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Abstract 

Cancer cell behavior is not only governed by tumor cell-autonomous properties, but also by the 

surrounding tumor stroma. Cancer-associated fibroblasts, blood vessels, immune cells and the 

extracellular matrix of the tumor microenvironment have a profound influence on tumor 

progression. Proteoglycans control various normal and pathological processes, modulating cell 

proliferation and motility, cell-matrix interactions, immune cell recruitment and angiogenesis. 

They are major mediators of cancer cell behavior though a dynamic interplay with extracellular 

matrix components. During cancer progression, their altered expression can promote the 

activation of several signaling cascades regulating crucial functional properties of cancer cells. 

Notably, the function of cell surface proteoglycans can be altered by ectodomain shedding, 

which converts membrane-bound coreceptors into soluble paracrine effector molecules. In this 

review, we highlight the importance of proteoglycans and their soluble counterparts in cancer 

progression and the consequences if their interactions with the adjacent stroma. The dynamic 

interplay among shed proteoglycans and proteolytic enzymes has a significant impact both on 

tumor cells and their surrounding stroma, with important implications for the diagnosis of this 

disease and novel therapeutic approaches. 

Keywords: proteoglycans, syndecans, shedding, tumor microenvironment, stroma 

 

mailto:mgotte@uni-muenster.de


 

 

The tumor stroma – a permissive environment for cancer progression 

Tumorigenesis and tumor progression are complex events which occur when physiological 

control mechanisms within a given cell are inactivated as a result of a series of gene mutations 

(Vogelstein et al. 1993). In fact, in their highly influential conceptual review ‘Hallmarks of 

Cancer’, Hanahan and Weinberg included the properties of an evasion of apoptosis, self-

sufficiency in growth signals, insensitivity to anti-growth signals and unlimited proliferative 

potential as self-autonomous properties which enable and promote malignant growth of tumor 

cells (Hanahan et al. 2000). However, already in this initial concept, it was clear that cancer 

progression does not only depend on the tumor cell itself, but also on its microenvironment. For 

example, tumor cells interact with their environment to stimulate the process of angiogenesis, 

the outgrowth of blood vessels from existing vasculature, in order to be supplied with nutrients 

and oxygen, and they need to interact with and overcome their extracellular matrix (ECM) 

environment in order to move to distant sites in the process of metastasis (Hanahan et al. 

2000). In an update of their concept, the authors stressed the importance of tumor cell 

interactions with stroma cells and with immune cells of the tumor microenvironment, as the 

tumor has to evade destruction by the immune system, and may even influence immune cells in 

a way that promotes tumor growth (Hanahan et al. 2011). While these publications nicely 

delineate key cell biological events governing tumorigenesis and cancer progression, the idea of 

permissive environment that promotes tumor growth has indeed historic roots. Already in the 

1850, the German pathologist Virchow described a possible influence of inflammatory cells and 

of aberrant ECM biosynthesis on tumor growth, whereas the English surgeon Paget coined the‚ 

“Seed and Soil” hypothesis, according to which tumor cells “can only live and grow if they fall on 

congenial soil”, aptly describing an important role of the tumor stroma in the pathogenetic 

process (Paget 1889). Nearly a century later, several of these elements were put into the 

context of a pathophysiological process when Harold Dvorak described tumors and their 

surrounding stroma as ‘wounds that do not heal’ (Dvorak 1986). In fact, the granulation tissue 

that is formed during the physiological process of wound healing includes the key elements of 

the reactive stroma, or ‘desmoplastic stroma’ surrounding solid tumors. These include: cancer-

associated fibroblasts (CAFs), inflammatory cells, cells constituting blood vessels (endothelial 

cells, pericytes), and the ECM, which is synthesized and remodeled by both the tumor cells and 

their cellular microenvironment. Moreover, the ECM can also be derived from plasma proteins 



escaping leaky tumor blood vessels (Dvorak 2015). The mutual interactions and crosstalk 

between tumor cells and the stroma promote tumor progression in various ways. Under the 

influence of growth factors secreted by tumor cells, including transforming growth factor (TGF) 

beta, epidermal growth factor (EGF), basic fibroblast growth factor (FGF-2) or vascular 

endothelial growth factor (VEGF), cancer cells change the properties of their microenvironment 

(Mueller et al. 2004). Fibroblasts are converted to large, spindle-shaped CAFs characterized by 

expression of alpha-smooth-muscle actin, an increased proliferative index, and a high rate of 

collagen biosynthesis, which results in an altered ECM deposition and composition (Lazard et 

al. 1993). This altered ECM has a profound influence on the properties of the tumor cells, as 

exemplified by increased synthesis of Tenascin-C by CAFs, which promotes tumor cell motility 

and metastasis by providing a low-adhesive substrate (De Wever et al. 2010, Lange et al. 

2007). Recent results indicate that an altered ECM biosynthesis within the tumor 

microenvironment may also modulate the properties of tumor-initiating cells, or cancer stem 

cells, a particularly therapy-resistant subpopulation of cancer cells which shares similarities with 

both tumor cells and stem cells (Greve et al. 2012). An aberrant expression of tenascin C, of 

proteoglycans (decorin, biglycan, versican syndecan-1), and of the glycosaminoglycan 

hyaluronan – the ligand for CD44 – have been discussed as having important signaling 

functions in the cancer stem cell (Bourguignon et al. 2016, Fanhchaksai et al. 2016, Farace et 

al. 2015, Ibrahim et al. 2013, Jachetti et al. 2015). Moreover, CAFs secrete proteases which 

degrade the ECM and free cytokines from their ECM storage, thus facilitating tumor 

angiogenesis and metastasis (Olumi et al. 1999, Sieuwerts et al. 1998). Furthermore, CAFs 

secrete cytokines such as insulin-like growth factor (IGF) and hepatocyte growth factor (HGF, 

‘scatter factor’) which increase tumor cell survival and promote cell motility in a vicious feed-

forward cycle (Mueller et al. 2004). With respect to the interaction with inflammatory cells, tumor 

cells secrete cytokines and chemokines which attract various groups of leukocytes, including 

tumor-associated macrophages (TAMs) (Coussens et al. 2002). This process may at first 

appear counter-intuitive, as leukocytes may attack and destroy tumor cells. However, 

recruitment of immune cells also facilitates tumor growth and metastasis via secretion of matrix-

degrading enzymes such as matrix metalloproteinases (MMPs), urokinase-type plasminogen 

activator (uPA), and heparanase (Coussens et al. 2002, Gotte et al. 2006). Moreover, TAMs, 

monocytes, mast cells and neutrophils secrete a vast array of cytokines which exert a 

proangiogenic effect on endothelial cells and pericytes by inducing signaling events via cell 

surface receptor tyrosine kinases and serine/threonine kinases expressed by these cell types. 

Furthermore, the cancer cells themselves promote tumor angiogenesis by secreting these 

cytokines, as a prerequisite for enhanced supply of the tumor with nutrients, and for providing 



access to the vasculature, thus facilitating metastatic spread (Carmeliet et al. 2000, Rapraeger 

2013). In summary, these data clearly indicate that interactions between tumor cells and the 

surrounding stroma make a considerable contribution to tumor cell survival and tumor growth, 

as well as metastatic spread. Remarkably, all of the functions of the tumor stroma mentioned 

above are modulated by glycoproteins of the proteoglycan family, as will be outlined in detail in 

the following sections. 

 

Proteoglycans – multifunctional modulators of cell physiology 

Proteoglycans (PGs) are important functional components of the stroma- and cancer- derived 

ECMs, as well as the cell surfaces (Sofeu Feugaing et al. 2013, Theocharis et al. 2010). They 

are composed of a core protein substituted with one or more covalently linked carbohydrate 

chains of the glycosaminoglycan (GAG) type. GAGs form long chains of linear repetitive 

disaccharide units of an amino sugar and one uronic acid (Yip et al. 2006) (Fig. 1). GAGs of 

particular relevance for this review are the heparin-related heparan sulfate (HS; N-

acetylglucosamine-alpha-L-iduronic acid/beta-D-glucuronic acid), chondroitin sulfate (CS; N-

acetyl-D-galactosamine-D-glucuronic acid, and dermatan sulfate (DS), which is derived from CS 

by C5-epimerization of the beta-D-glucuronic acid residue. As the names indicate, the basic 

disaccharide pattern of these GAG chains is subject to post-translational modifications with 

sulfate residues, which occurs as a non-template-driven enzymatic process during biosynthesis 

in the Golgi apparatus, thus providing the GAG chain not only with a high negative charge, but 

also with a high degree of structural diversity and functional heterogeneity (Theocharis et al. 

2010). This is exemplified by the HS 3-O-sulfotransferase HS3ST2, which is epigenetically 

silenced in numerous tumor entities, and which has been shown to modulate signaling via the 

MAPK and Wnt-pathways in human breast cancer cells (Vijaya Kumar et al. 2014). The various 

modifications that occur in PGs structure are cell- and tissue- specific but they also depend on 

the cell stimuli and differentiation stage (Theocharis et al. 2015b). According to their localization, 

PGs are classified into four major families, including intracellular, cell surface, pericellular and 

extracellular members. Each family can be further divided into subgroups according to the 

following criteria: gene and protein homology, modular composition, protein core properties and 

molecular size (Iozzo 1998, Iozzo et al. 2015, Schaefer et al. 2010). Apart from the fact that they 

contribute to the necessary mechanical structure for the cellular components embedded in the 

stroma, PGs can functionally interact with various ECM components and matrix-associated 

proteins, including growth factors, growth factor receptors and cytokines (Iozzo et al. 2011). Due 



to the fact that PGs bind numerous secreted proteins and cell surface co-receptors, they can 

serve several morphogens and signaling molecules to interact with other matrix components 

thus modulating their activities and affecting cell-matrix dynamics (Theocharis et al. 2014, 

Theocharis et al. 2015a, Theocharis et al. 2010). Due to their structural complexity, PGs 

contribute in several processes that are crucial for homeostasis, differentiation and tissue 

morphogenesis, participating in various normal and pathological processes, such as wound 

repair, inflammation and tumor development (Elenius et al. 2004, Frantz et al. 2010, Lu et al. 

2011). In cancer, altered expression of PGs in the stroma affects cancer cell signaling resulting 

in the disruption of critical processes during tumor progression (proliferation, adhesion, 

migration, invasion, angiogenesis and metastasis) (Bouris et al. 2015, Gialeli et al. 2013, 

Piperigkou et al. 2016, Tsonis et al. 2013). There is only one intracellular PG, serglycin, which is 

involved in the formation of secretory granules as well as in the synthesis of various ECM 

components. Serglycin is expressed in hematopoietic and non-hematopoietic tumors and it is 

reported to promote migration and invasion of low aggressive breast cancer cells (Korpetinou et 

al. 2015, Korpetinou et al. 2014, Korpetinou et al. 2013). PGs located in the ECM of cancer 

cells, such as versican, can increase their proliferation and motility through modulating the 

adhesion of cancer cells to ECM (Iozzo et al. 2011, Skandalis et al. 2011, Wight et al. 2014). 

Moreover, as a member of small leucine-rich matrix PGs, decorin is a key player in tumor 

growth and progression; it inhibits angiogenesis as well as it induces tumor cell arrest (Sofeu 

Feugaing et al. 2013). Of note, soluble decorin is considered to be anti-oncogenic and anti-

metastatic (Csordas et al. 2000, Neill et al. 2012, Neill et al. 2016). Regarding cell surface PGs, 

it is well established that syndecans are the major representatives of the transmembrane 

HSPGs. They have important roles in several biological processes, such as wound healing, 

development, stem cell differentiation, inflammation and tumorigenesis (Gotte 2003, Ibrahim et 

al. 2014b). In cancer, syndecans are considered to be cell surface mediators as they modulate 

cell-cell and cell-matrix interactions (Lim et al. 2015, Manon-Jensen et al. 2010). Although they 

are expressed in several cancer types, each syndecan member has diverse role based on the 

type and the stage of cancer, acting as promoters or inhibitors of tumor progression (Barbouri et 

al. 2014, Nikolova et al. 2009). During the last years, the research interest focuses in the field of 

epigenetics as it is reported that the expression of syndecans in cancer is regulated by specific 

microRNAs (Asuthkar et al. 2014, Ibrahim et al. 2014a, Ibrahim et al. 2014b, Ibrahim et al. 2012, 

Li et al. 2014a). Another transmembrane PG is the melanoma-associated chondroitin sulfate PG 

(NG2), which promotes vascularization, cell survival, migration and adhesion, and modulates 

the signal transduction of fibroblast growth factor receptor (Cattaruzza et al. 2013, Garusi et al. 

2012, You et al. 2014). Betaglycan also belongs to the superfamily of transmembrane PGs and 



it is a modulator of epithelial-to-mesenchymal-transition, acting as co-receptor for TGFβ 

members (Diestel et al. 2013). Moreover, this PG is necessary for reproduction and fetal growth, 

while it is generally considered as a tumor suppressor (Bernabeu et al. 2009, Bilandzic et al. 

2011). Taking under consideration the above data, it is plausible to suggest that due to their 

well-established involvement in cancer progression, PGs are of relevance as potential targets 

for cancer therapy. In many cases, these PGs are expressed by the tumor cells themselves, 

however, as will be discussed below, an aberrant and functionally relevant expression of 

selected PG members has also been observed in the tumor stroma (Ahmed Haji Omar et al. 

2013, Farnedi et al. 2015, Li et al. 2014b, Szarvas et al. 2014, Takahashi et al. 2012). 

Intriguingly, in the case of several cell surface-bound PGs, the proteolytic (or in some cases – 

lipolytic) mechanism of ectodomain shedding is capable of converting the membrane-bound 

form of the proteoglycan into a soluble, paracrine effector molecule (Nam et al. 2012). As one 

can imagine, shedding can have a profound effect on the tumor microenvironment, as formerly 

membrane-bound PGs at the tumor or stroma cell surface may no longer be able to act as co-

receptors for a wide range of ligands in this cell type, while they may either enhance or 

competitively inhibit processes such as proteolysis, angiogenesis and cytokine signaling within 

the paracrine diffusion range of the ectodomain. Before we discussing selected examples of 

shed proteoglycans in the tumor stroma, and their functional implications, the basic mechanisms 

of PG ectodomain shedding are briefly presented and discussed below. 

 

A primer on proteoglycan ectodomain shedding 

Cell membrane proteoglycans have crucial roles in many steps of tumor progression, as 

interactions with the surrounding stroma have been correlated with differential PG effects in 

cancer cells. Several membrane PGs are known to undergo controlled enzymatic cleavage of 

their ectodomain by certain proteases, the so called sheddases. Shedding is a mechanism by 

which the intact extracellular domain of a membrane protein is converted into a soluble 

molecule. Notably, shedding does not result in complete degradation of the ectodomain, but 

rather leaves it intact, allowing for functional ligand interactions of this domain as a paracrine 

effector molecule (Manon-Jensen et al. 2010, Nam et al. 2012).The shedding of membrane-

bound proteoglycans constitutes an important and clearly controlled post-translational 

procedure that regulates several normal and pathological conditions. It can be a critical 

mechanism for the onset of infectious and non-infectious diseases, therefore the development 

of reliable tools to measure the presence of shedding PGs in such conditions. With the 



exception of the glycosylphosphatidyl-inositol (GPI)- anchored glypicans, which can be shed by 

a phospholipase (Traister et al. 2008), all PGs of the tumor stroma are shed by proteases. 

Shedding usually occurs at a juxtamembrane site and is mediated by members of the matrix 

metalloproteinase family (matrilysin, collagenases, gelatinases), by membrane-type 

metalloproteinases (MT1-MMP, MT3-MMP), and members of the ADAM (a disintegrin and 

metalloproteinase) and ADAM-TS (ADAM with thrombospondin motif) families (ADAM-10, 

ADAM-17 (TACE), ADAMTS-1, ADAMTS-4). In addition, serine proteases such as plasmin and 

thrombin have been shown to induce shedding of proteoglycans (Manon-Jensen et al. 2010, 

Nam et al. 2012). An overview of relevant sheddases can be found in Table I. Shedding of PGs 

can be regulated at several levels. Regulatory mechanisms include the induction or repression 

of sheddases and protease inhibitors such as tissue inhibitors of metalloproteinases (TIMPs), 

and the modulation of enzyme activity via binding of sheddases and protease inhibitors to 

glycosaminoglycan chains, which can either stabilize these proteins in an active or inactive 

conformation, or protect them from degradation (Bernfield et al. 1999, Elenius et al. 2004). 

While shedding can occur constitutively, it can be substantially enhanced by exogenous stimuli, 

including growth factors, chemokines, bacterial virulence factors, cell stress, phorbol esters, 

trypsin, insulin and the HS degrading enzyme, heparanase (Bernfield et al. 1999, Manon-

Jensen et al. 2010, Nam et al. 2012). We will discuss selected examples in the following 

section, which addresses different members of shed proteoglycans in the tumor stroma. 

 

Shed proteoglycans in the tumor stroma 

Recent studies have categorized cell surface proteoglycans into different families. Membrane-

bound PGs include syndecans (-1 to -4), the GPI-anchored glypicans (-1 to -6), the TGF beta 

Type III receptor betaglycan, melanoma-associated chondroitin sulfate proteoglycan 

(MCSP/NG2) and phosphacan / protein tyrosine phosphatase gamma (PTPgamma). 

Syndecans and glypicans are HSPGs, NG2 and phosphacan are CSPGs, whereas the GAG 

chains of betaglycan is composed of CS and HS chains (Iozzo et al. 2015). Notably, members 

of all of these PG families are known to be substrates for sheddases. In this section, we will 

present the process of ectodomain shedding using selected examples, and discuss their 

pathophysiological relevance within the tumor stroma. 

Syndecans 

Syndecans are prototypical transmembrane HSPGs which have several functions relevant to 



tumor progression (Fig. 1). For example, they are involved in the regulation of cell proliferation 

by acting as co-receptor for several growth factor receptors; they act as a cell adhesion 

molecules, and modulate proteolysis, chemokine action, angiogenesis, and cancer stem cell 

function (Ibrahim et al. 2013, Manon-Jensen et al. 2010, Yip et al. 2006). Notably, all syndecans 

are shed in vitro and in vivo (Bernfield et al. 1999). Proteolytic cleavage of syndecans is 

mediated by plasmin, thrombin, MMPs, ADAMTs (Kim et al. 1994) (Table I) and can be 

modulated  by interfering with several signaling cascades including protein kinase C (PKC), 

protein tyrosine kinase (PTK) and the MAP kinase pathway (Bernfield et al. 1999). It has been 

previously demonstrated that a substitution of the glycine residue at position 245 of syndecan-1 

with a leucine reduces the extent of MT1-MMP mediated shedding by ∼50% in human 

fibrosarcoma cells (Endo et al. 2003). On the other hand, the ectodomain shedding of murine 

syndecan-1 and -4 is inhibited by TIMP-1 and TIMP-2, revealing that the responsible sheddase 

belongs to the ADAM family of metalloproteinases (Fitzgerald et al. 2000). Syndecan shedding 

has bimodal effects under several pathological conditions in vivo (Fig. 2). Soluble syndecan-1 

was shown to be required for the formation of chemotactic gradients in a lung inflammation 

model in mice, and may be implicated in the regulation of leukocyte-endothelial interactions and 

angiogenesis (Gotte 2003, Gotte et al. 2003). Moreover, shedding of syndecan-3 ectodomain 

appears to modulate feeding behavior and body weight in mice (Reizes et al. 2003). On the 

other hand, overexpression of soluble syndecan-1 delays wound repair and induces abnormal 

blood vessel morphology, due to the increased amount of soluble syndecan-1 observed in skin 

wound fluids (Elenius et al. 2004). These high amounts have been shown to increase elastolytic 

activity, which may also be of relevance in the tumor stroma. Once syndecan-1 is shed from the 

cell surface, the remaining transmembrane fragment (cCTF) undergoes intramembrane 

proteolysis by γ-secretase and it is cleaved by the proteasome (Pasqualon et al. 2015). This 

fragment is able to inhibit cell migration and invasion in A549 lung cancer cells through the 

phosphorylation/activation of Src kinase, focal adhesion kinase and Rho-GTPase, whereas it 

blocks syndecan-1-dependent lung tumor cell migration and invasion. Moreover, lung tumor 

formation of A549 cells in mice was reduced by overexpression of syndecan-1 cytoplasmic 

fragment, enhancing the crucial role of syndecan-1 in tumor cell migration. The cleavage sites 

for syndecan shedding seem to be conserved, and have been identified in the case of human 

and murine Syndecan-1, and in Syndecan-4 (Manon-Jensen et al. 2010, Wang et al. 2005). It 

has been suggested that the potential cleavage sites may located within the 15-amino acid 

juxtamembrane region near the plasma membrane and it is confirmed that the shedding is a 

membrane surface event. In the case of murine Syndecan-1, for example, the cleavage site of 

syndecan-1 is located between Ala243 Ser244, nine AA from the membrane, as determined by 



domain swapping experiments and mass spectrometric sequencing (Wang et al. 2005). Clearly, 

several functions of syndecans in an oncological context are mediated by the membrane-bound 

form. Moreover, a large part of these functions have been shown to be tumor cell-autonomous. 

However, there are also indications for important roles of syndecans in the tumor stroma, and 

for soluble syndecan ectodomains in the stroma, which can be either generated by cleavage 

from the tumor cell surface or from other cell types such as CAFs, endothelial cells or 

leukocytes. Indeed, syndecan-1 is expressed and dysregulated in the stromal of several types 

of cancers, including breast carcinoma, colon cancer, gastric cancer, bladder cancer and 

squamous cell carcinoma (Ahmed Haji Omar et al. 2013, Hashimoto et al. 2008, Mukunyadzi et 

al. 2003, Szarvas et al. 2014, Yang et al. 2002). An aberrant stromal expression has also been 

noted for syndecan-2 in different tumor entities (Ahmed Haji Omar et al. 2013, Farnedi et al. 

2015, Hrabar et al. 2010). Tumor promotion is counted among its main functions. This may be 

correlated with the existence of its soluble form in some cancers (Miles et al. 2014, Nikolova et 

al. 2009). To note, the expression levels of syndecan-1 distributed from epithelium to stroma, 

were by far higher in breast cancer tissue compared to the normal one (Lofgren et al. 2007). 

While it is difficult to assess the contribution of soluble syndecan ectodomains in these 

histopathological studies, functional studies do indeed point at a mechanistic role for soluble 

syndecans in tumor progression. For example, soluble syndecan-1 promotes growth of 

myeloma tumors in vivo, and it has been shown that tumors producing soluble syndecan-1 

ectodomain grow significantly faster than tumors expressing syndecan-1 on the cell surface 

(Yang et al. 2002). Moreover, breast cancer cells overexpressing soluble syndecan-1 show 

higher cell proliferation rates and higher matrigel invasiveness compared to cells 

overexpressing a non-cleavable, constitutively membrane-bound form of this PG (Nikolova et al. 

2009). This change in cell behavior could be attributed to a downregulation of the antimetastatic 

homotypic cell adhesion molecule E-cadherin, and a downregulation of the MMP inhibitor TIMP-

1 in cells overexpressing soluble syndecan-1. Moreover, it has been recently shown that MT1-

MMP produced by stromal fibroblasts releases syndecan-1 ectodomain as a paracrine mediator 

by the direct cleavage of syndecan-1 at the surface of these cells (Table I). CAFs stimulate 

breast cancer cell growth through MT1-MMP enzymatic activity. Together, these data pinpoint 

the novel role of fibroblast-derived MMPs and their proteoglycan targets in stromal-epithelial 

signaling in carcinomas. A mechanistically highly relevant study employing a tumor cell- stromal 

fibroblast co-culture system has demonstrated that stromal syndecan-1 mediates breast cancer 

cell proliferation in vitro and in vivo and that this regulation requires the HS chains and the 

presence of the stromal cell-derived factor 1 (SDF1) and fibroblast growth factor 2 (FGF2)  (Su 

et al. 2008). Strikingly, syndecan-1 expressed by stromal fibroblasts has apparently a profound 



effect on matrix organization within the tumor stroma, and can thus be expected to modulate 

tumor cell motility and signaling via integrins (Yang et al. 2002). However, the potential roles of 

syndecans are not restricted to cancer-associated fibroblasts: Data from a syndecan-1 

transgenic mouse skin wound model suggest an influence of the HS chains of syndecan-1 on 

the proteolytic milieu, as soluble syndecan-1 increased elastolytic activity in the wound fluid, 

leading to delayed repair and abnormal angiogenesis (Elenius et al. 2004). Indeed, several 

studies have demonstrated that syndecans are capable of binding proteases, including different 

members of the MMP family (Manon-Jensen et al. 2010). While these data are in accordance 

with Dvorak’s paradigm of tumors as wounds that do not heal (Dvorak 1986), there are 

additional indications for a role of syndecan-1 in tumor angiogenesis; Syndecan-1 is a 

modulator of integrins relevant for this process (Rapraeger 2013) and heparanase-accellerated 

shedding of syndecan-1 ectodomains has been shown to modulate angiogenesis in myeloma 

via binding of the PG to VEGF (Purushothaman et al. 2010). Apart from these processes, data 

in animal models point at a role for syndecan-1 in leukocyte recruitment, thus including potential 

roles in endothelial and inflammatory cells. For example, lack of syndecan-1 on leukocytes 

enhances integrin-ICAM-1 interactions and leads to increased leukocyte recruitment during 

inflammation, whereas lack of heparan sulfate on endothelial cells interferes with leukocyte 

recruitment (Kumar et al. 2015). Similar findings can be expected regarding leukocyte 

recruitment in the tumor stroma; however, no functional studies have been performed so far. 

Mechanistically, a striking finding has been the observation that shed syndecan-1 can be 

transported to the nucleus, where it can influence transcription via inhibition of histone 

acetylation, thus broadening the functional impact of the molecule (Stewart et al. 2015) (Fig. 2). 

In summary, these data indicate that the soluble ectodomains of syndecans have a profound 

influence on the tumor microenvironment, thus emerging as potential therapeutic targets.  

 

Glypicans 

The glypican family of cell surface proteoglycans consists of six members in mammals 

(Bernfield et al. 1999). The core protein of glypicans is attached to the cell surface through a 

glycosyl-phosphatidyl-inositol (GPI) anchor. Several members of the glypican family influence 

tumor development, and their expression is dysregulated in a context-dependent manner in 

different tumor entities (Ibrahim et al. 2014b, Theocharis et al. 2015b). For example, glypican-3 

has been proosed as a prognostic marker for melanoma and human hepatocellular carcinoma 

(HCC) (Haruyama et al. 2015). Notably, stromal expression of glypican-1 is increased in 

prostate cancer (Suhovskih et al. 2013) and in ovarian cancer, where it is a poor prognostic 



indicator for survival (Davies et al. 2004), indicating a possible important role in the tumor 

microenvironment. At the functional level, glypicans modulate numerous signaling pathways 

(FGF, Wnt, Hedgehog, BMP), thus regulating cell proliferation, cell survival, cell migration, cell 

differentiation and angiogenesis (Filmus et al. 2013). Similar to syndecans, glypicans can be 

shed, however, by necessity the molecular mechanism differs, as the HSPG is GPI-anchored 

(Fig. 2). Glypican shedding includes cleavage of their GPI anchor by phospholipases (Traister et 

al. 2008). Moreover, they can be dually processed by partial cleavage via proteases and lipases 

(Filmus et al. 2013). The high levels of shed glypican may arise either from high amounts of this 

PG or from increased enzymatic activity of proteases. Therefore, glypican-3 may be an 

important candidate antigen for immunotherapy of HCC, where it is strongly expressed. Various 

clinical approaches include the glypican-3 peptide vaccination and the anti-glypican-3 antibody 

in patients with melanoma and HCC (Ishiguro et al. 2008, Nakatsura et al. 2004). Moreover, the 

suppression of glypican-1 in pancreatic cancer leads to decreased cytotoxic effects of natural 

killer cells (NK) (Bloushtain et al. 2004, Hershkovitz et al. 2007). 

 

Melanoma associated chondroitin sulfate proteoglycan-nerve/glial antigen 2 (MCSP/NG2) 

NG2 is a large multidomain cell surface CSPG, which is of particular relevance for the tumor 

stroma, as it is expressed by mural cells (and thus relevant for angiogenesis) and is widely used 

as a molecular marker for CAFs (Balzarini et al. 2012, Kim et al. 2015, Park et al. 2015). 

Important functions of NG2 include a role in pericyte recruitment during (tumor) angiogenesis 

(Gibby et al. 2012) and as a mediator of growth-stimulatory and pro-survival effects, which are 

due to activation of the Akt and beta-catenin signaling pathways following the interaction of NG2 

with its matrix substrate collagen VI (Iyengar et al. 2005, Cattarruzza et al. 2013a). Moreover, 

NG2 is capable of modulating FGF2 signaling in perivascular cells (Cattarruzza et al. 2013b). Its 

role as a pericyte marker has recently been exploited in a therapeutic study where a fusion 

peptide comprised of an NG2 targeting peptide and tissue factor was utilized to iduce tumor cell 

infarction in a xenograft model (Brand et al. 2016). Importantly, a clinicopathological study on 

head and neck cancer revealed that NG2 expression in neoplastic cells and in the intralesional 

stroma was strongly associated with loco-regional relapse, emphasizing the relevance of 

aberrant NG2 expression in an oncological context (Farnedi et al. 2015). Moreover, a predictive 

value regarding metastasis formation has been assigned to NG2 in soft tisue carcinoma patients 

(Benassi et al. 2009). The juxtamembrane domain of NG2 contains several protease cleavage 

sites and the diffusible ectodomain can be detected in the blood stream of melanoma patients 



(Price et al. 2011). Moreover, NG2 has been detected in unique glial cells receiving synaptic 

input from neurons. Interestingly, its enzymatic cleavage by ADAM-10 and γ-secretase yields an 

active ectodomain associated with the extracellular matrix thus modulating neuronal networks 

(Sakry et al. 2014). Soluble NG2 has been detected in vitro and in vivo. Pharmacological 

inhibition of NG2 shedding resulted in impaired behavior and sensory data in mice that is 

correlated with various human diseases such as schizophrenia (Geyer et al. 2001), paving the 

way for similar therapeutic approaches in an oncological context.  

 

Betaglycan 

Betaglycan - the proteoglycan form of the TGFbeta receptor type III – has been identified as a 

suppressor of cancer progression in several epithelial tumors (Dong et al. 2007, Hempel et al. 

2007, Sun et al. 1997), although its function is context-dependent in some tumor entities 

(Criswell et al. 2008).  Mechanistically, betaglycan plays an important role as a receptor in 

TGFbeta and TGFbeta family member - mediated signaling, leading to a suppression of the 

transcription factor NFkB and downstream targets such as MMP2, and to a modulation of Rho-

GTPase-mediated signaling cascades involved in cytoskeletal remodeling (Bilandzic et al. 2014, 

Oh et al. 2013, You et al. 2009). In accordance with a potential tumor suppressor role, 

betaglycan expression is downregulated in CAFs in oral squamous cell carcinoma (Meng et al. 

2011). Notably, betaglycan inhibits heterotropic adhesion between myeloma cells and bone 

marrow stromal cells, indicating an important function in the tumor microenvironment (Lambert 

et al. 2011). While betaglycan may be transported from tumor cells to fibroblasts via exosomes, 

inducing their differentiation to a myofibroblast-like-state (Webber et al. 2010), some functions of 

this proteoglycan depend on shedding of its ectodomain, which is mediated by MT1-MMP 

(Velasco-Loyden et al. 2004). Using betaglycan mutants which displayed either reduced or 

increased shedding rates, Elderbloom et al. demonstrated that inhibition of betaglycan shedding 

increased TGF-β responsiveness and abrogated the ability of the PG to inhibit breast cancer 

cell migration and invasion, whereas expression of a mutant recaprot showing increased 

ectodomain shedding resulted in the opposite effect (Elderbroom et al. 2014). Importantly, 

soluble betaglycan reduced breast cancer metastasis in an in vivo model. Using a similar 

experimental approach and pharmacological shedding inhibitors, the same research group 

demonstrated that the balance of cell surface and soluble type betaglycan regulates BMP 

signaling in normal and cancerous murine mammary epithelial cells. The impact BMP/Smad 

signaling resulted in a comparable effect on breast cancer cell proliferation and migration and 



was attributed to ligand sequestration by the soluble ectodomain (Gatza et al. 2014). 

 

Outlook: prognostic and therapeutic considerations 

The generation of soluble PG ectodomains within the tumor stroma has a considerable impact 

on several relevant non-cancer cell-autonomous processes, including regulation of the 

proteolytic milieu, of cytokine signaling, of matrix remodeling as a prerequisite for metastasis, 

and of angiogenesis (Figure 2). Based on these important functions, the question arises if this 

knowledge could be utilized in a translational or clinical setting. One possibility is the detection 

of PG ectodomain levels in the serum as a diagnostic tool. Elevated levels of soluble 

proteoglycans in biological fluids, such as blood serum, have been detected in patients with 

sepsis, ischemia or reperfusion injury, graft-versus-host disease as well as in various cancer 

types (Joensuu et al. 2002, Kliment et al. 2009, Rehm et al. 2007, Seidel et al. 2003, Steppan et 

al. 2011). For example, the presence of the soluble syndecan-1 in the blood stream is indicative 

for poor prognosis in several malignancies (Joensuu et al. 2002, Lovell et al. 2005, Szarvas et 

al. 2014, Vassilakopoulos et al. 2005). A diagnostic or prognostic value for additional shed 

proteoglycan ectodomains in hepatocellular carcinoma has also been attributed to glypican-3 

(Haruyama et al. 2015) and NG2 (Lu et al. 2015). Finally, in vivo studies have correlated the 

presence of shed syndecan-1 with the inflammatory response (Hayashida et al. 2008, Li et al. 

2002), with potential relevance to leukocyte recruitment to the tumor stroma. These data 

indicate that soluble PG ectodomains that have been released into the blood stream are indeed 

promising diagnostic markers which can aid therapeutic decisions in a clinical context. Given the 

functional importance of shed PG ectodomains in the tumor stroma, inhibition of shedding may 

be a worthwhile therapeutic approach, which may not only have an impact on the tumor cells 

(which may more easily develop therapeutic resistance due to their genomic instability and 

cancer stem cell properties), but also on its microenvironment. Therefore, the very promising 

next step will be the development of specific shedding inhibitors in clinical trials for the focused 

approach of several pathological situations. Some potential inhibitors that have been recently 

discussed in the context of syndecan shedding include MT1-MMP inhibitors (GM6001, BB94, 

TIMP-2), MMP-7 inhibitors (TIMP-1), the FGF2 antagonist PTX3, and all-trans retinoic acid 

(Choi et al. 2013). While more translational research in this area is warranted, inhibition of 

shedding may contribute to the exciting therapeutic concept of tumor stroma normalization, 

which aims at transforming the cancer microenvironment into a non-permissive one with the aim 

of slowing down or even reverting tumor progression (Mueller et al. 2004). 
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Figure legends 

 

Figure 1: Syndecan shedding. The mechanism of shedding involves the proteolytic cleavage of 

their ectodomain near the plasma membrane by metzincin enzymes, such as 

metalloproteinases. HS chains can be additionally cleaved by heparanase. Syndecan core 

protein can be further processed by intramembrane enzymatic cleavage. Syndecans are in a 

dynamic interplay with the ECM and several growth factors mediating numerous signaling 

pathways. See text for details. 



 

Figure 2: An overview of different cell surface proteoglycans known to be shed, including 

transmembrane (syndecans, betaglycan, NG2 and phosphacan) and GPI-anchored (glypicans). 

The GAG chain and the major cleavage sites for selected sheddases are depicted, as 

exemplified for the syndecan-1 core protein. The GPI-anchored glypicans are shed by 

phospholipases, whereas the other depicted transmembrane proteoglycans are cleaved by a 

wide range of proteases (see Table I). Moreover, autocrine and paracrine effects induced by 

each proteoglycan are shown, affecting important stromal functions in angiogenesis, tumor cell 

proliferation and survival, cell adhesion, migration and metastatic behaviour. Shed ectodomains 

are deposited in the ECM where they can influence the function and interactions of large 

structural matrix glycoproteins, growth factors and cytokines. Ectodomain shedding reduces the 

available binding sites for such ligands at the cell surface, resulting in altered cytokine 

responses. Left panel: In the case of syndecan-1, shedding is facilitated by degradation of the 

HS chains by heparanase. Shed syndecan-1 and betaglycan can be transported in exosomes, 

which is a means of transferring proteins and microRNAs from tumor cells to stroma cells. 

Finally, syndecan-1 ectodomains can reach the nucleus and modulate gene transcription  (See 

text and (Theocharis et al. 2015b) for details. While phosphacan is a shed proteoglycan, very 

little is known so far about its function in the tumor stroma.  



 

Table I. Selected examples for sheddases and their proteoglycan targets 

 
Shedding enzyme 

 
Classification 

 
Shed proteoglycan (examples) 

 
Reference 

 
MMP-7 

 
Matrilysin 

 
Syndecan-1, Syndecan-2 

 
(Kwon et al. 2014, Li 

et al. 2002) 
 

MMP-2 
 

Gelatinase 
Syndecan-1, Syndecan-2, 

Syndecan-4 
(Brule et al. 2006, 
Fears et al. 2006) 

 
MMP-9 

 
Gelatinase 

Syndecan-1, Syndecan-2, 
Syndecan-4, NG2 

 
(Brule et al. 2006, 
Fears et al. 2006, 

Schultz et al. 2014) 
 

MMP-14 
 

Collagenase 
 

NG2 
 

(Joo et al. 2014) 
 

MT1-MMP  
(MMP14) 

 
Membrane-type 

metalloproteinase 

 
Syndecan-1, NG2, Betaglycan 

 
(Brule et al. 2006, 
Fears et al. 2006, 

Nishihara et al. 2015, 
Velasco-Loyden et al. 

2004) 
 

MT3-MMP 
 

 
Membrane-type 

metalloproteinase 

 
Syndecan-1 

 
(Brule et al. 2006, 
Fears et al. 2006) 

 
ADAM-10 

A disintegrin and 
metalloproteinase 

(ADAM) 

 
NG2 

 
(Sakry et al. 2014) 

 
ADAM-17 (TACE) 

A disintegrin and 
metalloproteinase 

(ADAM) 

 
Syndecan-1, Syndecan-4 

 
(Pruessmeyer et al. 

2010) 
 

ADAMTS-1 
 

ADAM with 
thrombospondin 
motif (ADAM-TS) 

 
Syndecan-4 

 
(Rodriguez-

Manzaneque et al. 
2009) 

 
 

ADAMTS-4 

 
ADAM with 

thrombospondin 
motif (ADAM-TS) 

 
 

Syndecan-4 

(Rodriguez-
Manzaneque et al. 

2009) 

 
Thrombin 

 
Serine protease 

 
Syndecan-4, Syndecan-1 

 
(Schmidt et al. 2005, 
Subramanian et al. 

1997) 
 

Plasmin 
 

Serine protease 
 

Syndecan-4 
(Schmidt et al. 2005) 

 
Notum 

 
Phospholipase 

Glypican-3 
Glypican-5 
Glypican-6 

 
(Traister et al. 2008) 



 

 

 

 

 


