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Abstract—In addition to vehicle control, drivers often perform 

secondary tasks that impede driving. Reduction of driver 

distraction is an important challenge for the safety of intelligent 

transportation systems. In this paper, a methodology for detection 

and evaluation of driver distraction while performing secondary 

tasks is described and an appropriate hardware and software 

environment is offered and studied. The system includes a model 

of normal driving, a subsystem for measuring the errors from the 

secondary tasks, and a module for total distraction evaluation. A 

new machine learning algorithm defines driver performance in 

lane keeping and speed maintenance on a specific road segment. 

To recognize the errors, a method is proposed, which compares 

normal driving parameters with ones obtained while conducting a 

secondary task. To evaluate distraction, an effective fuzzy logic 

algorithm is used. To verify the proposed approach, a case study 

with driver-in-the-loop experiments was carried out, in which 

participants performed the secondary task, namely chatting on a 

cell phone. The results presented in this research confirm its 

capability to detect and to precisely measure a level of abnormal 

driver performance. 

 
Index Terms—Euclidean distance, fuzzy logic, fuzzy neural 

networks, machine learning, prediction method, vehicle safety. 

 

I. INTRODUCTION 

driver is the most important participant of a car control, 

including steering, throttling, braking, maneuvering, and 

other operations. These primary tasks must be accomplished 

safely for all traffic participants and their belongings. 

Nevertheless, drivers often dedicate time and attention to 

other activities, different from the driver’s primary ones. All 

other tasks the drivers perform while driving are defined as 

secondary tasks. They are divided into interaction with in-

vehicle information systems (IVIS) (e.g. monitoring and 

managing vehicle state, navigating, info- and entertainment, 

etc.) and interaction with personal (e.g. passengers and pets) or 

items brought in a vehicle, such as portable electronic devices 

[1, 2]. 

Driver distraction (DD) is defined as an activity performed 

by a driver that diverts an attention away from the primary 
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activity (vehicle longitudinal and lateral control) potentially 

leading to safe driving degradation. It appears due to some 

event, activity, object, or person within or outside the vehicle, 

which compels or induces the driver’s attention away from the 

primary task [1]. With an enhancement of IVIS, driving 

comfort, entertainment, and navigation have dramatically 

improved. However, at the same time, IVIS attracts additional 

driver’s attention. It increases DD, what often leads to traffic 

accidents with fatal consequences. Yearly, distracted driving 

leads to more than 420000 injuries. Furthermore, the number of 

drivers end abruptly in vehicle crashes due to DD is more than 

3100 every year in the USA alone [3]. 

DD may take several forms: auditory, biomechanical, 

cognitive, or visual [1, 3]. Auditory distraction means taking 

ears off the road (e.g. listening to the radio or passengers). 

Biomechanical one is taking hands off the steering wheel (e.g. 

eating, texting messages, IVIS adjusting). Cognitive distraction 

means taking mind off the road (e.g. thinking, talking). Visual 

distraction is caused by taking eyes off the road (e.g. reading, 

watching video, road navigating in IVIS). However, most of the 

secondary tasks take more than one if not all the distraction 

forms simultaneously [1, 4], those tasks are among the most 

dangerous [3]. Texting, for instance, requires manual, visual 

and cognitive distraction types at once, when the last one is 

considered as the most essential [3]. 

Research in driver’s decoy caused by the secondary activity, 

especially by IVIS, arises a great interest of both the vehicle 

manufacturers and the traffic safety foundations, like the 

American Automobile Association (AAA) Foundation for 

Traffic Safety (Washington, DC, USA) and National Highway 

Traffic Safety Administration (NHTSA) (Washington, DC, 

USA). It helps to establish traffic safety policies, to contribute 

to the design, and to improve IVIS, which must be safe, 

intuitive, reachable, logic, and well organized to decrease 

driver’s workload and disturbance and, consequently, to 

increase traffic safety. 

Therefore, a development of a robust DD detection and 

evaluation method while performing a secondary task is a 

significant target in safe intelligent transportation. It gives an 
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opportunity to study and to compare several types of human-

machine interaction (HMI) technologies (e.g. haptic, vocal, 

gesture) and to use the most appropriate one in IVIS design. DD 

assessment is also applied in advanced driver assistance 

systems (ADAS) and in testing and evaluating their impact on 

driver’s level of vigilance and road safety. Today, there are no 

estimates for evaluating the influence of the secondary tasks on 

DD that might indicate the secondary activities that lead to 

potential traffic accidents, assess a degree of their danger, and 

help mitigate these effects [1]. 

The goal of the current study is to develop a method of 

evaluating a secondary task impact to the safe vehicle operation 

suitable for DD detection, DD level measurement, and 

comparison of the secondary tasks influence on DD. The 

method is exploited as a benchmark for safe and clear IVIS 

design with minimal driver’s burden in different HMI 

technologies (e.g. voice command, hand gesture recognition). 

This paper is organized as follows. The next section presents 

the state of the art of DD detection relevant for current studies. 

Section III is dedicated to the description of the DD evaluation 

methodology. The real-time driver-in-the-loop DD experiment 

is described in Section IV. Section V outlines the 

experimentally obtained results. The research is concluded in 

Section VI. 

II. RELATED WORKS AND PROBLEM STATEMENT 

In general, there are four attributes suitable for DD 

measurement and detection: behavioral (e.g. eye and head 

movement); performance-based (e.g. vehicle lateral and 

longitudinal control); psychological (e.g. driver electrocardio– 

and electroencephalographical methods), and subjective (e.g. 

self–assessment questionnaires and expert evaluations). The 

first two are the most frequently used ones. Different attributes 

can be also combined [5, 6, 7]. 

On the other side, a variety of algorithms has been offered 

for the DD detection based on statistical learning theory. The 

gaze direction and the head orientation are the most popular 

input attributes [8]. Artificial neural network (NN) and gradient 

boosting machine combination were proposed in [9]. The 

glance region prediction algorithm was designed using random 

forest classifier in [10] and convolutional NN – in [11]. In [12], 

dynamic Bayesian network (BN) outperformed logic regression 

(LR), static BN, and support vector machine (SVM) approaches 

in cognitive DD detection. SVM together with semi-supervised 

extreme learning machine were combined for the DD detection 

in [5]. Classification based on Mahalanobis distance calculation 

was applied for the evaluation of IVIS-induced DD in real-time 

[13]. Fuzzy expert system combined eye and face regions for 

the DD level fatigue estimation in [14]. Different machine 

learning methods, in particular SVM, k-nearest neighbor (k-

NN), and graph-regularized extreme learning machine were 

compared in [15]. The complex method designed in [7] 

connects the principle component analysis, the linear 

discriminate analysis, and SVM. Finally, in [16], a probabilistic 

restricted Coulomb energy NN was implemented for drowsy 

driving prediction. 

Multiple psychological attributes were also studied for the 

DD detection. In [6], the brain activity measured by 

electroencephalographic signals was involved to predict the 

start and the end of a distraction period using an adaptive-

threshold-based prediction framework. In [17], the same signal 

analyses were applied for the DD detection by different 

machine learning methods: decision tree, random forest, k-NN, 

SVM, and Naïve Bayes. The driver drowsiness detection using 

heart rate electrocardiogram signals with LR and BN was 

described in [18]. 

Very popular is the usage or performance-based attributes in 

the DD detection as an estimate of the vehicle dynamics. As the 

signals are received here from the sensors available in modern 

passenger vehicles [19], this approach does not require any 

additional hardware. 

An example of the DD detection usage in ADAS is described 

in [20]. The scholars presented fuzzy system, which 

personalizes the fuzzy membership functions based on 

individual driving habits. The system reflects user’s preferences 

in the cruise control. Vehicle performance-based data were used 

in the fuzzy system design. 

The DD detection with artificial NN and Gaussian mixture 

model (GMM) using performance-based attributes was 

introduced in [21] and [22]. The double-class DD classifier 

based on GMM was described in [23]. Vehicle dynamics and 

driving performance results were engaged in the DD detection 

by an extreme learning machine algorithm in [24] and SVM – 

in [2]. In [25], authors presented the driver behavior prediction 

with dynamic BN based on preliminary collected data. 

Since 1999, on-road data of drivers were collected for their 

further study in [26]. Statistical signal processing and machine 

learning techniques, such as GMM, hidden Markov model 

(HMM), and BN were applied to simulate such aspects of 

driver’s behavior like pedal orientation, car following, and lane 

change. These data were successfully used for predicting the 

driver behavior and detecting risky driver frustration. 

Many different DD detection algorithms, namely static and 

dynamic NN, adaptive neuro-fuzzy inference system (ANFIS), 

and SVM, were compared in [27]. The last one outperformed 

all other machine learning methods used in the work. 

Lastly, different DD detection attributes, like performance-

based, psychological, and behavioral, were combined. A gaze 

angle, a head rotation angle, and an interval between the heart 

R-wave electrocardiogram signals were used in cognitive DD 

[28], where the pattern recognition methods based on SVM and 

adaptive boosting were compared. The last one showed better 

accuracy. In [29], the control theoretic driver model based on 

the literary physiological aspect was induced by the driver’s 

behavior predictive model design. This model was compared 

with a real driver performance. 

The driver’s eye movement and vehicle performance were 

integrated as a real-time cognitive DD attribute [4, 30, 31] and 

the SVM algorithm was applied in these studies. Driving 

performance and head movement tracking were integrated for 

the DD detection with random forest model and HMM [32]. In 

[33], different machine learning methods, SVM, conventional 

recurrent NN, and long or short-term memory recurrent NN, 

using the same attributes were compared for continuously 
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driver’s state prediction. The last one was more accurate in 

classification. In [34], DD prediction based on ANFIS was 

compared with the artificial NN and radial basic function 

prediction algorithms. The results proved that ANFIS has more 

accurate prediction capability. Driver performance along with 

heart rate and behavioral attribute data were combined for the 

DD and fatigue detection in [35]. Classification was performed 

by a multi-modal approach based on HMM, SVM, and BN. 

Though the physiological and behavioral attributes represent 

a trend in DD detection, they always require additional devices, 

such as cameras and neuroscan systems that multiply system 

cost and complexity [8]. Moreover, often wearing devices, like 

eye-tracking googles or neuroscan helmets, are considered as a 

distraction source themselves. Then, some scholars consider the 

behavioral methods as the only capable to detect visual DD. Eye 

and head movement tracking are not qualified to observe 

driver’s cognitive workload, such as talking to a passenger. It is 

unknown, how a cognitive distraction depends on eye and head 

movement required for the primary task performance [4, 27, 

30]. This is the reason why the vehicle dynamic performance 

(center-lane driving and vehicle speed limit maintenance) has 

been chosen as a driver’s primary task in this study.  

Despite a variety of machine learning algorithms proposed 

for the DD detection, all of them use the Boolean binary 

classification (distracted/not distracted). These solutions are not 

suitable for different HMI technologies for accurate IVIS 

comparison. Never approaches have been found for accurate 

measuring of a DD level, especially in applying the 

performance-based attributes while interacting with IVIS. 

The target of this paper is to propose a method, which not 

only detects, but also evaluates a DD level of each individual 

driver considered as an essential task of the safe IVIS design. 

To this aim, a regression problem of the DD detection is solved 

aiming to form the output as a precise number [36] using the 

machine learning approach. Thanks to accurate measurement, 

the level of the secondary task influences on the driver’s 

performance is evaluated here. Nonlinear regression based on 

Euclidean distance (ED) calculation is applied for the DD 

detection. Fuzzy logic (FL) is used for fusion of vehicle 

performance data to assemble a level of DD from two 

independent variables. The driver-in-the-loop experiment on 

DD detection and evaluation was conducted, in which text 

messaging on a cell phone has been chosen as a secondary 

distractive activity required several modes of distraction 

simultaneously [3]. In this way, a difference in vehicle 

performance at normal driving (fully dedicated to a primary 

activity) and accomplishing a secondary task while driving was 

observed aiming to estimate a personal degree of the secondary 

tasks influence on driving [2]. 

Vehicle dynamics highly depend on the driver experience 

[35]. By this reason, a model of driver performance is created, 

which is assumed as a normal driving for each experiment 

participant. Next, the driving destructive performance is 

compared with normal driving in the real-time driver-in-the-

loop experiment. To predict driver’s normal performance, a 

regression-based machine learning algorithm is developed for 

participants’ data collecting during a free run. In this paper, a 

technique that solves a regression problem and predicts driver 

performance on a specific road segment is defined as a 

predictor. What is more, as an ANFIS has very accurate 

prediction capability [27], the prediction approach based on ED 

formula is compared to an identical ANFIS predictor. 

Next, the driving performance data are merged into a uniform 

variable, which represents a percentage level of DD caused by 

the secondary task. To this aim, the FL method is used. Among 

the most popular signal fusion techniques – FL, BN, and 

machine learning – FL is known as a perfect approach for 

empirical modeling of human behavior reasoning, because it 

simultaneously concerns several vague inputs, and for the 

vigilance information fusion [35, 37]. 

III. DESCRIPTION OF THE METHOD 

A scheme of the DD detection and evaluation is shown in 

Fig. 1. The symbols’ description and annotation are introduced 

in Table I. The superscript “t” determines “training data”. 

The method involves three steps. First, referring to a road 

segment specification (road curvature r and speed limit Vl), it 

predicts driver’s ability to keep the centerline Δxp and to 

maintain the speed limit Δvp. The predictor is trained 

preliminary without secondary activity for every driver, and 

training data are collected. Second, the predicted driver 

performance is compared with a performance with the 

secondary task Δx and Δv. As a result, their differences Δxr and 

Δvr are calculated. Finally, the FL evaluator using linguistic 

rules normalizes two independent variables into a uniform 

variable DD, which designates the DD level in percentage. 

A. Prediction of driver performance based on Euclidean 

distance calculation 

To create a prediction model for an individual driver, he/she 

must drive a road segment without a distraction. During this 

run, the driver is asked to demonstrate an accurate performance: 

TABLE I 
PARAMETERS DESCRIPTION 

Symbol Description Unit 

r Road radius (curvature) m 

Vl Speed limit km/h 

Δx Real lane keeping offset m 

Δv Real vehicle speed deviation km/h 

Δxp Predicted lane keeping offset m 

Δvp Predicted vehicle speed deviation km/h 

Δxr Resultative lane keeping offset m 

Δvr Resultative vehicle speed deviation km/h 

DD Driver distraction level % 

 

 
Fig. 1.  DD detection and evaluation block scheme. Parameters description is 
presented in Table I. 
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to obey the speed limits and to keep the middle lane of the road 

as perfectly as possible. The predictors’ training data include 

four variables: speed limit Vl
t; radius of the road rt; lane keeping 

offset Δxt; vehicle speed deviation from a speed limit Δvt. The 

first two variables are related to the road information whereas 

two others – to driver performance. Thus, a map of driver 

performance is created on each specific road segment, 

described by the road curvature (radius) r and speed limit Vl. 

Further, the obtained data are passed through preprocessing 

(dimensional reduction), during which this training information 

is diminished or simplified to reduce memory, computation, 

and inference complexity. Besides, the model simplification 

makes the method more robust, understandable, and easy to plot 

and analyze. There exist some preprocessing algorithms, such 

as the subset selection, the principle components analysis, the 

factor analysis, etc. [23, 36]. An approach used in this study is 

described below. 

First, the training data are stored in a table. Second, the 

radiuses of the road segments are rounded to the whole 

numbers. Third, the unique pairs of a road curvature and a speed 

limit are found. Finally, a mean offset between the road 

centerline and a position of the car on the road, and a mean 

difference between the speed limit on a road segment and a real 

vehicle speed for each unique pair of road information are 

calculated. This preprocessing allows shrinking significantly 

the size of the data sample. For instance, the data collected 

during the 20-minute driving consisted of about 50 000 nodes. 

After preprocessing, these data shrank to 10% of total points. 

Described preprocess steps separated with blue arrows are 

shown in Fig. 2. 

Consequently, the data table is obtained where every possible 

pair of input variables (road information) corresponds to a pair 

of output variables (driver performance). The outputs 

symbolize an average lane keeping and speed limit maintenance 

ability for a specific road segment. Input/output mapping is 

fulfilled with ED calculation. 

During the experiment with the secondary activity, the 

information about the road segment is inserted into a prediction 

block containing preprocessed training data (Fig. 1). The 

predictor inputs are the real-time speed limit Vl and road radius 

r. The Input road information is aligned with unique pairs of the 

road set from the data table. The ED function d(P,Q) is used to 

search a closest pair of the prediction model input sets: 





k

i

ii pqQPd
1

2)(),( ,                    (1) 

where k is a spatial dimension. 

The predicted searching procedure with ED calculation is 

simplistically illustrated in Fig. 3. Assume that P is a point with 

coordinates (px = r, py = Vl). Points Qn
input have coordinates 

(qxn
input = rn

t, qyn
input = Vln

t) from the training data table, where n 

is a row number in the table. All the distances are calculated 

between a single input point P and each point Qn
input from the 

table with simplified training data. A set of point coordinates 

Qn
input with the shortest distance between P and Q4

input in Fig. 3 

is accepted as possible driver performance on a road segment 

and returns the predicted output values (qxn
output = Δxpn, qyn

output 

= Δvpn) that correspond to their row in the table. 

A predictor input and output pair matching is depicted in Fig. 

4. The input and output values are presented in separate 

Cartesian coordinate systems. Each coordinate in the first 

system has a unique pair of the coordinates in the parallel two-

dimensional one. By finding the nearest set of trained input, the 

possible output is predicted and stored in the parallel coordinate 

system. Accordingly, possible driver performance is estimated, 

in a name of lane keeping and speed maintenance, on each road 

segment given by its speed limit and curvature. 

Next, as it is also seen in Fig. 1, driver predicted 

performances Δxp and Δvp are compared with the real ones Δx 

and Δv using the following rules:  
Fig. 3. Visual explanation of predicted value search based on Euclidean 

distance calculation. 

 
 

  

 
Fig. 4. Visual explanation of driver performance prediction using Euclidean 
distance formula. 

 

 
  

 
 

Fig. 2. Training data dimensional reduction. 
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More precisely, if a predicted value is higher than a real 

value, the algorithm sends zero as a system output. It means that 

driving is normal for the current driver. When a predictive value 

is smaller than a real value, the difference between two values 

is calculated and assigned as a system output. Hence, a 

hypothesis is posed that when the driver performance becomes 

worse due to distraction, the algorithm detects unusual vehicle 

dynamic performance. Finally, the obtained lane keeping offset 

Δxr and speed difference Δvr serve as the inputs to the FL 

reasoning to evaluate a level of distraction. 

B. Driver performance prediction with an adaptive neuro-

fuzzy inference system 

To study the degree of accuracy of the prediction method 

described in the previous subsection, an ANFIS prediction 

model has been designed for a driver. Therefore, the ED and 

ANFIS predictors are compared during driver-in-the loop 

experimentation. 

ANFIS is a feedforward five-layer network with supervised 

learning capability. It is functionally equivalent to a first-order 

Sugeno’s fuzzy model. To support both the batch (off-line) and 

the pattern (on-line) learning, ANFIS combines least–squares 

estimator and the gradient descent method as training 

algorithms. During the single training epoch, ANFIS applies 

both the forward and the backward passes [38]. Significant 

improvement in ANFIS performance accuracy can be achieved 

with a greater number of membership functions (MFs) for the 

prediction model rather than an increasing number of training 

epochs [36]. In our case, trained ANFIS is integrated with the 

real-time experiment identically to the ED predictor. The same 

training data without preprocessing as in the ED predictor are 

utilized in ANFIS training. MATLAB® Fuzzy logic Toolbox™ 

from MathWorks, Inc. (Natick, Massachusetts, USA) is used to 

design an ANFIS predictor for each experiment participant.  

The difference in accuracy at applying 5, 50 or even 100 

epochs is not sensitive [38]. The minimum possible for current 

training data set sum of squared errors was obtained with five 

MFs for every input variable. Hence, the network generates 25 

rules, what took only three epochs. As suggested in [38]: 70% 

of sample data were used for training, 15% – for testing and the 

rest – for validation. 

When the secondary task experiment is performed, the 

ANFIS model receives the same information about the road as 

the ED predictor. The outputs of ANFIS represent the driver 

performance predictions Δxp and Δvp. Thus, two equivalent 

predictors are trained with the same data to compare. 

C. DD evaluator with FL 

FL system design includes four stages: fuzzification, 

inference engine, rule-base, and defuzzification. It may have 

many inputs and outputs represented the real numbers. The first 

stage in fuzzy reasoning is a fuzzification, where each real 

number on the input is transformed into a fuzzy set, that is a pair 

consisting of an element in universe of discourse (UOD) and a 

degree of certainty of MF. The rule-base stores linguistic rules 

and is exploited to match fuzzy input with fuzzy output sets via 

an inference mechanism. Finally, a defuzzification procedure 

transforms fuzzy output sets back to real numbers [37]. 

In [39], a fuzzy inference process based on simple matrix 

operations is introduced. In the current study, the same 

approach is used for FL evaluator design. It has two inputs: an 

offset of the car position on the road Δxr from the road 

centerline and a difference between the speed limit on a road 

segment and a real vehicle speed Δvr. The inputs are generated 

during the driver prediction and real-time performance 

comparison described previously. 

Both inputs Δxr and Δvr have symmetrically dispersed 

triangular MFs, what guarantee fast response and equal 

sensitivity of the input variables [37]. MFs are overlapped over 

the whole UOD. The Δxr is restricted to [0 1.5]. The UOD of 

the Δvr is narrowed in [0 12]. 

The inputs are transformed into appropriate column vectors 

a and b, those elements are equal to a degree of certainty of a 

relevant MF. MFs that are not crossed by the input variable are 

equal to 0. Every input has three MFs. Therefore, the fuzzified 

column vectors have the size of 3x1. The dyadic product of 

obtained vectors generates a 3x3 matrix C = baT. Each element 

of the generated matrix C is a real number between zero and 

one. The fuzzification process together with the designed MFs 

is shown in Fig. 5. 

The FL rule-base stores the linguistic rules relation between 

the input and output MFs. The linguistic knowledge is 

expressed in modes-ponens-form rules “If-Then”. As the 

system has two inputs and one output, nine rules are designed 

in total for the FL evaluator. The rule-base is presented in Table 

II, where the MFs are named suitably for human understanding. 

The distance from a vehicle and road centerline Δxr consists of 

3 levels: “close” (to the centerline), “far” (from the centerline) 

or “out” (of the road bounds). The ability of the speed limit 

maintenance Δvr is defined as “good”, “bad” or “awful”. An 

TABLE II 

RULE-BASE OF THE FL EVALUATOR 

DD 
Δxr 

close far out 

 good no negligible low 

Δvr bad no medium high 

 awful very_low very_high inacceptable 

 

 
Fig. 5. Fuzzification procedure. 
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example of the linguistic rule meaning is as follows (Table II): 

IF the vehicle middle point is “far” from the road centerline 

AND driver’s speed limit maintenance is “awful”, THEN 

driver distraction is “very_high”. 

Next, this linguistic knowledge is represented as a 3×3 matrix 

R, the elements of which are the values of the output singleton 

MFs: {no = 0, negligible = 14.3, low = 28.6, very_low = 42.9, 

medium = 57.2, high = 71.5, very_high = 85.8, inacceptable = 

100}. The FL output presents DD in percentage, where each 

MF has equal step between each other in the UOD from 0 to 

100. In Fig. 6, the transformation from the FL linguistic 

knowledge into an m×n matrix R is shown. In our case, both m 

and n are equal to three. 

After that, equally sized matrices C and R are multiplied with 

Hadamard product approach resulting in matrix D = C◦R. Each 

element of D contains information about the certainty of each 

output MF activation for a specific input. 

The last stage of the FL inference system is the conversion 

of fuzzy matrices back to a numerical value. This is done via 

one of the most popular defuzzification methods, center of 

gravity. To transform the matrices into a number, a weighted 

average of the matrix elements is found as the sum of the 

elements in matrix D divided by the sum of the elements in 

matrix C. The three-dimensional surface of the designed FL DD 

evaluator is observed in Fig. 7. The FL design specification is 

summarized in Table III.  

IV. CASE STUDY 

A. Participants  

The participants of the driver distraction experiment were 

employees from IPG Automotive GmbH (Karlsruhe, 

Germany). All the participants (13 males and 5 females) took 

part in the experiment voluntarily. Their age ranged between 24 

and 39 (mean 30.11) years. The participants’ driving experience 

ranged between 1 and 21 years (mean 11.33). 

Before the experiment, the drivers were questioned regarding 

the electronic devices, such as tablets, smartphones, laptops, e-

readers usage while driving. Two participants admitted that 

they never use them while driving; two drivers noted that they 

use a device sometimes. Remaining drivers reported that they 

rarely use electronic devices. All the participants pointed out 

that they are aware about a danger of using devices while 

driving. After the experiment, the drivers also described their 

impression of distractive driving. 

B. Apparatus  

The vehicle mockup driving simulator equipment System 

Experience Platform (SEP) is demonstrated in Fig. 8. The fixed-

base test rig has a steering wheel and two pedals: acceleration 

and brake. SEP has an adjustable driver sit and two liquid-

crystal displays. The virtual world is performed on a display 

placed in front of the driver. The virtual vehicle model has an 

automatic transmission. The vehicle speed is observable for the 

driver from the head-up display. The performance data are 

collected at a frequency of 50 Hz. The SEP supports 

MATLAB®/Simulink® (Natick, Massachusetts, USA) and IPG 

CarMaker® (Karlsruhe, Germany) real-time integration. 

C. Procedure  

The participants drove a two-way, two-line highway road of 

the total length of 10626 m and the line width of 3.5 m. The 

road had three segments with different speed limits (30, 50, and 

TABLE III 
FL SPECIFICATION 

Parameter Fuzzy logic evaluator 

Structure Multi-input, single-output 

Crisp inputs 
Δxr = [0 1.5] (3 MFs) 

Δvr = [0 12] (3 MFs) 

Crisp output DD = [0 100] (8 MFs) 

Input membership functions Triangular symmetric 

Output membership functions Singleton symmetric  

Inference mechanism Matrix (Sugeno’s) 

Rule-base 9 modes ponens 

Defuzzification Geometric center 

 

 
Fig. 6. Transformation of a FL rule-base into an m×n matrix. 

 
Fig. 7. Three-dimensional surface of the DD fuzzy evaluator. 

 
 

Fig. 8. SEP driving simulator. 
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90 km/h) and curvatures. The road shape along with the 

segments speed limits is plotted in Fig. 9. There were neither 

other vehicles or pedestrians nor animals modeled in the virtual 

world. Before the experiment, the drivers received unlimited 

time to familiarize themselves with the test rig and with the 

road. Moreover, during the experiment, the road shape and the 

vehicle location on the road were also displayed in the corner 

of one of the SEP’s screens. 

The first part of the experiment was dedicated to the data 

collection for ANFIS and ED predictors. Each participant 

passed two laps without a secondary task. They were asked to 

drive along the right side of the road and to respect all the traffic 

signs. The drivers were also informed, what data are used in 

driving prediction. After passing two laps, the participants 

continued driving one more lap, during which one of the 

experiment organizers sent text messages to the cellular phone 

prepared for the participants. The drivers were requested to 

answer the text messages and to continue driving respecting all 

the traffic rules. There was no time restriction for secondary 

task execution. The data collected in the third lap were used in 

the DD recognition.  

The drivers were instructed to have a chat conversation 

naturally. The experimenter asked the participants simple 

questions, for instance “How are you?”, “What are your plans 

for the weekend?” and similar. The secondary task period was 

captured since a driver took the phone in a hand and ending 

when the driver released the phone from the hands. The 

experimenter gave a reasonable time between the distractive 

messages. Therefore, each participant drove roughly equal time 

being distracted and being free from the secondary task. 

D. Data extraction 

The road consists of the nodes with fixed locations in 

Cartesian coordinate system, which are connected between 

each other with straight lines. Each node contains data {unique 

identification number (ID); x coordinate; y coordinate; speed 

limit Vl; road radius r}. During the experiment, the SEP saves 

the location of the vehicle geometric center in the virtual world 

with a fixed frequency. 

In Fig. 10, an example of calculating Δx is illustrated. The 

red line symbolizes a road segment of the road curve (Fig. 9), 

while the green one - vehicle geometric center locations. In the 

point D of the vehicle trajectory with the coordinates (xd, yd), 

two nearest nodes A and B are searched from the road curve 

applying the ED function (1). Next, the shortest distance from 

the point D to the straight line between two nodes A and B is 

assigned as ΔxD. In Fig. 10, this shortest distance is the line DE. 

The maximum speed in the point D is calculated using the 

coordinates of this point and the previous one C: 

 
, (4) 

where Δt is the time constant between data measurement for 

SEP. Finally, the speed deviation ΔvD for the point D is found 

as a difference between vD and the speed limit Vl
a of the closest 

node A. 

 The road radius and speed limit for the point D are assigned 

from the closest of two nearest nodes of the road trajectory. In 

Fig. 10, the point D (green) passes the road segment 

characterized by the node A (red). Consequently, after data 

extraction, the point D includes attributes {ΔxD; ΔvD; Vl
D; rD}. 

V. RESULTS 

In this section, the driver-in-the-loop experiment results are 

presented. Two driver performance predictors, ED and ANFIS, 

are compared. In this paper, the performance results of only one 

driver are introduced and are studied in detail. A random driver 

was selected from the group of driver-in-the-loop experiment 

participants. For all other drivers, the results are very similar. 

A. A comparison between ED and ANFIS predictors 

In Fig. 11, a comparison between ED calculation and ANFIS 

predictors is reported. The red curve symbolizes performance 

prediction by the ED, whereas the blue curve – prediction by 

the ANFIS. Predicted results obtained from the ED and the 

ANFIS are similar for both Δvp (Fig. 11 a) and Δxp (Fig. 11 b). 

The main difference between the prediction algorithms is that 

the ANFIS comparing to the ED has a smooth output. 

Nevertheless, the average prediction accuracy is almost the 

same for both algorithms. It can be explained by the ANFIS 

hybrid training algorithm, where both antecedent and 

consequent parameters are optimized in the backward and 

forward passes, respectively [38]. The ED predictor, however, 

has higher oscillation. The algorithm uses only the preprocessed 

data with a single simplification. It provides slightly more 

𝑣𝐷 =
 (𝑥𝑑 − 𝑥𝑐)2 + (𝑦𝑑 − 𝑦𝑐)2

∆𝑡
 

 
Fig. 10. Visual explanation of data extraction for point D. 

TABLE IV 

ANFIS AND ED PREDICTION ACCURACY COMPARISON 

Predictor ΔvRMSE [km/h] ΔxRMSE [m] ttrain [s] 

ANFIS 2.1345 0.1506 148.072 

ED 1.9992 0.1405 96.150 

 

 
Fig. 9. Road shape with speed limits. 
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accurate prediction and, though, frequent fluctuation. 

Nevertheless, the output response remains identical to the 

ANFIS. 

In Table IV, the root mean squared errors, which are 

responsible for algorithm prediction accuracy, for every 

predicted variable, ΔvRMSE and ΔxRMSE, are reported. In addition, 

the algorithms’ training time ttrain is calculated. The ED shows 

more accurate prediction capabilities and faster training term 

comparing to the identical ANFIS predictor. For the rest of the 

Section only the ED predictor results are studied. 

B. DD detection 

Fig. 12 demonstrates driving performance of one of the 

experiment participants conducting a secondary task. The gray 

background symbolizes a period of the secondary distractive 

activity (i.e. the cellular telephone is in the driver’s hand). Red 

lines on every plot mark the predicted performance, namely 

speed limit maintenance (Fig. 12 a) and lane keeping ability 

(Fig. 12 b). Black line is driver’s real performance. Green 

curves represent an appropriate information about the road 

segment (Fig. 9): speed limit (Fig. 12 a) and curvature (Fig. 12 

b). The small road radius designates a sharp turn, while the big 

radius – almost straight road.  

It is observed that the driver failed in holding optimal speed 

limits (Fig. 12 a) while performing the secondary activity. The 

method predicted that the driver would not surpass the 

difference between actual and optimal for the road speeds in 3 

km/h on most of the road segments. Nevertheless, the 

participant being distracted decreased or increased the vehicle 

velocity by more than 5 km/h relatively the road speed limit. 

For the studied driver, the speed limit maintenance on the 50 

km/h speed limit segment was harder than on a high speed limit 

(i.e. 90 km/h) one (Fig. 12 a). The road is significantly curvy on 

the low speed road part, whereas the high speed limit segment 

is almost straight (Fig. 9; Fig. 12 b). This is also predicted by 

the ED (Fig. 12 a). 

The driver faced difficulties keeping the vehicle in the middle 

 
(a) 

 
(b) 

Fig 11. Driver performance prediction algorithms comparison: the red curve represents performance prediction by the ED; the blue curve displays performance 

prediction by the ANFIS: (a) Δvp; (b) Δxp. 

 
(a) 

 
(b) 

Fig 12. Driver performance prediction versus real driver performance example: gray background – the secondary task accomplishment period; black curve – real 

driver performance; red curve – predicted driver performance by the ED calculation; green curve – information about the road segment: (a) Δvp, Δv, and Vl; (b) 

Δxp, Δx, and r. 
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of the lane while performing the secondary task (Fig. 12 b). In 

some moments, the driver went more than 4 m far from the 

centerline. The width of the modeled in the virtual world 

vehicle is 1.5 m. The width of a single lane is 3.5 m. It means 

that when Δx is higher than 1 m, the participants drive outside 

the lane bounds. Although, the ED predicts that the driver’s Δx 

does not exceed 0.5 m while normal performance, the Δx was 

higher than 1 m when the driver interacted with the mobile 

phone. Hence, the driver always drove off the road while 

chatting on a cell phone. Consequently, by applying the 

methods of the prediction of driver performance, an abnormal 

driver’s behavior may be recognized. As this behavior is caused 

by the secondary task accomplishment, it can be concluded that 

the method is suitable for DD detection.  

In Fig. 13, the resultative driver performance diagrams are 

acquainted. The response values were calculated applying (2) 

and (3) for the ED predictor. The results help estimate the 

difference between driving with the secondary task and normal 

driving from the viewpoint of the speed limit maintenance and 

the lane keeping ability. Both estimates, Δvr and Δxr, have 

similar levels: low at normal driving and significantly high 

while performing the secondary task. 

C. DD evaluation 

In Fig. 14, a percentage level of DD is shown. The curve 

represents the result of the FL data fusion. Two variables, Δvr 

and Δxr (Fig. 13), pass through FL evaluator. The prediction 

method represents normal driving (Fig. 14, white background) 

for each individual participant, when evaluation of the driving 

performance does not exceed 20%. On the contrary, when the 

driver performs secondary task, her/his lane keeping and speed 

maintenance ability degrade. The algorithm easily detects this 

phenomenon and FL evaluates driving performance with 

significantly high percentage (Fig. 14, gray background). 

DD remains still high in a few seconds after secondary task 

accomplishment (Fig. 14) because the drivers, after completing 

the distractive task, realize the errors and try to return to their 

lane and increase/decrease the speed as soon as possible. This 

maneuver causes additional mistakes in vehicle operation. 

Thus, DD is often dangerous not only during the secondary 

activity execution, but also for few seconds after. Hence, the 

secondary activity increases the period of distraction. 

Using the proposed method and considering 20% of DD as 

abnormal driving, it can be seen in Fig. 14 that the driver was 

always distracted while interacting with the mobile phone. The 

experiment results are also confirmed by the driver-in-the-loop 

experiment participants’ subjective evaluation. All the drivers 

mentioned that they experienced visual, biomechanical, and 

cognitive distractions at the same time, what caused their 

driving performance burden leading to abnormal driving. This 

phenomenon was assured by the proposed method (Fig. 14). 

Furthermore, although the participants were informed about 

the experiment procedure in details, and they were able to 

observe their position on a track on one of the SEP screens, it 

did not help them to avoid distraction induced by the interaction 

with cell phones (Fig. 14). It also proves the statement from [3]: 

“our cognitive ability does not allow us to engage in more than 

 
(a) 

 
(b) 

Fig 13. Resultative driver performance with ED predictor: gray background – the secondary task accomplishment period; dark gray curve – driver resultative 

performance (Eq. (2), (3)); green curve – information about the road segment: (a) Δvr and Vl; (b) Δxr and r. 

 
Fig 14. DD evaluation: gray background – the secondary task accomplishment period; green-yellow curve – DD detected with the ED predictor. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

10 

one conscious task simultaneously.” It certifies that when the 

driver is involved in the secondary activity, safe driving is not 

guaranteed. Thus, minimization of DD is worthy of significant 

effort and work. 

VI. CONCLUSION 

This paper presents a method for DD detection and 

evaluation while performing a secondary task. The detection is 

executed by the machine learning algorithm based on the ED 

calculation formula. FL fuses the performance-based data to 

evaluate a level of DD in percentages. The main contribution of 

this work is solving a regression problem in DD detection and 

performance-based data fusion into a single variable introduced 

for the DD assessment. Therefore, the method is capable not 

only to detect DD, but also to evaluate its influence on safe 

driving performance. 

A machine learning algorithm predicts driver performance in 

a name of lane keeping and speed maintenance ability on a 

specific road segment. A road segment is described by speed 

limit and road curvature. The data used in machine learning are 

collected during driver’s normal performance, when no 

distraction activity appears. To recognize DD, the proposed 

method compares distracted while conducting a secondary task 

driving with normal one, free from distraction, performances. 

To verify the proposed DD detection and evaluation method, 

the driver-in-the-loop experiment on driving decoy performing 

a secondary task with 18 participants was conducted. Chatting 

on a cellular telephone is examined as a secondary task. Data 

collected during two full laps driving is exploited for predictor 

design. One more lap is driven with a secondary activity 

execution. The proposed method enables accurate driver decoy 

experimentation. The results presented in this paper prove that 

the proposed method is capable to detect and to measure 

precisely the percentage level of DD caused by an unusual 

driver performance. The methodology is adaptable to each 

individual driver. It allows examination and comparison of the 

secondary tasks influence on driving quality of various drivers. 

The suggested methodology has a certain advantage over 

other DD detection methods described in Section II. 

Particularly, as compared to the methods, where the behavioral 

and psychological attributes are applied [6-18], the proposed 

approach does not require additional devices, such as cameras 

and neuroscan systems. Those devices increase the system cost 

[8], what in its turn is a potential resistance for system 

application in a commercial passenger vehicle. For the same 

reason, the methods with different attribute combinations (e.g. 

behavioral, psychological, and subjective) [30-35] are not 

feasible in the real world implementation. 

The method introduced here, like in [2, 20-27], uses only 

performance-based attributes, because the variables can be 

obtained using the data from the available in modern vehicles 

sensors [19]. However, the method described here, in 

comparison with other performance-based approaches and with 

all the works mentioned in Section II, is able to measure a level 

of DD. The nonlinear regression technique used for DD 

detection gives an opportunity for a precise DD measurement. 

On the contrary, all the previously proposed methods are binary 

classifiers with Boolean output (distracted/non-distracted). 

Consequently, the suggested method can be used as a practical 

tool for different evaluation and comparative analyses of the 

secondary tasks influence on vehicle safety. 

This work, however, has several limitations. Exactly, it 

misses a statistical analysis with a greater sample size of 

different driver segments (e.g. distributed between age, gender, 

driving experience, etc.). This analysis will be conducted in the 

future works. What is more, in this paper, the case study 

involved only one secondary task: texting on a cell phone. In 

the future, a variety of different DD activities will be tested on 

their influence of the DD level. Like in [33], the IVIS will be 

exploited as a number of secondary activities. To this regard, 

the experiments will be conducted on the advanced vehicle 

mockup with a vehicle cockpit identical to the one used in 

commercial vehicles. Finally, the method will be also extended 

to more driving-performance variables, and different DD 

recognition attributes will be combined. 
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