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Statement of Need

In Hamiltonian systems the fundamental phase space structure that partitions dynamically disparate trajec-
tories and mediates transition between multi-stable regions is an invariant manifold. In a 2N dimensional
Hamiltonian phase space, the invariant manifold has 2 less dimension than the phase space and is anchored
to the normally hyperbolic invariant manifold which has 3 less dimension. This becomes an unstable periodic
orbit (UPO) for 2 degrees of freedom or four dimensional phase space (Wiggins 2016). Since the UPO forms
the basis for partitioning trajectories, hence their computation and stability analysis is the starting point
for dynamical systems analysis. UPOsHam is meant to serve this purpose by providing examples of how to
implement numerical methods for computing the unstable periodic orbits (UPOs) at any specified total energy
as long as their existence is guaranteed. Even though, there is no lack of numerical methods for computing
UPOs, we have found that they either lack in reproducibility, or have steep learning curve for using the
software, or have been written using closed source software, and at times combination of these. Our aim is to
provide an open source package that implements some of the standard methods and shows the results in
the context of model problems. This is meant as a starting point to integrate other numerical methods in
an open source package such that UPOs computed in dynamical systems papers can be reproduced with
minimal tweaking while providing an exploratory environment to learn and develop the underlying methods.

Summary

This Python package, UPOsHam, is a collection of three methods for computing unstable periodic orbits
in Hamiltonian systems that model a diverse array of problems in physical sciences and engineering. The
unstable periodic orbits exist in the bottleneck of the equipotential line V (x, y) = E and project as lines
on the configuration space (x, y). The three methods described below have been implemented for three
Hamiltonian systems of the form kinetic plus potential energy and are described in §:Examples. The scripts
are written as demonstration of how to modify and adapt the code for a problem of interest.

The computed unstable periodic orbits using the three methods are compared for a model problem in Figure
1.

Features: Available Methods

In this package, the user has the option to choose between the three methods described below. These are
implemented in separate scripts with functions that can be modified to define the total energy (Hamiltonian),
potential energy, vector field, Jacobian, variational equations (Parker and Chua 1989).

Turning point (TP)
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This method is based on finding the UPO by detecting trajectories initialized on the equipotential contour
(V (x, y) = E where V (x, y) is the potetial energy function and E is the total energy) that turn in the opposite
directions (Pollak, Child, and Pechukas 1980). This method relies on the fact that for Hamiltonians of the
form kinetic plus potential energy the UPO is the limiting trajectory that bounces back and forth between
the equipotential contour corresponding to the given total energy. So to converge on this limiting trajectory,
the turning point method iteratively decreases the gap between the bounding trajectories that turn in the
opposite directions. Detection of turning is done using a dot product condition which leads to stalling of the
method beyond a certain tolerance (typically 10−6 in the examples here.)

Turning point based on configuration difference (TPCD)

Based on the turning point approach, we have implemented a new method which shows stable convergence
and does not rely on the dot product formula. Suppose we have found two initial conditions on a given
equipotential contour and they turn in the opposite directions. If the difference in x-coordinates is small
(≈ 10−2), the generated trajectories will approach the UPO from either sides. If the difference in x-coordinates
is large, we can integrate the Hamilton’s equations for a guess time interval and find the turning point (event
using ODE event detection) at which the trajectories bounce back from the far side of the equipotential contour
in opposite directions. We choose these two points as our initial guess and the difference of x-coordinates
become small now. Without loss of generality, this method can be modified to either pick the difference of
y-coordinates or a combination of x and y coordinates. This choice will depend on the orientation of the
potential energy surface’s bottleneck in the configuration space.

Differential correction and numerical continuation (DCNC)

This method is based on small (≈ 10−5) corrections to the initial conditions of an UPO and continuing to
desired total energy. The procedure is started from the linear solutions of the Hamilton’s equations and which
generates a small amplitude (≈ 10−5) UPO. This is fed into the procedure that calculates correction to the
initial condition based on error in the terminal condition of the UPO. This leads to convergence within 3 steps
in the sense of the trajectory returning to the initial condition. Once a small amplitude UPO is obtained,
numerical continuation increases the amplitude and correspondingly total energy, while a combination of
bracketing and bisection method computes the UPO at the desired energy for a specified tolerance (Naik and
Wiggins 2019,Koon et al. (2011)).

Examples

Consider the following two degrees-of-freedom Hamiltonian model where x, y are configuration space coor-
dinates and px, py are corresponding momenta, V (x, y) is the potential energy, and T (x, y) is the kinetic
energy.

Uncoupled quartic Hamiltonian

H(x, y, px, py) = p2
x
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Coupled quartic Hamiltonian

H(x, y, px, py) = p2
x
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x4
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y + y2)
+ ε

2(x− y)2 (2)

DeLeon-Berne Hamiltonian

This Hamiltonian has been studied as a model of isomerization of a single molecule that undergoes confor-
mational change (Nelson De Leon and Berne 1981; N De Leon and Marston 1989) and exhibits regular and
chaotic dynamics relevant for chemical reactions.
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H(x, y, px, py) = T (px, py) + VDB(x, y) = p2
x

2mA
+

p2
y

2mB
+ VDB(x, y) (3)

where the potential energy function VDB(x, y) is

VDB(x, y) =V (x) + V (y) + V (x, y)
V (y) =4y2(y2 − 1) + εs

V (x) =Dx [1− exp(−λx)]2

V (x, y) =4y2(y2 − 1) [exp(−ζλx)− 1]

(4)

The parameters in the model are mA,mB which represent mass of the isomers, while εs, Dx denote the energy
of the saddle, dissociation energy of the Morse oscillator, respectively, and will be kept fixed in this study,
λ, ζ denote the range of the Morse oscillator and coupling parameter between the x and y configuration space
coordinates, respectively.

Visualization: Unstable periodic orbits
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Figure 1: Comparing the TP, TPCD, DCNC methods for the coupled quartic Hamiltonian.

Relation to ongoing research projects

We are developing geometric methods of phase space transport in the context of chemical reaction dynamics
that rely heavily on identifying and computing the unstable periodic orbits. Manuscript related to the De
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Figure 2: Comparing the TPCD method for the three Hamiltonians
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Leon-Berne model is under preparation.
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