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Highlight section 11 

We discuss current efforts to boost plant carbon fixation using a synthetic biology approach, 12 

highlighting the engineering of Rubisco, optimizing the Calvin Cycle, introducing carbon 13 

concentrating mechanisms, and rewiring photorespiration.  14 
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Abstract 15 

The phenomenal increase in agricultural yields that we have witnessed in the last century has 16 

slowed down as we approach the limits of selective breeding and optimization of cultivation 17 

techniques. To support the yield increase required to feed an ever growing population, we will have 18 

to identify new ways to boost the efficiency by which plants convert light into biomass. This 19 

challenge could be potentially tackled using state-of-the-art synthetic biology techniques to rewrite 20 

plant carbon fixation. In this review, we use recent studies to discuss and demonstrate different 21 

approaches for enhancing carbon fixation, including engineering Rubisco for higher activity, 22 

specificity, and activation; changing the expression level of enzymes within the Calvin Cycle to 23 

avoid kinetic bottlenecks; introducing carbon concentrating mechanisms such as inorganic carbon 24 

transporters, carboxysomes, and C4 metabolism; and rewiring photorespiration towards more 25 

energetically efficient routes or pathways that do not release CO2. We conclude by noting the 26 

importance of prioritizing and combining different approaches towards continuous and sustainable 27 

increase of plant productivities.   28 
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Introduction 29 

Selective breeding and optimization of cultivation techniques have historically driven increases in 30 

agricultural output. In the last century, these efforts have adopted a more scientific approach with 31 

the development of the Haber-Bosch process (Haber and Le Rossignol, 1909; Sutton et al., 2008), 32 

and, later, the “green revolution” (Khush, 2001). Since 1961, global rice and wheat yields increased 33 

by 150% and 210%, respectively (FAO, 2018). However, we have recently started to witness 34 

stagnation in growth improvement of major crops such as rice in China (Peng et al., 2009) or wheat 35 

in the USA (Ray et al., 2012). This presents a major problem, as further yield increases are sorely 36 

needed to feed human population, especially considering global shift towards meat-dependent 37 

diets, use of arable lands to feed bio-refineries, deleterious effects of climate change, and 38 

continuous erosion of agricultural land (Godfray et al., 2010; Tilman et al., 2011). 39 

Agricultural yield can be modeled as a product of three factors (Monteith and Moss, 1977; Fletcher 40 

et al., 2011): (i) efficiency of intercepting light; (ii) efficiency of converting intercepted light into 41 

biomass; and (iii) the harvest index, i.e., the fraction of biomass that is captured in the harvested 42 

part. In the past, improved yields have largely been achieved by increasing the light capture 43 

efficiency and the harvest index; however, these two factors now appear to approach their practical 44 

limits (Long et al., 2006). Therefore, the efficiency by which plants convert light to biomass has 45 

become the prime focus for further improvement (Long et al., 2006). This efficiency is determined by 46 

two main processes, the light-dependent reactions, in which photoenergy is used for the generation 47 

of the cellular redox and energy carriers NADPH and ATP, and the light-independent reactions, 48 

which use these carriers to fix CO2 and reduce it to organic carbon. The efficiency of both processes 49 

is unlikely to be improved by a classic selective breeding approach – as demonstrated by a recent 50 

study exploring 80 years of soybean breeding (Koester et al., 2016) – but could be potentially 51 

increased by dedicated engineering (Zhu et al., 2010). The focus of this review is the use of 52 

synthetic biology tools for boosting the efficiency and rate of carbon fixation. Rather than discuss 53 

the technical aspects of synthetic biology in plants – for which we refer the readers to other reviews 54 

(DePaoli et al., 2014; Liu and Stewart, 2015; Boehm and Bock, 2018; Piatek et al., 2018; Vazquez-55 

Vilar et al., 2018) – we emphasize conceptual strategies to boost carbon fixation. In particular, we 56 

discuss efforts aiming to improve carboxylation by Rubisco, optimize expression levels of enzymes 57 

within the Calvin Cycle, introduce carbon concentration mechanisms, and rewire photorespiration. 58 

We claim that multiple complementary strategies are paving the way towards substantial yield 59 

increases that are not feasible using conservative selective breeding techniques. 60 
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Engineering Rubisco  61 

Rubisco, the key enzyme of the Calvin cycle, is probably the most abundant protein in the biosphere 62 

(Ellis, 1979; Raven, 2013), and is responsible for assimilating the vast majority of inorganic carbon 63 

(Raven, 2009). The enzyme catalyzes the condensation of ribulose 1,5-bisphosphate (RuBP) with 64 

CO2 to give two molecules of glycerate 3-phosphate (G3P). Despite its key biochemical role, 65 

Rubisco is considerably slower than most enzymes in central metabolism (Bar-Even et al., 2011). 66 

Moreover, Rubisco is not completely specific to CO2 and also accepts O2, leading to the formation of 67 

2-phosphoglycolate (2PG) that needs to be reassimilated. In the C3 model plant A. thaliana, the 68 

carboxylation to oxygenation ratio was measured to be as low as 2.3:1 at high light conditions (Ma 69 

et al., 2014). Suppressing oxygenation reactions by cultivating plants at elevated CO2 70 

concentrations has repeatedly shown to increase productivity. For example, a meta-analysis of 70 71 

studies showed that rice yields increased by 23% when CO2 concentrations were raised to 627 ppm 72 

(Ainsworth, 2008). These results indicate that engineering Rubisco for higher CO2 specificity could 73 

substantially boost yield. 74 

Approaches to improve Rubisco catalysis by random or side-directed mutagenesis have generally 75 

failed to yield substantial kinetic enhancements (Somerville and Ogren, 1982; Spreitzer et al., 2005; 76 

Whitney et al., 2011; Wilson et al., 2016). Comparisons between Rubisco variants from a range of 77 

different organisms have revealed a trade-off between CO2 specificity and carboxylation velocity 78 

(Tcherkez et al., 2006; Savir et al., 2010; Galmés et al., 2014), although several recent studies 79 

challenge this finding (Young et al., 2016; Cummins et al., 2018). Considering this tradeoff, it 80 

actually seems that most Rubisco variants are well adapted to their intracellular environment. Still, 81 

as ambient CO2 concentrations are changing at a rate faster than plants can adapt to, it was 82 

suggested that replacing plant Rubisco with another variant could boost carbon fixation by up to 83 

25% (Zhu et al., 2004; Orr et al., 2016). Substituting one Rubisco variant with another is 84 

undoubtedly a challenging task, but was already demonstrated using homodimeric Rubisco from the 85 

α-proteobacterium R. rubrum (Whitney and Andrews, 2001) and, more recently, using a fast 86 

hexadecameric Rubisco from S. elongates (Lin et al., 2014; Occhialini et al., 2016). Coexpression of 87 

supporting chaperones, including the appropriate accumulation factors, can assist in producing an 88 

active Rubisco recombinantly, and can further facilitate efforts to enhance the kinetics of this key 89 

enzyme via mutagenesis (Aigner et al., 2017).  90 

Carbon fixation via Rubisco can be potentially improved by means other than direct engineering of 91 

its catalytic parameters. The addition of a CO2 molecule to an active site lysine, i.e., carbamylation, 92 

is a prerequisite for Rubisco activity (Lorimer and Miziorko, 1980), but can be hindered by the 93 

premature binding of RuBP or other sugar phosphates (Portis, 2002; Parry et al., 2007). The 94 
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catalytic chaperone Rubisco activase (Rca) removes the sugar phosphate inhibitors from an inactive 95 

uncarbamylated enzyme or an inhibited carbamylated Rubisco (Portis, 2002). As the thermal 96 

instability of Rca was shown to constrain carbon fixation under moderate heat stress (Salvucci et al., 97 

2004), it has become an attractive target for engineering towards enhanced photosynthesis. For 98 

example, by increasing the thermostability of Rca in A. thaliana, improved photosynthesis and 99 

growth rate were demonstrated under a moderate heat stress (Kurek et al., 2007; Kumar et al., 100 

2009). Similarly, overexpression of maize Rca in rice led to higher activation state of Rubisco in low 101 

light and faster response of photosynthesis when light intensities increased (Yamori et al., 2012). 102 

Optimizing expression of Calvin Cycle enzymes  103 

G3P produced by Rubisco need to be metabolized by nine enzymes of the Calvin cycle to 104 

regenerate RuBP. This regeneration process, whose rate has to match that of Rubisco, is known to 105 

limit carbon fixation rate under certain conditions. Computational models have suggested that the 106 

natural distribution of enzymes within the Calvin Cycle is not optimal and could limit photosynthesis 107 

(Zhu et al., 2007). Specifically, it was predicted that higher levels of sedoheptulose-1,7-108 

bisphosphatase and fructose-1,6-bisphosphate aldolase, as well as enzymes linked to sink 109 

capacity, could support higher productivity. 110 

Unsurprising, under elevated CO2 concentrations, the rate of Rubisco becomes less limiting and 111 

carbon fixation is mostly constrained by RuBP regeneration. For example, studies of N. tabacum at 112 

930 ppm CO2 showed that reducing Rubisco levels by 30-50% did not inhibit growth (Masle et al., 113 

1993). Similar results were obtained in rice plants in which Rubisco levels were reduced by 65% at 114 

1000 ppm CO2. On the other hand, overexpression of sedoheptulose-1,7-bisphosphatase in N. 115 

tabacum at 585 ppm CO2 resulted in higher carbon fixation rate (Rosenthal et al., 2011). Similarly, 116 

at 700 ppm, increased levels of fructose-1,6-bisphosphate aldolase in N. tabacum led to increased 117 

biomass (Uematsu et al., 2012). 118 

Even at ambient CO2 concentration, overexpression of limiting enzymes of the Calvin Cycle was 119 

shown to boost carbon fixation. In N. tabacum, overexpression of sedoheptulose 1,7-120 

bisphosphatase (Lefebvre et al., 2005) and fructose 1,6-bisphosphatase (Miyagawa et al., 2001) 121 

increased photosynthetic rates and biomass. Similarly, the co-overexpression of sedoheptulose-1,7-122 

bisphosphatase and fructose-1,6-phosphate aldolase enhanced photosynthesis and yield (Simkin et 123 

al., 2015). 124 
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Establishing carbon concentrating mechanisms 125 

To mitigate the problem of oxygenation, and further enable the use of faster (and less specific) 126 

Rubsico, multiple organisms have developed carbon concentrating mechanisms (CCMs) to 127 

concentrate CO2 at the site of Rubisco. As C3 plants lack CCMs, it was proposed to introduce them 128 

to increase photosynthetic efficiency. Two main approaches are actively pursued: (A) introduction of 129 

biophysical CCMs from cyanobacteria and green algae (Long et al., 2016; Rae et al., 2017); and (B) 130 

introduction of C4 anatomy and metabolism (Hibberd et al., 2008; Schuler et al., 2016).  131 

Biophysical CCM are found in cyanobacteria (Kupriyanova et al., 2013) and in green algae like C. 132 

reinhardtii (Mackinder, 2018). In such CCM, bicarbonate is actively transported into the cytosol in 133 

which carbonic anhydrase is lacking. From there, bicarbonate is further transported into specialized 134 

compartments packed with Rubisco – carboxysomes in cyanobacteria and pyrenoids in green algae 135 

– where it is dehydrated to CO2 by carbonic anhydrase. It is thought that both carboxysomes and 136 

pyrenoids present a diffusion barrier for CO2 and O2, keeping the former molecule in and the latter 137 

molecule out, and thus enhancing carboxylation and suppressing oxygenation (Mangan et al., 138 

2016).  139 

Establishing biophysical CCM in plants is a challenging task that first requires the expression and 140 

correct localization of inorganic carbon transporters. It was suggested that the transporters 141 

themselves could increase carbon fixation rate albeit to a limited extent (McGrath 2014, Yin 2017). 142 

Indeed, overexpression of the putative-inorganic carbon transporter from cyanobacteria, ictB, in A. 143 

thaliana, tobacco, rice, and soybean was reported to increase photosynthetic rate and biomass 144 

(Lieman-Hurwitz et al., 2003, 2005; Yang et al., 2008; Simkin et al., 2015; Hay et al., 2017). In 145 

contrast, expression of other transporters from cyanobacteria or C. reinhardtii did not increase yield 146 

or improve growth, despite correct localization within the plant cells (Rolland et al., 2016; Uehara et 147 

al., 2016; Atkinson et al., 2016). Optimizing transporter activity is therefore still an open challenge 148 

that needs to be resolved before commencing with the next step: assembly of Rubisco containing 149 

compartments. The establishment of these sophisticated structures would enable further increase in 150 

CO2 concentration at the site of Rubisco and could therefore substantially enhance carbon fixation. 151 

Recently, simplified carboxysome structures were introduced into the chloroplasts of N. tabacum 152 

(Long et al., 2018). Yet, these are expected to enhance photosynthesis only after combination with 153 

functional inorganic carbon transporters (McGrath and Long, 2014). 154 
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Engineering C4 metabolism 155 

As an alternative to biophysical CCM, ongoing research is dedicated to introducing C4 metabolism 156 

into C3 plants (Schuler et al., 2016). C4 metabolism utilizes the most efficient carbon fixation 157 

enzyme – PEP carboxylase – to temporarily capture inorganic carbon, which is then transported to 158 

the vicinity of Rubisco (Jenkins et al., 1989). Specifically, PEP carboxylase in the mesophyll cells 159 

‘borrows’ PEP and converts it to oxaloacetate, which is further metabolized to malate or aspartate. 160 

These C4 acids are transported to the bundle sheath cells and decarboxylated to release CO2 next 161 

to RubsiCO, which is mainly localized in these cells. Pyruvate, the product of this decarboxylation, is 162 

then transported back to the mesophyll cells to regenerate PEP. Hence, the entire C4 cycle, which 163 

depends on a special anatomy termed “Kranz anatomy” (mesophyll cells surrounding bundle sheath 164 

cells), can be regarded as a sophisticated CO2 pump that results in ~10 times higher concentration 165 

of inorganic carbon in the vicinity of RubsiCO (Jenkins et al., 1989). 166 

Engineering C4 photosynthesis in C3 plants has been outlined as a stepwise process (Schuler et 167 

al., 2016) that includes alteration of plant tissue anatomy, establishment of bundle sheath 168 

morphology, as well as ensuring a cell-type specific enzyme expression. Although challenging, 169 

engineering a C3 plant to have C4 metabolism seems to be a feasible goal as it is known to have 170 

emerged independently at least 66 times in different phylogentic backgrounds (Sage et al., 2012). 171 

Importantly, C3 plants already harbor the main enzymes of C4 metabolism, e.g., PEP carboxylase 172 

(Aubry et al., 2011), and are known to shuttle carbon from the vasculature into the surrounding cells 173 

in a way similar to that of C4 plants (Hibberd and Quick, 2002; Brown et al., 2010). This provides a 174 

solid basis to replicate the emergence of C4 metabolism by direct engineering. 175 

Nevertheless, despite international efforts, a synthetic C4 plant has yet to be reported. Following 176 

Richard Feynman’s famous quote “What I cannot create, I do not understand”, it seems that 177 

incomplete understanding of C4 metabolism hampers its engineering. Specifically, the metabolic 178 

shuttling of intermediates between mesophyll and bundle sheath cells and the factors necessary to 179 

create Kranz anatomy are still not fully clear and need to be elucidated (Schuler et al., 2016).  180 

It might not be necessary to establish a complete C4 metabolism in order to improve carbon fixation. 181 

It was recently suggested that engineering a C3-C4 intermediate metabolism could enhance 182 

productivity (Schlüter and Weber, 2016). For example, in C3-C4 intermediate type I plants, 183 

photorespiratory glycine is transported from the mesophyll cells to the bundle sheath cells for 184 

decarboxylation. In the bundle sheath cells, the mitochondria are closely associated with the 185 

chloroplast, thereby enhancing re-assimilation of released CO2 by nearby RubsiCO (Monson and 186 

Edwards, 1984; Rawsthorne et al., 1988). Establishing this intermediary metabolism within C3 187 
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plants, besides being useful on its own to boost carbon fixation, would provide a milestone towards 188 

further engineering of complete C4 metabolism. 189 

An interesting alternative engineering target is crassulacean acid metabolism (CAM). While C4 190 

metabolism increases CO2 concentration at the vicinity of Rubisco via spatial decoupling, CAM 191 

accomplishes the same goal via temporal decoupling. Specifically, inorganic carbon is temporarily 192 

fixed by the highly efficient PEP carboxylase during the night, when the stomata are open and CO2 193 

can freely enter the cell. Malate, the indirect product of the carboxylation, is stored within the 194 

vacuole. During the day, when the stomata are closed, malate is decarboxylated, releasing CO2 and 195 

maintaining its high concentration for subsequent fixation by Rubisco and the Calvin Cycle. Besides 196 

increasing CO2 concentration in the vicinity of Rubisco, CAM reduces water evaporation and 197 

increase water-use efficiency by 20-80% (Borland et al., 2009), making CAM plants highly suitable 198 

for arid climates. Similarly to C4 metabolism, CAM has arisen multiple times in a taxonomically 199 

diverse range of plants, indicating that its necessary components exist in C3 plants which could 200 

potentially be engineered towards this unique carbon metabolism (DePaoli et al., 2014).  201 

Furthermore, the existence of C3-CAM intermediate species and plants that switch between both 202 

metabolic modes further supports the potential of engineering C3 metabolism towards CAM 203 

(Borland et al., 2011). Such engineering would require precise control of the activity key enzymes 204 

(e.g., PEP carboxylase, malic enzyme, and Rubisco), stomatal conductance, and intracellular 205 

transport (e.g., to and from the vacuole) (Borland et al., 2014; DePaoli et al., 2014; Yang et al., 206 

2015).  207 

Rewiring photorespiration 208 

2PG, the product of Rubisco’s oxygenation activity, is recycled to the Calvin Cycle in a process 209 

termed photorespiration. This rather long pathway requires the shuttling of metabolites across 210 

multiple organelles and is considered inefficient as it dissipates energy by releasing ammonia and 211 

using oxygen as an electron acceptor. Moreover, photorespiration releases one CO2 molecule in the 212 

recycling of two 2PG molecules and hence directly counteracts carbon fixation by the Calvin Cycle. 213 

The inefficiencies associated with the recycling of 2PG cannot be prevented by simply blocking 214 

photorespiration, as this pathway plays an essential role in plant metabolism (Somerville and Ogren, 215 

1979) and reduction of its flux was shown to negatively affect photosynthesis (Servaites and Ogren, 216 

1977; Wingler et al., 1997; Heineke et al., 2001). One explanation for this lies in the inhibitory 217 

effects exerted by several photorespiratory intermediates. For example, 2PG was shown to inhibit 218 

triosephosphate isomerase and sedoheptulose 1,7-bisphosphate phosphatase (Anderson, 1971; 219 

Flügel et al., 2017), glyoxylate impairs Rubisco activation (Chastain and Ogren, 1989; Campbell and 220 

Ogren, 1990; Hausler et al., 1996; Savir et al., 2010), and glycine interferes with Mg2+ availability 221 
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(Eisenhut et al., 2007). Based on these observations, it was suggested that increased 222 

photorespiratory flux could prevent the accumulation of inhibitory intermediates and enhance 223 

photosynthesis; indeed, this was demonstrated upon overexpression of components of the glycine 224 

cleavage system in A. thaliana (Timm et al., 2012, 2015) and in N. tabacum (Lopez-Calcagno et al., 225 

2018). 226 

While photorespiration cannot be avoided, it might be possible to replace the natural pathway with 227 

more efficient alternatives. The first bypass suggested in this regard was inspired by cyanobacterial 228 

photorespiration (Eisenhut, 2006), where glyoxylate is condensed and reduced to directly generate 229 

the key photorespiratory intermediate glycerate. This pathway was implemented in A. thaliana 230 

(Kebeish et al., 2007) and later in C. sativa (Dalal et al., 2015) using glycolate dehydrogenase, 231 

glyoxylate carboxyligase, and tartronic semialdehyde reductase from Escherichia coli. In both 232 

cases, this metabolic bypass, dissipating less energy and shifting CO2 release from the 233 

mitochondria to the chloroplast, was shown to increase photosynthesis and biomass. 234 

However, it was shown that expression of only the first enzyme of the pathway, glycolate 235 

dehydrogenase, suffices to enhance photosynthesis. Supporting this, chloroplastic expression of 236 

glycolate dehydrogenase in S. tuberosum induced a 2.3-fold increase in tuber yield (Nölke et al., 237 

2014). This suggests that the benefits of glycerate-pathway might not stem from more efficient 238 

recycling of 2PG but rather from oxidation of glycolate to glyoxylate. Indeed, incubation with 239 

glyoxylate was shown to increase carbon fixation – potentially due to suppression of Rubisco 240 

oxygenation – in both tobacco leaf disks (Oliver and Zelitch, 1977) and soybean mesophyll cells 241 

(Oliver, 1980). 242 

Another photorespiratory bypass involves the complete oxidation of 2PG to CO2 via a catabolic 243 

pathway that consist of glycolate dehydrogenase, malate synthase, malic enzyme, and pyruvate 244 

dehydrogenase (Maier et al., 2012). While the authors reported increased biomass and 245 

photosynthesis, it is still unclear which mechanism supports the beneficial effect of the pathway, as 246 

a theoretical model predicts a negative effect when 2PG is completely oxidized (Xin et al., 2015). 247 

Carbon-conserving photorespiration 248 

As the main problem associated with photorespiration is (arguably) the release of CO2, bypasses 249 

that do not lead to the loss of carbon could dramatically boost carbon fixation. Several synthetic 250 

carbon-conserving bypasses have been suggested. In the de novo 2PG salvage pathway (Ort et al., 251 

2015), 2PG was suggested to be reduced to 2-phosphoglycolaldehyde, which is subsequently 252 

condensed with dihydroxyacetone phosphate to give xylulose bisphosphate. This intermediate is 253 
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then dephosphorylated to xylulose 5-phosphate, a Calvin cycle metabolite. The main challenges of 254 

this proposed bypass is the reversibility of most of its reactions (resulting in low driving force), the 255 

low concentration of 2PG, and the inhibitory effect of xylulose bisphosphate (Yokota, 1991; Zhu and 256 

Jensen, 1991; Parry et al., 2007).  257 

Recently, a systematic analysis identified multiple synthetic routes that can bypass photorespiration 258 

without the release of CO2. Several of these pathways involve the reduction of glycolate (the 259 

concentration of which is considerably higher than that of 2PG) to glycolaldehyde, which then 260 

undergoes an aldol condensation with a phosphosugar from the Calvin Cycle to generate a longer 261 

chain phosphosugar that is reintegrated into Calvin Cycle (Bar-Even, 2018; Trudeau et al., 2018). A 262 

computational model indicated that these pathways can boost photosynthesis under all 263 

physiologically relevant irradiation and intracellular CO2 levels.  264 

The operation of these carbon conserving bypass routes depends on the conversion of glycolate to 265 

glycolaldehyde, but this activity is not supported by any known enzyme. To establish this activity two 266 

enzymes were engineered (Trudeau et al., 2018). First, acetyl-CoA synthetase from E. coli was 267 

engineered to accept glycolate, thus generating glycolyl-CoA. Next, propionyl-CoA reductase from 268 

Rhodopseudomonas palustris was engineered to accept glycolyl-CoA, reducing it to glycolaldehyde. 269 

The cofactor specificity of this latter enzyme was switched, such that it could use NADPH – the 270 

photosynthetic electron carrier – as an electron donor. The two engineered enzymes were 271 

combined, in a test-tube, with fructose 6-phosphate aldolase (condensing glycolaldehyde with 272 

glyceraldehyde 3-phosphate to generate arabinose 5-phosphate), arabinose 5-phosphate 273 

isomerase, and phosphoribulokinase. Upon addition of glycolate and glyceraldehyde 3-phosphate, 274 

NADPH and ATP were consumed and RuBP was found to accumulate (Trudeau et al., 2018), 275 

demonstrating the in vitro activity of an alternative photorespiration route that does not release CO2.      276 

It was further proposed to go beyond carbon conservation, and engineer a photorespiration bypass 277 

that fixes CO2 and thus directly support the activity of the Calvin Cycle. One such a carbon-positive 278 

bypass was inspired by the 3-hydroxypropionate bicycle (Shih et al., 2014). Here, glycolate is 279 

oxidized to glyoxylate, which is then metabolized and further carboxylated to pyruvate. Towards the 280 

implementation of this bypass, six non-native genes from C. aurantiacus were expressed in 281 

cyanobacteria, but no distinct growth phenotype was evident. 282 

In another study, glycolate was not recycled to the Calvin cycle but instead metabolized to acetyl-283 

CoA via the synthetic malyl-CoA-glycerate pathway (Yu et al., 2018). This pathway can further be 284 

used to generate acetyl-CoA from photosynthetic C3 sugars via an additional CO2-fixing step, 285 
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thereby bypassing CO2 release by pyruvate dehydrogenase. In cyanobacteria, the pathway 286 

facilitated a two-fold increase in bicarbonate assimilation. 287 

Conclusions  288 

The increasing number of studies demonstrating improved photosynthesis and growth by 289 

engineering different components of the light-dependent and independent reactions indicates that 290 

we are on the right path. Yet, many challenges are ahead of us. Beside the technical difficulties, 291 

which we did not discuss here and refer the reader to other reviews (DePaoli et al., 2014; Liu and 292 

Stewart, 2015; Boehm and Bock, 2018; Piatek et al., 2018; Vazquez-Vilar et al., 2018), there is one 293 

key barrier that worth elaborating on, which is system complexity. Complex systems are notoriously 294 

difficult to engineer as the effect of even small changes can have substantial results that cannot be 295 

easily predicted. While mathematical models can help deal with such complexity, the lack of 296 

knowledge regarding many of involved components commonly hinders accurate prediction. Plant 297 

carbon metabolism provides an excellent example of a complex system, the response of which to 298 

changes is hard to foretell. Previous attempts to engineer carbon fixation demonstrate this vividly. 299 

Perhaps the best example is the engineering of photorespiration bypass routes as described above. 300 

While few bypasses were already shown to enhance photosynthesis, the cause of this effect is 301 

probably different than that originally suggested, as chloroplastic oxidation of glycolate suffices to 302 

support most of the beneficial effects. Unraveling this mystery would require deep understanding of 303 

the intricate interplay between all system components, a task which we have yet to fully achieve. 304 

Moreover, while some engineering efforts show only minor benefits in isolation, the key for future 305 

improvements lies in the correct combination of multiple strategies. Indeed, first examples for 306 

beneficial cumulative effects have been reported (Simkin et al., 2015). It is further clear that not all 307 

strategies can be implemented with similar ease. Overexpressing a Calvin Cycle enzyme, for 308 

example, is considerably easier than rerouting photorespiration via a synthetic pathway that does 309 

not release CO2. It is therefore important to carefully choose targets for the near- and medium-future 310 

and progress in a way that ensures intermediate gains. For example, establishing a C3-C4 311 

intermediate metabolism does not only provide a solid basis for further engineering of a complete 312 

C4 metabolism, but is expected to boost carbon fixation by itself. Once we gain the required 313 

proficiency in rewiring plant central metabolism, we can aim at even bigger targets, for example, 314 

replacing Rubisco with a set of enzymes, each responsible for a different catalytic step (Bar-Even, 315 

2018), or replacing the Calvin Cycle with a synthetic carbon fixation pathway (Schwander et al., 316 

2016). 317 
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Key developments box 

Assembly of Rubisco-containing carboxysomes in tobacco chloroplasts 

Assembly of a simplified α-carboxysome in tobacco chloroplasts by replacing native Rubisco with 

large and small subunits of Rubisco from cyanobacteria and two key structural subunits. The 

introduction of carboxysomes to plant chloroplasts is a key step towards establishing a full 

biophysical carbon concentrating mechanism in higher plants (Long et al., 2018). 

Design and in vitro realization of carbon-conserving photorespiration 

A systematic search and analysis of synthetic photorespiration bypass routes that do not release 

CO2 reveals that these can enhance carbon fixation rate under all relevant physiological conditions. 

Two enzymes were engineered to jointly enable the reduction of glycolate to glycolaldehyde. The 

combination of these evolved enzymes with existing ones supported the in vitro recycling of 

glycolate to RuBP without the loss of CO2, indicating the feasibility of carbon conserving 

photorespiration (Trudeau et al., 2018).   

The synthetic malyl-CoA-glycerate pathway supports photosynthesis 

An in vivo demonstration of a synthetic pathway that can support photosynthesis in two ways. First, 

it can produce acetyl-CoA from C3 sugars without releasing CO2. It can also assimilate 

photorespiratory glycolate without loss of carbon (Yu et al., 2018).  

Carbon fixation via a novel pathway in vitro 

An in vitro reconstruction of a synthetic carbon fixing pathway, the CETCH cycle, based on highly 

efficient reductive carboxylation. The pathway, utilizing 17 enzymes that originate from 9 organisms,  

was optimized by a combination of enzyme engineering and metabolic proofreading (Schwander et 

al., 2016). 

Overexpressing the H-protein of the glycine cleavage system increases biomass yield in 

glasshouse and field grown transgenic tobacco plants 

Increased biomass upon overexpression of a limiting photorespiratory protein in tobacco grown in 

field conditions. This indicates that optimization of expression levels within native carbon fixation-

related pathways could be harnessed to increase productivity, and that photorespiration could be 

improved even without the need for synthetic pathways (Lopez-Calcagno et al., 2018).   
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The road to C4 photosynthesis: evolution of a complex trait via intermediary states 

A case for engineering C3-C4 intermediate metabolism as a way to increase photosynthetic 

efficiency and set the stage towards future realization of complete C4 metabolism. This study 

suggests that a detailed and mechanistic understanding of C3-C4 intermediates could provide 

valuable guidance for experimental designs aiming to boost carbon fixation (Schlüter and Weber, 

2016). 

Evolving Methanococcoides burtonii archaeal Rubisco for improved photosynthesis and 

plant growth  

A demonstration of the use of directed laboratory evolution to improve the kinetic properties of 

Rubisco from an archaeal origin. The improved Rubisco variant was introduced to tobacco 

chloroplast and demonstrated to increase photosynthesis. Such protein engineering strategies could 

be used to address the kinetic limitations of key enzymes, thus supporting higher metabolic fluxes 

and boosting productivities (Wilson et al., 2016). 
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