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Abstract—For many industrial machine vision applications
it is difficult to acquire good training data to deploy deep
learning techniques. In this paper we propose a method based
on probabilistic modelling and rendering to generate artificial
images of carbon fiber fabrics. We deploy a convolutional neural
network (CNN) to learn detection of fabric contours from
artificially generated images. Our network largely follows the
recently proposed U-Net architecture. We provide results for a
set of real images taken under controlled lighting conditions.
The method can easily be adapted to similar problems in quality
control for composite parts.

Index Terms—Deep learning, probablistic modelling, U-Net

I. INTRODUCTION

In this work we adress the problem of automatically detect-
ing fabric boundaries. We do this based on images that are
acquired with a photometric stereo vision system.

For the production of parts made of carbon fiber reinforced
plastics (CFRP) there exist different production technologies.
Most of these include a processing step in which carbon
fiber material is placed, layer by layer. During this lay-up,
it is important to monitor fabric boundaries in order to detect
defects due to misalignment of individual fabric patches.

Inspection of surfaces in production by means of computer
vision poses multiple challenges. In many cases, the exact
surface properties and the relevant defects, deviations, or
features to be detected are very domain-specific. Expert knowl-
edge might be required for correct interpretation of images.
Furthermore, it is often difficult to acquire a sufficiently
large amount of representative data at the development stage
of a vision-based monitoring system. Other challenges are
related to the fact that physical accessibility (a test installation)
might be difficult. In addition, machine time can be very
costly and as a result data for feasibility studies can only be
acquired to a limited extent. In general, it might be necessary
to keep disturbance of running production at a minimum.
Furthermore, when data is acquired for evaluation of a surface
inspection system, specific defects might only occur under
certain conditions. When acquiring data for system validation,
it is often difficult to set up conditions such that the recorded
data covers all possible interesting cases. The above issues
make it difficult to transfer powerful deep learning methods to
the specific problem at hand, simply because of lack of good
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Fig. 1. Overview of our approach: A probabilistic model generates artificial
surface geometry. A rendering stage converts this to artificial images under
different simulated lighting directions. A neural network is trained on this
artificial data. The loss is calculated for heat maps as output by the neural
network and ground truth heat maps from the initial modelling stage. For the
final application, the neural network is applied to real surface images (red
arrows).

data. Furthermore, it is often not clear how existing expert
knowledge and knowledge about the production process can
be included into the design of a vision system.

We are not aware of any prior methods for the very specific
task of boundary detection of carbon fiber fabrics. For solving
similar computer vision problems, the conventional approach
is to select a set of image features and define simple thresholds
to detect interesting regions in the image. However, this
typically is very error-prone and does not generalize well. Ma-
chine learning methods have shown impressive performance
on various computer vision tasks in the recent past. However,
the lack of large amounts of data is a real bottleneck for many
special applications.

Fig. 1 provides an overview about our method. We propose
a probabilistic geometry model to generate surface structure
of non-crimp carbon fiber fabrics. A fiber rendering pro-
cess converts generated geometries into simulated photometric
stereo images. Simulated images are fed into a deep neural
network. The neural network is trained to learn heat maps of
fabric boundaries via a loss function that takes into account
artificial ground truth heat maps. The performance of the



neural network for fabric boundary detection is evaluated on
real photometric stereo images.

II. RELATED WORK

For optical analysis of carbon fiber surfaces two different
methods have been applied in the past. The first builds upon
polarization of light reflected at carbon fibers [1]. The second
is based on a photometric stereo approach for carbon fibers
[2], [3]. In the present work we build upon the second method
for image acquisition. However, we do not use reflection
properties to calculate fiber orientations or other features.
Instead, we deploy the reflection model of carbon fibers to
generate artificial images. These are then used to train a neural
network to perform fabric boundary detection. In section III-D
we explain in more detail the relationship of our method to
the photometric stereo approach.

Generative models are currently extensively studied by a
large community of researchers. We see two main concepts in
this context: data-driven generative models and hand-crafted
modelling. Typical approaches that follow the data-driven
concept are variational auto-encoders (VAE) [4] and generative
adversarial networks (GAN) [5]. Interesting extensions of
these approaches are Cycle GANs [6], and Balancing GANs
[7]. In the end all of these models are highly data-driven.
Hand-crafted modelling on the other hand is successfully
used in very domain-specific applications where data acqui-
sition is difficult. Examples are computer-generated images
for machine learning in autonomous driving [8], [9], object
localization [10], [11], or tracking of honeybees [12]. In hand-
crafted modelling the focus is more on manually specifying
the data generating process.

There is no sharp border between data-driven and hand-
crafted modelling. An example for the mixture of data-driven
and hand-crafted concepts is an application for detection of
human hands [13]. Hand-crafted elements of the model include
a 3d mesh of a hand and rendering of synthetic images.
For conversion of synthetic images to pseudo-real images an
approach inspired by Cycle GANs [6] is used. The latter
requires a large amount of hand images for training. However,
a special loss needs to be added to avoid geometric deviations.
Data augmentation is also a conecpt that relates to generative
models. It can be understood as a hand-crafted modification
(e.g. random geometric transformations, smooth deformations,
etc.) of plain data.

The method outlined in this work focuses on a hand-
crafted model. Hence, our method is conceptually very similar
to domain randomization [9], [11]. The advantage compared
to data-driven methods is that little or no data is required.
This is very interesting for applications like ours, where data
acquisition and labeling is very costly. Furthermore, domain
knowledge can be included in the generative model. This is
difficult in strongly data-driven approaches.

An important aspect of our method is related to rendering
of carbon fibers. Carbon fibers reflect light in a very special
anisotropic way. Therefore, our model needs to take this into
account for image synthesis. Modeling of reflection properties

was also done in work on surface material characterization
[14]. This method makes use of a database of bi-directional
texture functions (BTF) to synthesize images of different ma-
terials. Machine learning methods are used to infer materials
based on artificial images. In a similar way we make use of
a carbon fiber light reflection model to synthesize images.
Our method relies on a deep neural network to infer hidden
variables (boundary contours) of our model.

In order to learn inference of hidden parameters in our
model (fabric boundaries), we deploy a deep neural network.
For our purpose, so called image-to-image networks, such as
DeepLab [15] or U-Net [16], are suitable. In this work, we
use a slightly modified version of the recently proposed U-
Net architecture [16].

III. A MODEL FOR NON-CRIMP FABRICS

Our method aims at creation of artificial images that mimic
real images of a visual inspection system for carbon fiber
surfaces. Our model consists of a first part which defines a
probabilistic model of carbon fiber surface structure. Once the
structure is sampled, a set of artificial images with different
virtual light source positions are generated.

A. Fabric structure modeling

Here, we focus on a specific type of so called non-crimp
fabrics (NCF). In this type of fabric, carbon fibers are aligned
in a single direction. In order to keep the fibers in place, they
are stitched together with a narrow sewing yarn. Compared to
woven material, carbon fibers in NCF undergo less distortion.
This has a positive effect on the composite part’s mechanical
stability. Example photometric stereo images of NCF material
with sewing yarns running at 45° relative to the carbon fibers
are shown on the left side of Fig. 9. In the following, we stick
to this type of material, although the general approach can
easily be extended to other fabric types.

We understad the generation of the geometric alignment of
carbon fibers and sewing yarn as a sampling process from
a bayesian network. Sampling from the model involves a
sequence of draws from random variables which are condi-
tioned on their parent variables. This approach to probabilistic
modelling helps to break down the probability distribution
of a complex process by specifying its constituent ”local”
conditional probability distributions. In order to define condi-
tional probabilities we use standard probability distributions,
e.g. uniform or normal distribution. Parameters for these
distributions are defined by a domain expert.

Due to the directed structure of bayesian networks, a top-
down approach for modelling is targeted. On the top level we
model a piece of fabric as a grid of points on a plane. These
points define the locations where the sewing yarn penetrates
the fabric. Grid points are initially evenly spaced along x- and
y-direction of the grid. In a second step points are displaced
randomly. This accounts for imperfections in real fabrics. The
outer contour of the fabric is defined by additional points
interpolated from the outer two rows of grid points. Finally,



Fig. 2. Left: photo of real stitching yarn loop (top), control points of bezier
curve (center), and three examples for different shapes of loops (bottom).
Right: Example of generated structure of carbon fiber fabrics with grid
structure (gray), fabric boundary (red), sewing yarns (blue), and small gaps
where sewing yarn penetrates the top layer (green).

the complete grid is rotated by an angle that is uniformly
distributed in the range [-π, +π].

Sewing yarns form small elongated loops between the
locations where they penetrate the fabric. We model these
loops as simple bezier curves defined by start- and end-point
together with 4 additional points on both sides of the line
that connects start- and end-point. Fig. 2 (left) illustrates the
geometric model for these loops.

At the locations where sewing yarns penetrate the surface,
carbon fibers are slightly pushed to the side. Therefore, car-
bon fibers of the layer underneath become visible along an
elongated region around the grid point. The main direction of
these regions is along the fiber direction of the top layer. Fig. 2
(right) shows an example for a single sample of the complete
geometry of a small fabric patch. Individual structures (sewing
yarns, sewing yarns, small gaps) are each represented by
polygonal contours.

B. Fibrous material reflection model

In this sub-section we discuss how the above mentioned
geometry is converted to images that are (ideally) close to real
images of real surfaces acquired with a real camera system.
An important aspect of this rendering process is to use a rea-
sonable reflection model of fibrous material. Typically, carbon
or glass fiber surfaces reflect light in a highly anisotropic
specular way. Two angles in the geometric configuration of
surface point, optical center of the camera, and light source
determine how much light is reflected into the camera:

1) Angle α between the vector from surface point to the
camera’s optical center and the vector pointing in the
direction of the fiber on the surface.

2) Angle β between the vector from surface point to light
source and the vector pointing in the direction of the
fiber on the surface.

When α and β are equal, the maximum amount of light is
reflected towards the camera. When α and β are different, the
amount of light reflected into the camera decreases quickly. We

model this relationship with a simple exponential function. The
brightness b of a pixel that shows fiber material is proportional
to

b ∝ e−|α−β|·k, (1)

where k describes the decay of reflection intensity with in-
creasing difference of α and β (in radian). We use an empirical
value of k = 10. Fig. 3 illustrates this relationship. For this
reflection model the maximum reflection intensity is not only
reached for a single configuration. In fact, α and β are equal
for any configuration where the light source is located on the
surface of a cone. This cone is made up of all lines that run
through the observed surface point and form an angle equal
to α with the carbon fiber. The carbon fiber is the symmetry
axis of that cone.

The described model is only valid if the diameter of fibers
is less than the size of the region covered by a single camera
pixel. Furthermore, the above model explains only the fibrous
specul reflection. An interesting extension of our method could
involve learning of BRDFs [17] for more realistic rendering.
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Fig. 3. The reflection model for rendering specular fibrous materials. Intensity
of the reflection depends on the absolute difference of angles between vectors
from surface point to camera (c) and surface point to light source (l1, l2). The
relationship between difference angle and reflection intensity is approximated
by a simple exponential function.

C. Rendering of fibrous material

Once the arrangement of carbon fibers and sewing yarn on
the fabric surface is fixed, this geometric representation is con-
verted to artificial images. The simulated surface is described
by three feature maps: azimuthal angle, diffuse reflectivity, and
specular reflectivity. Rasterization of the simulated geometry
contours is done to fill dense feature maps. For example, points
along the sewing yarn are assigned high values for diffuse
reflectivity, low values for specular reflectivity, and an azimuth
angle that corresponds to the main orientation of the sewing
yarn. After rasterization of the geometric description, a set of
surface property maps or textures is available: diffuse map,
specular map, fiber orientation map.

In principle, additional maps could be generated to enhance
surface description. One example is height deviation. Also,
isotropic specularity could be useful to be added for modelling
foreign objects (e.g. small metallic pieces).

Based on surface property maps, artificial photometric
stereo images are rendered. The artificial photometric stereo
images corresponding to the single fabric illustrated in Fig. 2



Fig. 4. Artificial photometric stereo images of a single carbon fibre fabric
patch. Each image corresponds to a different light source. The images
correspond to the geometry illustrated in Fig. 2.

Fig. 5. Example for complete training sample: Artificial photometric stereo
raw images (left) with contour heat map (right).

(right) are shown in Fig. 4. A complete sample from our model
is shown in Fig. 5. For training data we render a bottom fabric
patch that fills the complete image. On top of this we render
one or two additional smaller patches. Therefore, all synthetic
images contain borders at the transitions from top layers to
bottom layers.

In addition to the rendered images, it is straight forward
to calculate also a heat map for fabric contours. Fabric
contours present in the corresponding geometry sample are
rasterized into a heat-map image. In combination with a
distance transform, the sharp contours are converted to smooth
heat maps with the maximum value of 1 at the very contour
and decreasing intensity at points with increasing distance to
the contour. The heat map is zero for all points that have
more than a threshold distance to the contour. Fig. 5 (right)
shows an example of such a heat map. When training a neural
network, rendered images are used as input and heat maps
are forwarded to the loss function. They are used as ground
truth for comparison with heat maps generated by the neural
network.

D. Relationship to Photometric Stereo for Carbon Fibers

Before we proceed with describing the use of a neural
network for detection of fabric gaps, we briefly describe
the photometric stereo vision system. The real data which
we use for evaluation comes from such a system. We also
outline the concept of photometric stereo for fiber reflection
analysis (FRA) [2]. In some sense, the method proposed in this
paper is inverse to FRA. In FRA the surface properties (fiber
orientation, diffuse reflectivity, etc.) are calculated from a set

of differently illuminated images. In our approach differently
illuminated images are synthesized based on a probabilistic
model of the surface.

FRA is based on a very similar reflection model as outlined
above. Surface properties (fiber orientation, diffuse reflectivity,
etc.) are calculated from given raw images that are illuminated
from different directions. Eight raw images are acquired by
the photometric stereo system. The number of eight images
represents a good trade off between speed (few images) and
information content (many images).

An image processing pipeline based on FRA typically at-
tempts to detect relevant findings on the surface via threshold-
ing of features of the output of FRA (fiber orientation, diffuse
reflectivity, etc., etc.). However, it is not straight forward to set
up criteria for identification of some findings based on FRA
output. Fabric boundaries are one example for that. The output
of FRA for a surface region with fabric boundaries is shown
in Fig. 6. While the fabric boundary is visible in all feature
images, it is not easy to manually define criteria for automatic
detection.

Fig. 6. Image modalities calculated based on a special reflection model.
Although these modalities show specific properties of the surface (e.g. azimuth
angle), the problem of specifying critical defects in terms of these features
remains a challenge.

Deep learning methods have proven very powerful for object
detection. End-to-end learning removes the need to manually
define thresholds for features. We suggest to use these methods
for the above photometric stereo system. In principle, it would
be possible to consider FRA features as input for a deep neural
network. However, we argue that these features do not contain
more information than the original raw photometric stereo
images. Therefore, we completely skip FRA features. Instead,
we use only raw photometric stereo images as input to our
deep neural network.

IV. NEURAL NETWORK FOR SEGMENTATION

We identify the carbon fabric boundary detection as im-
age segmentation problem. Therefore, we adapt an existing
deep neural network architecture, the U-Net [16], for our
application. The U-Net network architecture implements the
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Fig. 8. Internal structure of encoding and de-coding blocks of the neural
network.

idea of using features at multiple resolutions: small details on
high resolutions and context information on coarse resolutions.
The flow of information on the one hand follows a down-
sampling/upsampling path. On the other hand, information
is forwarded across stages with equal resolution. Therefore,
details and context are both forwarded to the final output of
the neural network.

Fig. 7 shows an overview of our network architecture. In
the original U-Net design, the output image size is smaller
than the input image size. In our implementation we add
padding layers to prevent this image shrinkage. Therefore, the
output images of our network are equal in size to the input
images. Blocks denoted E represent encoding blocks. Blocks
marked with D are de-coding blocks. The final convolution
to convert the output to the required set of channels is
marked with C. An encoding layer consists of the following
sequence of operations: max pooling, convolution, padding,
relu, convolution, padding, relu. At the initial encoding layer
E∗, the max pooling operation is skipped.

Details of encoding and de-coding layers are shown in Fig.
8. De-coding layers have two inputs: an input from the en-
coding layer of the same level of image resolution (horizontal
input) and an input with smaller spatial size from the de-coding

layer from one level below (vertical input). A transposed
convolution is applied to the low-resolution input to make it
the same size as the high-resolution input. In some cases (odd
image size), it is necessary to add a padding layer to make sure
that size of vertical input and output of transposed convolution
are equal in width and height. The remaining steps in the
de-convolution block are: concatenation of horizontal and up-
scaled vertical inputs, convolution, padding, relu, convolution,
padding, and relu.

Nice properties of the network architecture described above
are that (1) the image input size is equal to the output size
and (2) the network is fully convolutional. The latter property
makes it possible to apply the network to images of any size
(except very small images).

The input to our network are photometric stereo raw images
as shown in Fig. 9 (gray-scale images on the left). We are using
8 photometric images as individual channels for the network
input. The complete dimensions of the input therefore are:
B × C × H × W with batch size B, raw image channels
C = 8, and image size H ×W

The output of the network comes from a final convolutional
layer. Depending on the output size of this convolutional layer,
a varying number of output feature maps may be calculated. In
this work we use only a single output channel as heat map for
fabric contours. Training data contains ground truth heat maps
with values between 0 and 1, where a value of 1 is present at
the very edge of the fabric. Ground truth and network output
are compared in the loss function. For each pixel, the loss is
calculated as the squared difference between ground truth and
network output. The total loss is the average over individual
pixel losses.

V. RESULTS

We evaluate our method on two fabric patches of size
300x300mm. Regions that show edge boundaries on these
surfaces were randomly chosen and captured with a photo-
metric stereo vision system. The complete data set is publicly
available online1.

1https://zenodo.org/record/3237980



We provide a qualitative evaluation of results obtained with
the described method. Fig. 9 shows four selected examples
of results achieved with the above method. For the first two
examples shown, the fabric contour was detected without any
false positives in the image. In the third example our method
failed to detect the contour boundary running to the left of the
image. Also, some false positive high values in the heat map
occur. In the bottom image the contour region was detected
quite well, but again there is a small spot of false positive
boundary.

Fig. 9. Segmentation results for four selected examples. Raw input images
are shown on the left. Output (heat map for contours) of the neural network
(trained exclusively on artificial data) is shown on the right.

VI. CONCLUSIONS AND FUTURE WORK

The method presented in this paper uses a man-made
generative model in combination with a deep neural network.
The study presented in this paper shows that such an approach
can work in principle. We strongly believe that modelling of
training data can open the door for many highly specialized
machine vision application in industry. In future work we plan
to extend this method in two main directions: (1) extending
and improving the modelling process and (2) including ad-
ditional features and surface defects to be detected by the
method.
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