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Blood Pumps: An Industrial Application

Video edited by CorWave Inc.

Left Ventricular Assist Devices (LVADs) 
support the activity of failed hearts by 
pumping blood into the ascending
aorta.

Medical applications:
▪ Bridge to recovery
▪ Bridge to transplantation
▪ Destination therapy

CorWave Inc. – producer of new  
membrane-based blood pumps 

→ Wave propagation technology

→ Physiologic pulsatile pump action
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The Membrane-based Blood Pump

Video edited by CorWave Inc.
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Advantages of In-Silico Models

In-silico simulations of the complex dynamics inside the pump allow to:

❑ Predict the pump performance under different operating conditions, 
varying:

▪ Frequence of oscillation
▪ Amplitude of oscillation
▪ Pressure gradient between inlet and outlet

❑ Study the 3D vibrational modes of the immersed elastic membrane

❑ Optimize the pump design to reduce the risk of blood trauma (e.g. 
hemolysis or thrombosis)

❑ Reduce the need of animal experimentations and make safer clinical
trials
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▪ The elastic membrane is made of an
homogeneous and isotropic material

▪ Small displacements regime

→ Linear elasticity assumption

→ Hooke’s Law
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Fluid-Structure Interaction Model

▪ The blood consists
of a suspension of
many cells (RBC,
WBC, PT) in plasma

Given the fluid domain       at time t, find fluid
velocity u and pressure p such that:

Given the solid domain       in the reference
configuration, find displacement d such that:

Fluid Model Structure Model

Interface Coupling

[C. Paddock, MedicalNewsToday]

▪ In most cases, it can be modeled as a
viscous incompressible Newtonian
fluid using Navier-Stokes Equations



The coupling conditions imposed at the fluid-structure interface should guarantee:

1) Geometric adherence of the fluid and solid domains (geometric condition)

2) Continuity of the velocities at the interface (kinematic condition)

3) Continuity of the forces at the interface (dynamic conditions)
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Fluid-Structure Interaction Model

- Fluid displacement
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Boundary and Initial Conditions

Boundary conditions: Initial conditions:

Sinusoidal oscillation
imposed by the 
electromagnetic actuator



ROMSOC MARCO MARTINOLLI 11/26

Table of Contents

1) Blood pumps: an industrial application

2) Mathematical formulation of the FSI problem

3) Numerical method: X-FEM/DG

4) Results

5) Conclusions



Numerical issues:
▪ Three-dimensional immersed structure with small thickness
▪ Large structure displacement compared with the limited fluid free space
▪ Possible contact with the pump walls
▪ High frequency of oscillation (about 60-120 Hz)
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Fitted vs. Unfitted Methods
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Fitted vs. Unfitted Methods

Fitted Methods: fluid and solid mesh are fitted at
the inteface and move together.
✓ Simple and accurate
▪ Not suited to handle large deformations or 

the contact problem

Numerical issues:
▪ Three-dimensional immersed structure with small thickness
▪ Large structure displacement compared with the limited fluid free space
▪ Possible contact with the pump walls
▪ High frequency of oscillation (about 60-120 Hz)
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Fitted vs. Unfitted Methods

Fitted Methods: fluid and solid mesh are fitted at
the inteface and move together.
✓ Simple and accurate
▪ Not suited to handle large deformations or 

the contact problem

Unfitted Methods: the background fluid mesh is
not fitted with the structure one at the interface, 
and it is fixed in time
✓ Suited for large deformations and contact
▪ Computationally more complex

Numerical issues:
▪ Three-dimensional immersed structure with small thickness
▪ Large structure displacement compared with the limited fluid free space
▪ Possible contact with the pump walls
▪ High frequency of oscillation (about 60-120 Hz)
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XFEM-DG Technique

The Extended-Finite Element Method (XFEM) is an unfitted technique based on the 
enrichment of the functional space of the so-called split elements.

Split elements

The Discontinuous Galerkin mortaring (DG) at the interface is employed to 
couple the fluid and the structure problems at the interface.

[Moës, Dolbow, Belytschko, IJNME (1999)], [Hansbo, Hansbo, CMAME (2002)]

[Arnold et al., SIAM J Numer Anal (2001)]

[Burman, Fernández, CMAME (2014)],  [Schott, Wall, CMAME (2014)],  [Massing et al., CAMCoS (2015)],

[Alauzet, Fernández et al., CMAME (2016)], [Burman, Fernández, Gerbeau, C&F (2018)]

[S. Zonca, C. Vergara, L. Formaggia. An unfitted formulation for the interaction of an incompressible fluid with a thick 

structure via an XFEM/DG approach. SIAM J. Sci. Comput. 40 (1) (2018), pp. B59-B84]



The degrees of freedom (dofs) of each split element are duplicated to represent the 
fluid solution on both sides of the structure independently.

This approach allows to represent a discontinuity within the element, but using the 
same Lagrangian basis function.
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The Extension of the Finite Elements

Representation of XFEM method in 1D case scenario.

Left side Right side
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Numerical Discretization

Fluid terms

Structure terms

DG Coupling terms

Ghost-penalty terms

[S. Zonca, C. Vergara, L. Formaggia. An unfitted formulation for the interaction of an incompressible fluid with a thick 

structure via an XFEM/DG approach. SIAM J. Sci. Comput. 40 (1) (2018), pp. B59-B84]

[Burman, C R Math Acad Sci Paris (2010)]

[Arnold et al., SIAM J Numer Anal (2001)]

[Burman, Fernández, CMAME (2009)]
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The Geometric Complexity of XFEM Approach

At each time instant 𝑡𝑛 > 0:

1. Move the solid mesh by ⅆ𝑛−1

2. Compute the new intersections between the 
fluid and the structure meshes

3. Double the dofs of the split elements

4. Sub-tetrahedralize each polyhedron to 
integrate on tetrahedra (Gaussian rule)

5. Solve the problem to get displacement ⅆ𝑛

[S. Zonca, C. Vergara, L. Formaggia. An unfitted formulation for the interaction of an incompressible fluid with a thick 

structure via an XFEM/DG approach. SIAM J. Sci. Comput. 40 (1) (2018), pp. B59-B84]
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Settings of 3D FSI Simulations

Discretization parameters:
▪ Space

▪ Fluid FE space: 
▪ Solid FE space: 
▪ ℎ𝑓 = 0.03 cm, ℎ𝑠 = 0.02 cm

▪ Time
▪ Δ𝑡 = 5 e-4 s, T = 0.1 s
▪ BDF order 1

Physical settings:
▪ Membrane oscillation:

▪ 𝝓 = 0.9 cm
▪ f = {10, 30, 60, 100 } Hz

▪ Mean inlet velocity:
▪ U = {1.0,  3.6,  5.3,  7.1  } cm/s

The region of interest is limited to 
the lower pump head region

Physiologic
range

Sketch of the cross section of the domain
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Velocity and Pressure Field

Due to small displacements, the fluid is not updated to reduce the computational cost.

Low frequencies: f =10 Hz High frequencies: f=100Hz

▪ Outflow velocity is modulated by the wave membrane propagation

▪ Reynolds number increase with oscillation frequency
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Velocity and Pressure Field

Due to small displacements, the fluid is not updated to reduce the computational cost.

Low frequencies: f =10 Hz High frequencies: f=100Hz

▪ Outflow velocity is modulated by the wave membrane propagation

▪ Reynolds number increase with oscillation frequency

▪ Pressure gradient between upside and downside the membrane alternates during
oscillation period propelling the blood outwards
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Pulsatility of the Outflow Volume Rate

• The oscillation imposed on the membrane motion reflects on a 
pulsatile volume flow rate at the outlet with the same frequency 

• The amplitude of the volume outflow rate increases while increasing
the vibration frequency f
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Membrane Displacement

F =  60 HzF = 100 Hz
The simulations allow to study the 

membrane wave propagations
and compare the displacement

with experimental data.

Recording of membrane motion using high 
speed camera

Cross-section of membrane oscillating with 
frequency f = 30 Hz
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Membrane Point Displacement Analysis

Registration of the displacements of three key points of the membrane
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Membrane Point Displacement Analysis

F = 10 Hz F = 30 Hz

F = 60 Hz F = 100 Hz

▪ Leading edge reflecting the 
given oscillation condition

▪ Stabilization of the trailing edge
around a negative point

▪ Damping effect in the trailing
edge, that increases with the 
frequency

▪ Maximum displacement
achieved by the midpoint line 
around -2.2 mm

→ contact is more plausible to 
occur on the lower pump wall
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(On)Going towards Higher Velocity Scales

Increase in the Reynolds 
number results in a slight
decrease of mass flow 
through time

→ High model sensitivity
to stability parameters

Final goal: U = 7.1 cm/s,
corresponding to full 

cardiac support

Work In Progress: Need to further investigate the causes of such behavior. 
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Conclusions & Next Steps

Conclusions:

❑ Application of XFEM-DG technique on an industrial 3D problem

❑ Outflow and membrane motion studied under different operating points

❑ Ouflow pulsatility has the same frequency of the prescribed membrane 
propagation waves and its amplitude increases with higher frequencies

Next steps:

❑ Update the fluid mesh at each time instant

❑ Optimize model robustness over different physical parameters

❑ Include contact conditions to model posssible contact of membrane with 
pump walls
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