
MPI-SCATCI

Ahmed F. Al-Refaie

February 9, 2017

1 Introduction

People are very flexible and learn to adjust to
strange surroundings — they can become
accustomed to read Lisp and Fortran
programs, for example.

Leon Sterling and Ehud Shapiro

MPI-SCATCI (name to be confirmed) is a complete rewrite of SCATCI that utilizes MPI in order
to compute and diagonalize target and scattering Hamiltonians. The code heavily uses Object Oriented
Programming (OOP) paradigms in the FORTRAN 2003 standard to provide a robust and flexible codebase
that can cope with extremely large matrices and scale well with large problem sizes of order 1,000,000+

2 Compiling

Supplied with the code is a Makefile and an included makefile.inc to provide the necessary environment
variables to compile the code. It is recommended that the user supplies these variables thorugh a make.inc
file that is configured for their system. As of writing, only 64-bit integer compilation has been tested
rigourously and is therefore a requirement for the code. Optimally the latest compilers of your respective
vendor are recommended as they are likely to fully implement the FORTRAN 2003 standard as well.

2.1 Requirements

Currently, MPI-SCATCI requires the following compilers and libraries in order to be compiled:

• C++99 and FORTRAN 2003 (64-bit integer) compilers

• MPI and associated MPI compilers

• LAPACK (via MKL or otherwise)

• SCALAPACK and BLACS

• ARPACK

• PETSC (3.7+)

• SLEPC (3.7+)

MPI libraries generally supply a compiler wrapper of some kind (e.g. mpif90, mpicc etc) that automatically
provides MPI includes and libraries at the correct stages of compilation. When using MPI, the HAVE_MPI
variable must be set to -Dusempi. Additionally, Intel MPI libraries that are 64-bit integer compatible require
the additional HAVE_64BIT_MPI= -Dmpi64bitinteger and HAVE_INTEL_MPI= -Dintelmpi flags to be set as
well.

The LAPACK and SCALAPACK can either be downloaded, compiled and linked from various sources
but it is recommended to link the MKL libraries, in particular the parallel versions, for best performance.
The Intel MKL link advisor can be used to help find the right link flags to use. When using the MKL
libraries, it is important to know which interface is being used, i.e. 32-bit lp64 integers or 64-bit ilp64
integers. MPI-SCATCI can handle both regardless but requires knowledge through the setting/unsetting of
HAVE_64_BIT_BLAS= -Dblas64bit flag.

ARPACK can either be downloaded and compiled as given in the project guides folder in UKRMol-in
or supplied by the high performance computing (HPC) center through the loading of modules. If this is a
dynamic library then it must be of the same integer kind as the one used by MKL.

2.2 PETSC and SLEPC

PETSC and SLEPC are currently a requirement and can be freely downloaded from https://www.mcs.anl.
gov/petsc/ and http://slepc.upv.es/. They require the exporting of environment variables PETSC_DIR,
PETSC_ARCH and SLEPC_DIR in order to find includes and libraries.

The requirements are fairly small (only BLAS and LAPACK) for this code and don’t require a lot of the
extensions available for them. It is simply a case of running the commands:

1

https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor
https://www.mcs.anl.gov/petsc/
https://www.mcs.anl.gov/petsc/
http://slepc.upv.es/

>wget http://ftp.mcs.anl.gov/pub/petsc/release-snapshots/petsc-lite-3.7.5.tar.gz
>tar -xzvf petsc-lite-3.7.5.tar.gz
>cd petsc-3.7.5
>export PETSC_DIR=‘pwd‘
>./configure --with-cc=mpiicc --with-cxx=mpiicpc --with-fc=mpiifort \
--with-blas-lapack-dir=$MKLROOT/lib/intel64/

>make

It will default to a PETSC_ARCH=arch-linux2-c-debug which should be exported:

>export PETSC_ARCH=arch-linux2-c-debug

Compiling SLEPC is even simpler:

>wget http://slepc.upv.es/download/download.php?filename=slepc-3.7.3.tar.gz
>tar -xzvf slepc-3.7.3.tar.gz
>cd slepc-3.7.3
>export SLEPC_DIR=‘pwd‘
>./configure
>make

After this has been done, MPI-SCATCI will automatically link these libraries as long as PETSC_DIR,PETSC_ARCH
and SLEPC_DIR are defined.

2.3 ARCHER compilation

A makefile.inc.archer is included that should be able to compile the code in the ARCHER environment. The
modules and environment must be set up as such:

>module swap PrgEnv-cray PrgEnv-intel
>module load cray-tpsl/16.07.1
>module load arpack
>module load cray-petsc/3.7.2.1

Additionally only SLEPC must be compiled and the SLEPC_DIR environment set:

>wget http://slepc.upv.es/download/download.php?filename=slepc-3.7.3.tar.gz
>tar -xzvf slepc-3.7.3.tar.gz
>cd slepc-3.7.3
>export SLEPC_DIR=‘pwd‘
>./configure
>make

After which a make on the main directory of MPI-SCATCI will compile the executable.

3 Usage

MPI-SCATCI has been designed to be backwards compatible with inputs from serial SCATCI. IT has also
been designed to work with all currently available scripts as well. There are two ways to run MPI-SCATCI,
first through standard input:

>./MPI-SCATCI.x < input > output

Or though reading the file:

>./MPI-SCATCI.x input > output

When running without MPI or with only one MPI process, all output will be passed into standard output.
When running with 4 process for example:

>mpirun -np 4 ./MPI-SCATCI.x input > output

all output is printed to files with name log_file with the processor number appended at the end. It is
not recommened to pass standard input when using more than one process as it cannot be guaranteed that
all MPI processes will get it.

3.1 Input

All input terms used by SCATCI are compatible with MPI-SCATCI. There is a single new keyword defined
as MEMP which describes the memory in gigabytes for each MPI process, not the total memory available. An
example is a 4 core system with 16GB, when running with 4 MPI-processes this value is 4, with 2 processes
this is 8 etc. The minimum memory required for each process is the amount needed to hold all of the
integrals and their portion of the matrix. The default value if this is not set is 2.5 GB (the default per core
for ARCHER).

2

3.2 Output

Both target only and scattering calculations output fort files that are compatible with further stages of
the UKRmol pipeline (such as DENPROP and outer region codes). The only caveat is that scattering
calculations with certain diagonalizers will not always output matrix fort files as they are done in-core.

3.3 Running on ARCHER

Included in the scripts folder are submission scripts that will automatically submit the job and input file to
the ARCHER queue. Both b_mpici.sh and run_mpici.csh are required. To submit a job simply requires
the command:

>./b_mpici.sh [inputfile] [number of cores] [wall time]

For example, to run a 240 core job with the input file ci.inp for 2 hours is:

>./b_mpici.sh ci.inp 240 2

For testing purposes, this method may take a while to run. An alternative script b_mpici_short.sh will
submit the job into the short queue which will begin running quickly but is limited to 192 cores and 20
minutes.

3.4 Diagonalization

MPI-SCATCI utilizes either Legacy SCATCI diagonalizers for single process runs or MPI diagonalizers for
multi process runs. All diagonalizers can be mixed into the same run depending on the number of eigenvalues
requested by NSTAT or forced to use a single type. Table 1 describes all available diagonalizers in the current
code.

Table 1: Table describing the diagonalizers available. IGH is the forced diagonalizer keyword in input.
Rule describes which one is used when IGH is not defined. N is the matrix size and Nλ is the number
of eigenvalues which can be set by the NSTAT keyword. Serial and MPI describe which library is used
depending on whether number of processes is 1 or > 1 respectively

Diagonalizer

Type IGH Rule Serial MPI Notes

Davidson 0 Nλ ≤ 3 SCATCI-Davidson SLEPC-Krylovschur
Iterative -1 3 < Nλ < 0.2N ARPACK SLEPC-Krylovschur
Dense 1 Nλ > 0.2N LAPACK SCALAPACK

4 Extending the code

One of the key features of MPI-SCATCI is the ability to add new features without touching the main
Hamiltonian building process. Currently it is possible to easilt add new integrals and MPI diagonalizers.

4.1 Integrals

All integrals are extensions of the BaseIntegral class. Setup is performed by defining an initialize_self
routine, loading into core by load_integrals and cleanup by destroy. In particular, the get_integralf
subroutine is the main inteface between the actual integrals and the hamiltonain build process. Additionally
a write_geometries subroutine must also be provided in order to generate correct CI vector files.

4.2 Diagonalizers

Diagonalizers come in two parts. First there is the BaseMatrix class which defines a format that the
matrix elements are stored and act as the interface between the hamiltonain and diagonalizers via the
insert_matrix_element subroutine. Using optimal matrix formats on certain diagonalizers can improve
performance substantially and reduce memory footprints significantly. Whilst simple to implement for serial
runs, this may prove complicated for MPI matrices such as SCALAPACK and SLEPC. Therefore another
class Distributed Matrix which inherits from BaseMatrix provides a fast and easy way to define these
formats. It requires only setup_diag_matrix which is used to setup any important arrays (e.g. for the
SLEPC matrix it sets up the PETSC matrix backbone) and most importantly insert_into_diag_matrix
which defines the rules on whether to store the matrix element or not. It is imperative that memory usage
is well defined in setup_diag_matrix so that the class can work as efficiently as possible.

Whilst the main technical details of this is described in the technical manual, the main point of Distributed Matrix
is that every process will touch every single matrix element at some point. The question is whether it should
personally keep it or not which is where insert_into_diag_matrix comes in. An example for SCALAPACK
is simply:

3

!>@brief
!>This inserts an element into the hard storage which is considered the final
!>location before diagonalization
!>It also checks wherther the element exists within the aloowed range and tells us
!> if it was successfully inserted
logical function insert_into_local_matrix(this,row,column,coefficient)
class(SCALAPACKMatrix) :: this
integer,intent(in) :: row,column
real(wp),intent(in) :: coefficient
BLAS_INT :: proc_row,proc_col,i_loc,j_loc
BLAS_INT :: blas_row,blas_col

blas_row = row
blas_col = column

if(row==column) call this%store_diagonal(row,coefficient)

if(this%am_i_involved() == .false.) return

!Figure out which proc it belongs to and the local matrix index
call infog2l(blas_row, blas_col, this%descr_a_mat, this%nprow, this%npcol, &
& this%myrow, this%mycol, i_loc, j_loc, proc_row, proc_col)

!If it does belong to me then store
if(this%is_this_me(proc_row,proc_col)) then

this%a_local_matrix(i_loc, j_loc) = coefficient

insert_into_local_matrix = .true.

else
!Otherwise it is ignored
insert_into_local_matrix = .false.

endif

end function

It checks whether it is within the block cyclic distribution. If it is then it is stored for diagonalization, if not
then it is discarded. The routine is a function that must return true if it was successful and false if it was
not.

Once these functions have been defined, MPI-SCATCI will automatically distribute the matrix correctly
during the Hamiltonain build. This is a powerful feature as it allows a range of diagonalizers to be used
without any change to the Hamiltonain build code.

The second part is the diagonalizer itself which is defined by the Diagonalizer abstract class. Here the
matrix is passed into the diagonalize subroutine with parameters such as the number of eigenvalues etc
and diagonalization is performed. A check on whether the marix format passed is supported. Whilst there
is a get_matrix_element subroutine in the Matrix classes, it is often difficult to define it (especially for
distributed matrices) so it is recommeneded to check and then typecast the BaseMatrix into the appropriate
format to be used directly by the diagonalizer. The advantage of this is that more often then not the matrix
elements are immediately available for diagonalization and require no conversion.

Inserting both is easily accomplished by modifing the matrix diagonalizer Dispatcher and inserting a new
rule. Once this is done then MPI-SCATCI will automatically utilize the Diagonalizers.

5 Issues

5.1 SLEPC

For 99% of cases SLEPC will give the correct results. There are a small number of cases (such as phosphate
with Td symmetry) were the eigenvalues given are incorrect compared to SCALAPACK. This seems to
be due to the Krylov method unable to distiguish true degeneracies from artifical ones. This also affects
SLEPC’s Generalized Davidson. Therefore SLEPC will always work using the Krylov method and it is
recommended that you use SCALAPACK for these symmetries.

5.2 UKRMOL+

Whilst there is support for the UKRMOL+ integral format, they haven’t been tested as extensively as the
SWEDEN integrals. This is due to the compiler in my workstation failing to compile the integral library.
Therefore it would be much appreciated if any bugs using UKRMOL+ integrals are reported to me.

4

	Introduction
	Compiling
	Requirements
	PETSC and SLEPC
	ARCHER compilation

	Usage
	Input
	Output
	Diagonalization

	Extending the code
	Integrals
	Diagonalizers

	Issues
	SLEPC
	UKRMOL+

