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Abstract—The layered division multiplexing (LDM) is recently
combined with spatial modulation (SM) systems to provide a
more efficiency way for broadcasting transmission. In SM aided
LDM (SM-LDM) systems, the service of each layer, which is
allocated with different power, is transmitted via SM scheme. In
this paper, a gradient descent based iterative method is proposed
to optimize the injection level, which can enhance the spectral
efficiency (SE) in the two-layer SM-LDM systems with maximum
ratio combining (MRC). In addition, the concavity analysis of this
optimization problem is also conducted. Monte Carlo simulations
are also provided to verify the effectiveness of our proposed
injection level optimization method.

Keywords—Spatial modulation (SM); layered division multi-
plexing (LDM); spectral efficiency (SE); gradient descent.

I. INTRODUCTION

Recently, the concept of spatial modulation (SM) is pro-
posed to provide a superior energy efficiency (EE) comparing
with traditional multiple-input multiple-output (MIMO) archi-
tectures [1], such as the Vertical Bell Laboratories layered
space-time (V-BLAST) scheme [2] and the space time block
code (STBC) scheme [3]. In SM systems, only one transmit
antenna (TA) is active in each time slot, so only one radio
frequency (RF) chain is equipped in the transmitter, and the
inter-channel interference (ICI) can be overcome [1] [4]. Based
on the concept of SM, generalised spatial modulation (GenSM)
is proposed to increase the SE by activating multiple TAs [5]
[6]. In addition, SM is also combined with single carrier (SC)
transmission and massive MIMO system to further increase
the SE of the system [7]–[9],

In broadcasting transmission scenarios, recently the tech-
nology of layered division multiplexing (LDM) is proposed
for SE enhancement, which has been adopted in the standard
of the Advanced Television Systems Committee (ATSC) 3.0
[10] [11]. In LDM systems, different layers conveys different
services, which are also allocated with different power levels
[11]. In most typical cases, the LDM systems are assigned
as two-layer LDM systems, and the upper layer (UL) and
lower layer (LL) are utilized for providing services for mobile
terminals and fixed terminals, respectively [12]. Therefore, the
UL and LL are also known as mobile layer (ML) and fixed

layer (FL), respectively. LDM systems can also be combined
with traditional MIMO schemes, such as spatial multiplexing
(SMX) systems [13].

The SM aided LDM (SM-LDM) scheme is recently pro-
posed to provide a better SE performance than traditional
single-TA LDM systems, in which both ML and FL utilize
SM for information transmission [14]. In [14], a two-layer
SM-LDM system framework is proposed, and the closed-form
SE lower bound of SM-LDM systems with maximum ratio
combining (MRC) is also formulated. However, the injection
level optimization has not been considered yet, which can
further increase the SE in SM-LDM systems. Therefore, in
this paper, based on the theoretical SE lower bound derived
in [14], we propose an injection level optimization algorithm
utilizing the gradient descent method, which is intended for
maximizing the sum rate of SM-LDM systems. Corresponding
to the injection level, the function of sum rate in SM-LDM
systems is quasi-concave [15], so our proposed algorithm can
search out the optimized injection level.

The organization of this paper can be summarized as
follows. Section II presents the system model of two-layer SM-
LDM systems, and the SE lower bound of both ML and FL
in SM-LDM systems with MRC. In Section III, the injection
level optimization algorithm is proposed based on the gradient
descent method, and the concavity of this problem is also
analyzed. In Section IV, Monte Carlo simulations are presented
to demonstrate the efficacy of our proposed SE maximization
algorithm. In Section V, this paper is finally concluded.

Notations: In this paper, the operators (·)T and (·)H rep-
resent the transposition and the conjugate transposition, re-
spectively. The abbreviations A(i, j) and det(A) indicate the
element in the j-th column and i-th row and the determinant
of matrix A, respectively. CN (µ, σ) represents a Gaussian
random variable whose mean is µ and variance is σ. The
abbreviation diag(x) represents a diagonal matrix whose di-
agonal elements are x, and In represents an identical matrix
whose dimension is n-by-n.
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Fig. 1. System model of the two-layer SM-LDM system.

II. SYSTEM MODEL

As shown in Fig. 1, the system model of the two-layer SM-
LDM system is introduced in this section. We denote NT as the
number of TAs, NRM as the number of receive antennas (RAs)
in ML, and NRF as the number of RAs in FL. At the trans-
mitter, the ML information and FL information are generated
separately, and the constellation symbols of both ML and FL
are also independent. Besides, the active antennas of ML and
FL are generated by the ML information and FL information,
respectively. For ML, the injection level g is introduced to
multiply the ML symbol. Then the ML symbol and FL symbol
are added and transmitted by the orthogonal frequency division
multiplexing (OFDM) modulator. Therefore, the transmitted
symbol in SM-LDM systems can be denoted as follows:

x =
√
PMLxML +

√
PFLxFL, (1)

where xML = sMLeML ∈ CNT×1 and xFL = sFLeFL ∈
CNT×1 are the transmit symbols of ML and FL, respectively.
sML ∼ CN (0, 1) and sFL ∼ CN (0, 1) denote the Gaussian
constellation symbols of ML and FL, respectively, and eML =
[0, . . . , 0, 1, 0, . . . , 0]T and eFL = [0, . . . , 0, 1, 0, . . . , 0]T rep-
resent the spatial symbols of ML and FL, respectively. PML
and PFL are transmit power of ML and FL, respectively, and
we have:

PML/PFL = g, g ≥ 0, PML + PFL = PU, (2)

where PU is the total transmit power.
Since the transmitted symbol in (1) is in frequency domain,

after OFDM modulation and OFDM demodulation, the re-
ceived frequency domain symbol in ML can be denoted as
follows:

yML =
√
PMLHMLxML +

√
PFLHMLxFL + nML, (3)

where HML ∈ CNRM×NT is the Wide Sense Stationary
(WSS) Rayleigh fading channel matrix [12], and HML(i, j) ∼
CN (0, 1) is an independent and identically distributed (i.i.d.)
Gaussian random variable. nML ∈ CNRM×1 is the addi-
tive white Gaussian noise (AWGN) in ML, and nML(i) ∼
CN (0, σ2

ML) is also i.i.d. For ML combining, the FL signal is

treated as additive noise, since ML service is always allocated
with a much higher transmit power than FL service.

Similarly, the received frequency domain symbol in FL can
be denoted as follows:

yFL =
√
PMLHFLxML +

√
PFLHFLxFL + nFL, (4)

where HFL ∈ CNRF×NT is also the WSS Rayleigh fading
matrix with HFL(i, j) ∼ CN (0, 1) [12]. nFL ∈ CNRF×1 is the
AWGN in FL with nFL(i) ∼ CN (0, σ2

FL). In addition, from
Fig. 1 (b), it can be seen that the ML signal is firstly cancelled
before FL combining, and the ML signal cancellation can
be assumed perfectly because in ML the signal-to-noise-
ratio (SNR) is much higher than that in FL [12]. Moreover,
the channel estimation (CE) can be assumed ideally, so the
cross-layer interference (CLI) can be eliminated [12]–[14].
Therefore, after the ML signal cancellation, the received FL
symbol can be denoted as follows:

yFL =
√
PFLHFLxFL + nFL, (5)

The SE lower bound of ML and FL in SM-LDM systems
with MRC is derived separately. According to [14], the closed-
form SE lower bound of ML can be denoted as (6), where
ρML,n denotes the reciprocal of the n-th signal-to-interference-
plus-noise-ratio (SINR) in ML as follows:

ρML,n =
1

SINRML,n
=

PUNT + PFLNRM +NTσ
2
ML

PMLNRM
, (8)

and ΣML,n can be denoted as follows:

ΣML,n = diag {ρML,1, ..., ρML,NT}+NTdiag{ên}, (9)

where ên represents the n-th column of INT .
From [14], the theoretical SE lower bound of FL in SM-

LDM systems with MRC can be denoted as (7), where ρFL,m
represents the reciprocal of the m-th FL SINR, and ρFL,m can
be denoted as follows:

ρFL,m =
1

SINRFL,m
=

PFLNT +NTσ
2
FL

PFLNRF
. (10)

Besides, ΣFL,m can be denoted as follows:

ΣFL,m = diag {ρFL,1, ..., ρFL,NT}+NTdiag{êm}, (11)

where êm represents the m-th column of INT .
The tightness of the closed-form SE lower bound for SM-

LDM systems with MRC has also been verified via simulations
in [14], and the simulations and bound have the same trend.
Therefore, in next sections we will utilize the theoretical SE
lower bound of SM-LDM systems with MRC as the objective
function.

III. INJECTION LEVEL OPTIMIZATION

A. Proposed Gradient Descent Based Iterative Algorithm

The goal of injection level optimization is to maximize
the sum rate in the two-layer SM-LDM systems, so the
optimization problem can be formulated as follows:

maximize SML(g) + SFL(g)
subject to g ≥ 0.

(12)



SML = log2(NT)−NT +
1

NT

{
NT∑
n=1

log2

(
1 +

NT

ρML,n

)
−

NT∑
n=1

log2

[
NT∑

n′=1

det (ΣML,n)

det (ΣML,n +ΣML,n′)

]}
, (6)

SFL = log2 (NT)−NT +
1

NT

{
NT∑

m=1

log2

(
1 +

NT

ρFL,m

)
−

NT∑
m=1

log2

[
NT∑

m′=1

det (ΣFL,m)

det (ΣFL,m +ΣFL,m′)

]}
, (7)

Aided by (2), (8) and (10), in SM-LDM systems with MRC,
the ML SINRs and FL SINRs can be represented as functions
of g. Besides, from (8) and (10), it can be seen that the ML
SINRs are same for different n, and FL SINRs are also same
for different m. Therefore, we denote ρML as the reciprocal of
ML SINRs as follows:

ρML =

(
1 +

1

g

)(
1 +

σ2
ML

PU

)
NT

NRM
+

1

g
, (13)

and we denoted ρFL as the reciprocal of FL SINRs as follows:

ρFL = (1 + g)
NT

NRF

σ2
FL

PU
+

NT

NRF
. (14)

In addition, the optimization problem in (12) can be sim-
plified as follows:

maximize S(g) = SML,C + SFL,C + SML,S + SFL,S
subject to g ≥ 0,

(15)

where SML,C and SFL,C correspond to the constellation domain
mutual information (MI) of ML and FL, respectively, which
can be denoted as follows:

SC(ρ) = log2

(
1 +

NT

ρ

)
,

SML,C = SC(ρML), SFL,C = SC(ρFL).

(16)

The SML,S and SFL,S correspond to the spatial domain MI of
ML and FL, respectively, and the constant term is ignored,
which can be simplified as follows:

SS(ρ) = − log2

[
ρ(NT − 1)(ρ+NT)

2NT−2(2ρ+NT)2
+

1

2NT

]
SML,S = SS(ρML), SFL,S = SS(ρFL).

(17)

In order to solve the optimization problem in (15), the
gradient should be calculated as follows:

∂S

∂g
=

∂SC(ρML)

∂ρML

∂ρML

∂g
+

∂SC(ρFL)

∂ρFL

∂ρFL

∂g

+
∂SS(ρML)

∂ρML

∂ρML

∂g
+

∂SS(ρFL)

∂ρFL

∂ρFL

∂g
.

(18)

From (13) and (14), the partial derivatives, ∂ρML
∂g and ∂ρFL

∂g
can be formulated as follows:
∂ρML

∂g
= − 1

g2
− 1

g2

(
1 +

σ2
ML

PU

)
NT

NRM
,

∂ρFL

∂g
=

NT

NRF

σ2
FL

PU
.

(19)
From (16) and (17), the partial derivatives can be calculated

as follows:
∂SC

∂ρ
= − 1

ln 2

NT

ρ2 + ρNT
,

∂SS

∂ρ
= − 4

ln 2
× . . .

N2
T (NT − 1)

4(NT − 1)(ρ2 + ρNT)(2ρ+NT) + (2ρ+NT)3
.

(20)

Then substituting (19) and (20) into (18), the gradient of S
with respect to g can be formulated, and the gradient descent
algorithm can be implemented based on our derived gradient.
However, the inequality constraint g ≥ 0 restricts the imple-
mentation of gradient descent algorithm, so we introduce the
barrier method [15] to solve this problem, which can transform
this constrained optimization problem into an unconstrained
optimization problem. Therefore, the optimization problem in
(15) can be reformulated as follows:

minimize f(g) = −S(g)− 1

t
ln(g), (21)

where t > 0 is the parameter of the logarithmic barrier
function. With a larger t, we can get a more accurate solution,
but a larger t can also reduce the convergence speed.

Based on the above analysis, in Algorithm 1, the gradient
descent based iterative method is proposed for optimizing the
injection level.

Algorithm 1 Maximizing the Sum Rate over the Injection
Level g:

1: Initialization: We randomly set g > 0 as the initialized g.
We set Nmax > 0 as the maximum iteration times, ϵ > 0
as the minimum gain rate, η > 0 as the step size, and
N = 1 as the initialized iteration time.

2: Gradient calculation: Compute ∆g = ∂f
∂g = −∂S

∂g −
1
t
1
g

based on (18), (19) and (20).
3: Update: ∆f ← f(g+η∆g)−f(g)

f(g) , g ← g + η∆g, and N ←
N + 1.

4: Iteration: Go to Step 2 until ∆f < ϵ or N > Nmax.

B. Concavity Analysis

In this subsection, the concavity of constellation domain MI
of ML and FL is firstly analyzed. Aided by (20), the second-
order derivative of SC can be derived as follows:

∂2SC

∂ρ2
=

NT

ln 2

2ρ+NT

(ρ2 + ρNT)2
. (22)

Since ∂SC
∂ρ < 0 and ρ > 0 for both ML and FL, SC(ρ) is

a non-increasing convex function. For the SINR reciprocals
of both ML and FL, the second-order derivative can be
formulated as follows:

∂2ρML

∂g2
=

2

g3
+

2

g3

(
1 +

σ2
ML

PU

)
NT

NRM
≥ 0,

∂2ρFL

∂g2
= 0,

(23)
so ρML(g) is convex and ρFL(g) is both convex and con-
cave. Because of the concavity of function of functions [15],
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SFL,C(g) is a convex function. Considering SML,C(g), it is
indeed a concave function, and the second-order derivative
can be derived as follows:

∂2SML,C

∂g2
=

∂2SML,C

∂ρ2ML

(
∂ρML

∂g

)2

+
∂SML,C

∂ρML

∂2ρML

∂g2
. (24)

We want to prove the inequality ∂2SML,C
∂g2 ≥ 0. After substi-

tuting (20), (19), (22) and (23) into (24) and simplification,
the proof is equivalent to the following inequation:(

1

ρML
+

1

ρML +NT

)
1

g

[
1 +

(
1 +

σ2
ML

PU

)
NT

NRM

]
≤ 2. (25)

From (13), we have ρML > 1
g

[
1 +

(
1 +

σ2
ML
PU

)
NT
NRM

]
, so (25)

can be proved and SML,C(g) is concave.
Then we analyze the concavity of spatial domain MI,

and aided by (20) the second-order derivative of SS can be
formulated as follows:

∂2SS

∂ρ2
=

8N3
T (NT − 1)

ln 2
× . . .

12ρ2 + 12ρNT + 2N2
T +NT

[4(NT − 1)(ρ2 + ρNT)(2ρ+NT) + (2ρ+NT)3]2
.

(26)

Since ∂SS
∂ρ < 0 and ∂2SS

∂ρ2 > 0, SS(ρ) is also a non-increasing
convex function. Aided by (23), SFL,S(g) is convex. However,
for spatial domain MI of ML, after the derivation similar to
that of SML,C(g), SML,S(g) is convex at the beginning and
is concave later. Therefore, we utilize simulation rather than
theoretical analysis for analyzing the concavity of the sum rate
over g. The SNRML and SNRFL denote the SNR of ML and
FL, respectively. As shown in Fig. 2, the sum rate versus g
is indeed a quasi-concave function [15]. Therefore, we can
find the only extreme point by our proposed injection level
optimization algorithm, and the following simulations also
illustrate it.
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IV. MONTE CARLO SIMULATION RESULTS

In this section, simulations are provided to verify the
efficiency of our proposed gradient descent based iterative
algorithm, and the typical power allocation (PA) strategy and
optimal PA strategy are shown as comparisons. For typical
PA, the injection level is set as 5 dB [12]. Besides, the
optimal strategy is achieved via exhaustive search. The perfect
synchronization is assumed [16], and we assume the perfect
channel estimation [17]–[19].

From Fig. 3, it can be seen that our proposed algorithm can
achieve the optimal sum rate, which is much higher than the
sum rate with typical PA. In addition, with the increasing of
NRM, the gap between our proposed PA and typical PA also
becomes larger, which is because from (8) a larger NRM brings
a higher ML SINR, and in this case a larger g can increase
the ML SE more efficiently. However, in Fig. 4, although
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proposed algorithm can also achieve the optimal solution, the
gap between the optimal PA and typical PA becomes much
smaller. This is because g = 5 dB is almost the optimal
injection level in this parameter configuration. Beyond that,
from Fig. 3 and Fig. 4, it can be also illustrated that with
more TAs or more RAs a larger sum rate can be achieved in
the SM-LDM system.

As shown in Fig. 5 and Fig. 6, our proposed injection
level optimization algorithm can also achieve the optimal sum
rate with different SNRML and SNRFL. In addition, with the
increasing of SNRML, our proposed PA can achieve a more
and more higher sum rate than that with typical PA. With the
increasing of SNRFL, the gap between the sum rate of optimal
PA and the sum rate of typical PA becomes firstly smaller
and then larger. A larger SNRML or a larger SNRFL can also
increase the sum rate in SM-LDM systems, which is because
a larger SNRML and a larger SNRFL lead to a larger SINRML

and a larger SINRFL, respectively.

V. CONCLUSIONS

In this paper, we propose the gradient descent based iterative
algorithm in two-layer SM-LDM systems for injection level
optimization. The concavity of this optimization problem is
analyzed via both theoretical analysis and simulation. Since
this optimization problem is quasi-concave, our proposed
injection level optimization algorithm can achieve the optimal
sum rate, which is also illustrated via simulation results. The
proposed PA algorithm can always outperform the sum rate of
typical PA strategy.
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