using nearest neighbor data association with a radius of 3
pixels and a temporal window of 10ms. From the tracked
features we estimate the homography using different time
steps, as explained in Section 5. The corresponding re-
projection errors are reported in Table 1. As we can see
our method has lower reprojection error, the reason is that
the detector trained on the Time Surface can not generalize
well, and, a part for the simple chessboard pattern returns
very noisy detections. We refer to the supplementary mate-
rial for a visual comparison of the detected features.

Table 1: Reprojection error on the HVGA Corner dataset
for different values of ∆t used to estimate the homography,
when training a Random Forest on the Time Surface [6] or
the proposed Speed Invariant Time Surface (SILC). SILC
results in a more stable and accurate detections.

Random Forest ∆t = 25ms ∆t = 50ms ∆t = 100ms
Using T [6] 5.79 8.48 12.26
Using S (SILC) 2.45 3.03 3.70

Evaluation on the HVGA ATIS Corner Dataset In this
section, we compare the stability of event-based feature de-
tectors against the baseline methods using the homography
reprojection error. Since this metric can be applied only
to planar scenes, we use it for our dataset and not on the
Event-Camera dataset. For nearest neighbor data associa-
tion, we used a radius of 3 pixels and a temporal window of
10ms. We also compute the lifetime of the tracked features,
defined as the difference between the first and the last de-
tection of the track. We then compute the average lifetime
of the first 100 features.

We compute the homography at different time intervals,
ranging from 25ms to 200ms. The results for 100ms are
shown in Fig. 7. Detailed values for other values and for
each sequence are reported in the supplementary material,
and show similar behavior. Our method is able to track
a corner point longer while having a low reprojection er-
ror. The error for evFast is slightly lower, but the tracks for
this method are significantly shorter. Finally, evHarris and
Arc are very sensitive to noise and respond on edges, which
make their tracks longer then evFast , but poorly reliable.

Qualitative results are shown in Fig. 7. A snapshot exam-
ple can be found in Fig. 6. Corresponding video sequences
are provided in the supplementary material.
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Figure 6: Comparison of event-based detectors on the HVGA ATIS Corner Dataset. Positive and negative events accumulated
during 5ms showed in black and white with corresponding corner events in red. Our method is more robust to noise and can
detect stable corners even in complex scenes.
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Figure 7: Comparison of detector performance on the
HVGA ATIS Corner dataset. Our method is able to track
a corner longer than the baselines while keeping a low re-
projection error.

Evaluation on the Event-Camera Dataset We repeat
similar experiments for the Event-Camera Dataset. Since
the resolution of the camera is lower for this dataset, we
use a larger temporal window, equal to 50ms, for the track-
ing. Because of the lower resolution and the higher level of
noise, this dataset is more challenging.

The reprojection error and the percentage of valid tracks
are given in Tab. 2. Detailed values are reported in the sup-
plementary material. We notice that applying the model
trained on the ATIS camera (SILC ATIS) generalizes well
on the DAVIS, reaching similar performance than the base-
line. Since the DAVIS camera provides gray-level images,
we also retrained a Random Forest on the DAVIS data
(SILC DAVIS). We use a small model composed of 10 trees
of depth 10. We observe that the results obtained with our
detector and a simple nearest neighbor tracking are compa-
rable with results obtained with complex trackers [3].

Table 2: Evaluation on the Event-camera dataset. Our
method has the lowest reprojection error and generalizes
well across different sensors.

evHarris evFast Arc SILC SILC
[61] [39] [4] ATIS DAVIS

3D reprj. error (pix) 2.46 2.50 2.58 2.53 2.16
Valid tracks (%) 47.4 50.1 42.9 47.3 65.3

Table 3: Computational Time on the HVGA dataset. Our
method is real time despite the high data rate of the sensor.

evHarris evFast Arc SILC
[61] [39] [4]

Event rate (Mev/s) 0.22 1.74 5.61 1.61
Real Time Factor 0.60 3.80 12.32 3.53

7. Conclusion and Future Work

We presented an efficient and accurate learning approach
for event-based corner detection. Our method produces
more stable and repeatable corners compared to the state of-
the-art and when coupled with a simple tracking algorithm
gives good accuracy. A key component for our approach is
a novel formulation of the Time Surface, which provides a
rich event-based representation which is invariant to the lo-
cal speed of the object. In the future, we plan to apply the
Speed Invariant Time Surface to other event-based vision
tasks, such as low-latency object detection or relocalization.
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[57] J. Šochman and J. Matas. Learning fast emulators of binary
decision processes. International Journal of Computer Vi-
sion, 2009.

[58] B. Son, Y. Suh, S. Kim, H. Jung, J.-S. Kim, C. Shin, K. Park,
K. Lee, J. Park, J. Woo, et al. 4.1 a 640× 480 Dynamic
Vision Sensor with a 9µm Pixel and 300meps Address-Event
Representation. In Solid-State Circuits Conference (ISSCC),
2017 IEEE International, 2017.

[59] C. Strecha, A. Lindner, K. Ali, and P. Fua. Training for
task specific keypoint detection. In Joint Pattern Recogni-
tion Symposium. Springer, 2009.

[60] D. Tedaldi, G. Gallego, E. Mueggler, and D. Scaramuzza.
Feature Detection and Tracking with the Dynamic and
Active-Pixel Vision Sensor (Davis). In Event-based Control,
Communication, and Signal Processing (EBCCSP), 2016
Second International Conference on, pages 1–7, 2016.

[61] V. Vasco, A. Glover, and C. Bartolozzi. Fast Event-Based
Harris Corner Detection Exploiting the Advantages of Event-
Driven Cameras. In Intelligent Robots and Systems (IROS),
2016 IEEE/RSJ International Conference on, 2016.

[62] Y. Verdie, K. Yi, P. Fua, and V. Lepetit. Tilde: A temporally
invariant learned detector. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2015.

[63] K. M. Yi, E. Trulls, V. Lepetit, and P. Fua. Lift: Learned in-
variant feature transform. In European Conference on Com-
puter Vision. Springer, 2016.

[64] A. Z. Zhu, N. Atanasov, and K. Daniilidis. Event-Based
Feature Tracking with Probabilistic Data Association. In
Robotics and Automation (ICRA), 2017 IEEE International
Conference on, pages 4465–4470, 2017.

[65] A. Z. Zhu, L. Yuan, K. Chaney, and K. Daniilidis. Ev-
Flownet: Self-Supervised Optical Flow Estimation for
Event-Based Cameras. In arXiv, 2018.



Appendix

Gen3 CD Gen3 ATIS
Supplier Prophesee Prophesee
Year 2017 2017
Resolution (pixels) 640x480 480x360
Latency (µs) 40 - 200 40 -200
Dynamic range (dB) >120 >120
Min. contrast sensitivity (%) 12 12
Die power consumption (mW) 36 - 95 25 - 87
Camera Max. Bandwidth (Meps) 66 66
Chip size (mm2) 9.6x7.2 9.6x7.2
Pixel size (µm2) 15x15 20x20
Fill factor (%) 25 25
Supply voltage (V) 1.8 1.8
Stationary noise (ev=pix=s) at 25C 0.1 0.1
CMOS technology (µm) 0.18 0.18

1P6M CIS 1P6M CIS
Grayscale output no yes
Grayscale dynamic range (dB) NA >100
Max. framerate (fps) NA NA
IMU output 1 kHz 1 kHz

Table 4: Technical description of the cameras used for the paper. The Gen3 ATIS was used to generate the ground truth.


	1 . Introduction
	2 . Event-based cameras
	3 . Related work
	4 . Method
	4.1 . Asynchronous Event-based Representation of a Visual Scene
	4.2 . Speed Invariant Time Surface
	4.3 . Learning to Detect Corner Points from Events
	4.4 . Building a Dataset for Event-based Corner Detection

	5 . Evaluation of Event-based Detectors
	6 . Experiments
	7 . Conclusion and Future Work

