
Project Summary
EarthCube Data Capabilities: Collaborative Proposal: Jupyter meets the Earth:

Enabling discovery in geoscience through interactive computing at scale

Our project seeks to advance interactive computing capabilities on the cloud and high perfor-
mance computing (HPC) centers to better serve the needs of geoscience researchers. The proposed
work will: (a) improve access to data sources and data catalogs by exposing them to users in the
same interface where they conduct their computational work, (b) empower researchers to seam-
lessly utilize and combine cloud and HPC resources, (c) accelerate research by simplifying the
process for scientists to create and deploy custom, interactive applications for their research ques-
tion, and (d) facilitate dissemination of research findings to decision-makers, stakeholders, and
the general public. We will achieve these goals by extending the current capabilities of Jupyter
technologies for interactive computing.

Tools in the Jupyter ecosystem are designed in a modular fashion, and behave similarly on a
researcher’s laptop, a high-performance computing center, or the cloud. As a result, Jupyter tech-
nologies have been widely adopted across a spectrum of scientific disciplines. In the geosciences,
Jupyter is one of the enabling technologies for the Pangeo project, an ongoing EarthCube-funded
project that has reduced the barrier for geoscientists who enter the realm of Big Data.

In this project, we take a holistic view of the scientific discovery process, from initial data
discovery, through computational analysis to the dissemination of findings. We have identified
several high-impact areas where we are uniquely positioned to reduce pain-points and make tech-
nological improvements that serve scientists. These developments will be driven by the specific
needs of domain use-cases in the geosciences. Our team is composed of both developers of Jupyter
technologies and geoscientists who use and contribute to open-source tools. We have ample ex-
perience building tools that first meet concrete user needs, and then generalizing them to work
across related fields and usage patterns. This approach ensures that real problems are solved first
(avoiding the “build it and they will come” trap), and we have the necessary high-level archi-
tectural understanding to then extract generic components that can be reused and offered to a
broader community.

Intellectual Merit: The Big Data era in the geosciences offers immense opportunities for transfor-
mative scientific discoveries, but this promise is often cut short by technical barriers arising from
extraneous complexity. The proposed work aims to simplify this path by expanding successful
open-source projects and elevating proven open-science concepts. By jointly solving problems in
data management, computation, infrastructure, and geoscience, this project will develop novel
approaches that neither side alone (technologists or geoscientists) typically achieves. Seamless
interactive access to petabytes of data and cloud-scale resources, in an environment that can cover
the lifecycle of research ideas from scientist to public consumer, is a lofty yet achievable goal; this
project will make substantial inroads towards this scenario in multiple dimensions.

Broader Impacts: The tools from Project Jupyter are already used by millions of people world-
wide in research, education, industry, government, and the media. They are core tools for re-
searchers across virtually all scientific disciplines and the humanities. The challenges this project
addresses in the geosciences exist for all of those disciplines as well: by working directly within
Jupyter, we will ensure that the outcomes from this project have large-scale societal impacts and
benefits. All our outcomes will be, in the tradition of Project Jupyter, developed in open partner-
ship with our community of stakeholders and made available under liberal licensing terms.
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EarthCube Data Capabilities: Collaborative Proposal:
Jupyter meets the Earth: Enabling discovery in geoscience

through interactive computing at scale
1 Introduction

This project revolves around the following key goals: (1) Facilitate the discovery, integration,
and effective use of the diverse sources of data in the geosciences. By integrating data sources and
catalogs in the shared analysis environment used by scientists, we will lower the cost of entry to
research and extract value currently locked in hard-to-access datasets. (2) Empower researchers to
utilize modern, scalable compute resources. By streamlining the process for scientists to transition
from small-scale prototyping to large-scale computing, we will enable scientists to take advantage
of shared infrastructure in a cost-effective manner. (3) Accelerate the process of discovery by
enabling researchers to rapidly create and deploy custom interactive applications tailored to the
research question at hand. (4) Make it possible to communicate scientific results in a manner that
is tailored to the final consumers of research – be they other scientists, policy makers, students, or
the general public.

We will achieve these goals by extending the current capabilities of Jupyter technologies for
interactive computing. These developments will be driven by three geoscience research avenues
and will be conducted in partnership with the Pangeo community.

1.1 Motivation: interactive computing at scale
Geoscientific workflows are increasingly moving beyond the capabilities of local comput-

ing hardware. Whether this is large datasets of varying types and spatiotemporal scales, or
computationally-intensive algorithms that require immense computing power, it is becoming
common to rely on shared infrastructure such as a cloud platform or a high-performance com-
puting (HPC) system. In the past several years, new standards, tools, and services around shared
infrastructure have made it easier explore vary large datasets, perform more complex analyses,
and pursue new avenues of research.

Unfortunately, the barrier-to-entry for these tools is still too high for most individual scientists.
Effectively using this shared infrastructure often requires learning entirely new software as well
as developing new skills in scalable computation. Furthermore, while it has become easier to do
scientific analysis on shared infrastructure, these platforms still do not readily support the itera-
tive, collaborative nature of scientific work. Often, scientists must perform their experimentation
and iteration locally, and then re-write their software so that it can be run on shared infrastructure.

In addition, it is common for geoscience datasets (particularly large, complex, interesting data)
to be stored in multiple remote locations. These data have different procedures for discovering,
accessing, and retrieving them, and it is impractical for each scientist to do this on their own ma-
chine. This adds extra complexity to the research discovery process, and slows down the iterative
nature of exploring data and testing hypotheses. While communities such as EarthCube have
made significant progress in defining community-wide standards in storing data, as well as pro-
viding common Application Programming Interfaces (APIs) for accessing that data, there is much
more that we can do to empower researchers to ask important questions about the earth.

Jupyter and Pangeo are both open communities with a shared goal in developing tools and
practices that make interactive scientific workflows realizable for research avenues that involve
big data and big compute. In this project, we will build upon the successes of these two projects to
build open-source tools that empower geoscience researchers to do their work on shared, scalable
infrastructure. To avoid adding a new technical burden on scientists, these tools must abstract
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away the complexity of working with shared and distributed infrastructure, giving scientists the
ability to experiment and leverage these resources more easily. We will use our combined ex-
pertise in the geosciences and in building open tools for interactive computing in order to build
technology that serves the geosciences community. Our project team includes members from the
Jupyter and Pangeo communities, with representation across the geosciences including climate
modeling, water resource applications, and geophysics.

1.2 Building on success: Jupyter and Pangeo
This is not an isolated project to develop new tools, but a proposal to advance an ecosystem

of open tools that has already proven its value for geoscience researchers. The open-source sci-
entific software stack has grown significantly in recent years, with modern, open languages such
as Python, Julia, and R, becoming commonplace in the geoscience toolbox. Utilizing this stack
makes it easier to build on the work of others and to create more modular, powerful tools for the
geosciences. Connecting these tools is the Jupyter ecosystem, which serves as the connective fab-
ric that joins open tools, data, and computational resources in an interactive session. The Jupyter
Notebook has been adopted as a medium for interactive computing by millions of users world-
wide due to its ability to support the iterative, human-in-the-loop workflows of scientists. Jupyter
is language-, workflow-, and platform-agnostic, making it well-suited to bridge the gap between
working locally and on shared and scalable infrastructure.

The NSF-EarthCube and NASA-ACCESS -funded Pangeo project integrates Python tools for
efficiently working with large multidimensional datasets (Xarray) and performing parallel com-
putation (Dask) with JupyterHub deployments on cloud resources and HPC centers to create com-
putational environments that are tailored to the workflows of geoscientists. In addition, the Pan-
geo project has successfully advocated for cloud-friendly storage formats of large datasets. Many
of these datasets are now on the Google or Amazon cloud platforms, meaning they can readily be
accessed and incorporated into computational workflows performed on these clouds. As a result,
the Pangeo project has enabled Big Data, software tools for analysis, and compute resources to be
brought together by researchers in a manner that was previously impossible.

Pushing the boundaries of any tool-set unveils areas for improvement and opportunities for
developments that streamline and upgrade the user-experience. This project takes a holistic per-
spective of a geoscience research workflow that leverages these state-of-the-art tools and focuses
development on high-impact areas along the research life-cycle. All developments will be con-
tributed to the thriving Jupyter and Pangeo ecosystems. This benefits the diverse community of
researchers who rely on these tools and is critical to our sustainability strategy which includes
making strong social and technical connections between developers of Jupyter with geoscience
researchers.

1.3 Project Team
Our team is an interdisciplinary collaboration that brings together software developers, geosci-

entists, and statisticians from both the University of California at Berkeley and the National Cen-
ter for Atmospheric Research. Within the geosciences, we have experience in solving large-scale
computational problems with open-source tools and working with big data. The team includes
active participants in the Pangeo project and researchers who are new to the project, providing the
opportunity to extend the Pangeo community to other domains of the geosciences. We are well-
positioned to understand the needs and challenges facing the geoscience community, and through
both the Jupyter and Pangeo projects, we have demonstrated the merit of our development phi-
losophy: build tools that are first designed to solve specific problems, and then generalized to
other domains across the sciences.
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2 The open-source geoscience landscape
The work we describe in this proposal is primarily about increasing the efficacy of tools that

are already used by researchers in order to have maximum impact. In this section, we provide
an overview of several tools that we have identified as relevant to the EarthCube community; we
will work to improve access and interoperability between these open resources so that they can be
effective in serving a wide community of geoscientists.

2.1 Data
One of the biggest challenges to data sharing and (re)use is in adopting standards for data

formats and necessary metadata. Fortunately, several EarthCube projects have improved the ac-
cessibility and use of data across a number of geoscientic applications. Data standards such as
NetCDF, THREDDS, and geoJSON [4, 8, 2] have an ecosystem of domain-specific tools and in-
frastructure that facilitate the use of these data. Where data is centrally-hosted, standard data
formats and APIs have made it easier to access these datasets programmatically. Emerging data
storage formats, like Cloud Optimized GeoTIFF (COG) and Zarr, allow scientists to access parts
of large data collections stored on remote resources (like cloud object store) without having to
first download the complete data archive. Ongoing work in the Pangeo project, supported by
the NASA ACCESS program (#4200677983), is improving the discovery and performance of these
cloud optimized data formats for a range of geoscience use cases.

2.2 Scientific software
High-level, open-source languages such as Julia, Python, and R have gained popularity across

scientific disciplines. These languages are open and free (facilitating reproducibility and collabo-
ration), and each language has a growing ecosystem of interoperable software packages for scien-
tific computation. Within the Python ecosystem, tools such as Numpy[51] enable efficient matrix
algebra. Higher-level packages like Scipy[39] contain tools for sparse linear algebra, optimiza-
tion routines, and a range of other analysis tools common in scientific computing. Xarray[23]
and Dask[18] offer the scientific community a way to scale existing scientific workflows to larger
applications and to take advantage of distributed computing resources.

On top of these numerical computation libraries is a well-developed layer of domain-specific
tools for the geosciences. These packages try to make it easy to perform particular computations
and visualizations that are relevant to geoscience (e.g. MetPy [35] in meteorology and SimPEG[14,
22] for geophysical inversions), and interface with the standard data formats described above.

2.3 Project Jupyter
Project Jupyter creates open-source tools that that facilitate interactive computing; these span

the spectrum from low-level tools such as the specification for how code is run interactively up to
the web-based user interface that a researcher uses. Jupyter is agnostic of programming language,
enabling researchers to choose the language and software packages that are most suited for the
task at hand. It also aims to be agnostic about what back-end computational resources are em-
ployed. It supports both local and web-based (e.g., cloud or HPC) workflows on a wide range of
hardware and providers, facilitating a consistent experience for a researcher through prototyping,
iterating, analyzing, and communicating science across many scales of computation. While there
are dozens of tools in the Jupyter ecosystem, below we briefly describe a few tools that are core to
this proposal.

The Jupyter Notebook document specification is a JSON-based way for storing narrative text
(in markdown), code (in any language), code outputs such as plots, and interactive components
such as widgets. It also tracks metadata about the document. In a scientific workflow, it allows
researchers to conduct an analysis in an iterative manner where they can tune parameters and
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Figure 1: Schematic of Jupyter deployed on shared computational infrastructure. A researcher interacts
with a Notebook document through the JupyterLab interface. The document can contain text, code, plots
and interactive widgets. A JupyterHub is deployed to manage user-authentication, resource-allocation (e.g.
CPU, RAM), and serves the JupyterLab interface to users over the web.

examine intermediate results before moving on to the next step.
JupyterLab is a next-generation user-interface for interactive computing. It is modular and

provides a flexible, customizable user-interface for doing computational work. Not only can users
run notebooks through JupyterLab, they can access a terminal or text editor, and connect custom
extensions to the computation (e.g. for monitoring the progress of a parallel computation or for
generating interactive data visualizations). It is a web-based tool, and offers a consistent user
interface whether you are working locally on a laptop, or connecting remotely to a distributed
computing system.

Jupyter Widgets is a specification for how users can create interactive visualizations and user-
interfaces using Python code. The resulting widgets can be used in user interfaces such as Jupyter-
Lab in order to give scientists the ability to quickly create rich and interactive experiences with
their analyses. They can also be used to create dashboards that let scientists quickly select param-
eters or options or an analysis and see the results interactively. They are particularly useful for
communicating ideas that are backed by computation, but that don’t explicitly require individu-
als to see any code.

JupyterHub is a tool for managing users and Jupyter sessions on shared infrastructure. It
provides a central location for users to log-in and authenticate themselves, and manages the com-
putational infrastructure needed to provide users with interactive sessions on the shared infras-
tructure. JupyterHub works on many scales – it can be used on a single, local machine (for ex-
ample, as a central computational hub for a small team of scientists), as well as in a large-scale
and distributed deployment (for example, to teach a course of 1,500 students). It is also highly
customizable, and can serve a number of user-interfaces and scientific software environments.
A related project called Binder is built on JupyterHub. It is a deployable service that lets scien-
tists share their scientific workflows and results as open code repositories. Binder will build the
computational environment needed to run the code in these workflows, and provides a a URL
that scientists can share with others to immediately run their code, reproduce results, and interact
with their findings. An example of one such deployment is at https://mybinder.org. In the past
12 months, 3.5 million users have visited mybinder.org. In addition, as a mechanism for shar-
ing training material and on-boarding new community members, a BinderHub was launched in
August 2018 at https://binder.pangeo.io and has since had 4300 user-sessions launched.
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2.4 Pangeo
The Pangeo project is a distributed community effort to improve open-source software and

computational infrastructure for Big Data applications in the geosciences. Originally funded
through an EarthCube integration project (NSF award #1740648), Pangeo has focused on solv-
ing general problems and improving the integration of open-source tools in the scientific Python
ecosystem. The Pangeo Platform is simply a modular composition of these individual projects. De-
ployed on HPC and cloud systems alike, the Pangeo Platform includes the following components:
a browser-based user interface (Jupyter), a data model and analytics toolkit (Xarray), a parallel job
distribution system (Dask), a resource management system (either Kubernetes or a job queuing
system such as PBS), and a storage system (either cloud object store or traditional HPC file sys-
tem). The modular composition of the platform allows for individual components to be readily
exchanged and the system to be applied in new use cases.

3 Geoscience communities of practice
Our proposal is driven by the needs of scientists, and our strategy is to build tools with re-

searchers who are making progress on areas of active research, and iterate with the researcher to
refine those tools. We specifically focus on the needs of three communities of practice that will
drive the technical developments in this project. Scientists on the project team span the fields of
Large-Scale Hydrologic Modeling (Larsen), climate data analysis (Hamman) and Geophysical in-
versions (Heagy). Hamman (NCAR PI) and Paul (NCAR senior personnel) are core to the Pangeo
project and will provide perspective on the needs of current users of Pangeo, as will our unfunded
collaborators Dr. Ryan Abernathey at Columbia and Dr. Rich Signell at USGS. Larsen and Heagy
are new to the Pangeo community and will help us extend Pangeo to their domains and networks
of researchers in the earth sciences.

We will use the research applications of these scientists as a vehicle for delivering project de-
velopments to broader communities. This includes demonstrating open-science best-practices and
the new capabilities our project enables through conference and journal publications, as well as
through the dissemination of educational material via tutorials and workshops (enumerated in
Sec 6). We will work to see these materials adopted in various undergraduate courses taught by
Drs. Larsen and Pérez at UC Berkeley and in a course taught by Dr. Abernathey at Columbia that
already uses the Pangeo platform.

3.1 Large-Scale Hydrologic Modeling (Larsen)
Although large-scale climate models have now been in development and use for decades,

large-scale hydrologic models have only recently come on the scene, with NOAA launching its
national-extent National Water Model (NWM) in 2016 [34] and the US Geological Survey launch-
ing its National Hydrologic Model (NHM) in 2018 [45]. These models are designed to produce
projections of streamflow from the timescale of operational forecasts (e.g., one to 30 days ahead;
NWM) to longer-timescale planning periods (e.g., monthly, yearly; NHM), using inputs from cli-
mate and land-surface models. Because of the newness of these products, and compelled by their
planned use for flood hazard mitigation and water management operations, there is a need for
tools that enable model evaluation and benchmarking against observational datasets and that fa-
cilitate visualization of both model outputs and hydrometeorological observations.

To first order, a salient need is that of bringing together model-generated streamflow forecasts
or hindcasts with sensor-based observations of discharge and available hydrometeorological forc-
ing factors, such as precipitation, temperature, relative humidity, and snow-water equivalent. To
do so, several practical challenges must be overcome. First, while NWM outputs are provided in
standard NetCDF format through the NOAA Operational Model Archive and Distribution System

D-5



(NOMADS), sensor data from hydrologic observatories are provided in diverse formats, with dif-
ferent variable naming schemes, different conventions (for example, for recording data gaps), and
different quality control protocols. Second, there is often a mismatch in spatial scale between the
outputs of the national-extent hydrologic models and data from hydrologic observatories, which
tend to be situated in small, headwater catchments.

To address these two sets of challenges, we will leverage Larsen’s ongoing efforts as lead PI
of a USGS Powell Center for Synthesis project on watershed storage and controls. Co-PIs on
that project include David Gochis, one of the NWM developers at NCAR, and Jessica Driscoll,
one of the NHM developers at USGS. As part of that project, we have identified a set of pilot
watersheds (examples include the East River, CO and HJ Andrews Experimental Watershed, OR)
for which model output is comparable in scale to the scale of observations. We are also engaging
in a synthesis of a much broader set of sensor data and model outputs, with the idea that as
regionalization efforts enable downscaling of model outputs, direct comparison of modeled and
observational data will be possible for a much larger set of watersheds. While that synthesis will
make these distinct datasets available in a common format (NetCDF), here we propose to develop
a series of workflow and visualization tools in Jupyter to allow users to locate available sensor
and model-generated data and customize the data quality assurance/quality control protocol.
Customization tools will include user-selectable options for identifying outliers and data gaps,
filling data gaps, removing seasonal or diel cycles, and evaluating and/or transforming the data’s
distribution.

3.2 CMIP6 climate data analysis (Hamman)
The World Climate Research Program’s Coupled Model Intercomparison Project is now in

its sixth phase [CMIP6; 19]. When the archive is complete, expected by mid-2019, CMIP6 will
include 287 coordinated climate model experiments from dozens of modeling centers around the
world. These simulations are expected to provide the most comprehensive and robust projections
of future climate ever produced. In the coming years, these simulations will serve as the basis for
thousands of fundamental research and climate change adaptation studies.

The complete CMIP6 archive, which is expected to exceed 18 PB in size, will be distributed via
the Earth System Grid Federation [ESGF; 13]. ESGF is a decentralized peer-to-peer database sys-
tem for storing and distributing large volumes of scientific data. In the case of CMIP6, the shear
size and high-dimensionality of the dataset present significant challenges to the scientific user
community; challenges that ESGF will likely struggle to cope with on its own [10]. Beyond the
challenges associated with CMIP6’s data volumes, other significant obstacles stand between sci-
entists and ground breaking research. Some of these obstacles include complex archive structures,
lack of co-located compute and storage, and rigid data access patterns.

Scientists in the climate science domains are increasingly turning to advanced statistical meth-
ods and machine learning as tools to help make sense of the inherent complexities in large climate
model archives such as CMIP6 [46]. These approaches require advanced pipelines for data dis-
covery, acquisition, transformation, computation, and visualization that can be easily tailored to
a range of specific use cases. In the case of data discovery and acquisition, we envision a well-
integrated set of modular tools for data cataloging (e.g. the Spatio-temporal Asset Catalog) and
data access (e.g. OpenDAP) that abstract unnecessary complexity away from scientists and sup-
port more intuitive interactions between scientists and their data. For large datasets like CMIP6,
we expect data proximate computing to be of paramount importance to facilitate time and cost
effective use of the archive.

The Jupyter and Pangeo projects are well positioned to address some of the key computa-
tional challenges that currently exist in common climate analysis and machine learning work-
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flows. Working with the Pangeo community and integrating specific developments from this
project, we will produce a series of topical tutorials that demonstrate the use of new Jupyter-based
tools for data discovery, data visualization, and interactive computing with CMIP6 datasets.

3.3 Geophysical inversions (Heagy)
Three-dimensional models of the subsurface are critical for characterizing, managing, and

monitoring natural resources such as groundwater, as well as for understanding the risk that nat-
ural hazards such as volcanoes pose to surrounding communities and to air-traffic routes world-
wide. In both of these examples, electrical conductivity is a diagnostic physical property which
can be used to construct a 3D model of the subsurface. For groundwater applications, clay-layers,
which act as aquitards that prevent flow, are typically more electrically conductive than the sed-
imentary units which host the aquifer. The hazard that a volcano poses is largely governed by
the characteristics and composition of its magma chamber; the mineralogical content and melt
fraction both influence the electrical conductivity of the magma chamber. For these examples, an
electromagnetic survey can be employed to collect measurements that are sensitive to the con-
trasts in electrical conductivity. To recover a 3D model of the subsurface, we pose the inverse
problem as an optimization problem. It can be solved by minimizing an objective function that
consists of a data misfit and a regularization term [50, 41, 16]. In the case of electromagnetics, the
posed optimization problem is non-linear and one approach is to solve it using a gradient-descent
algorithm. This requires many evaluations of the 3D forward simulation of Maxwell’s equations
and thus the algorithm must be efficient.

There are established proprietary codes [21, 26, 12] and open-source[24] codes written in low-
level languages [32, 27] which can efficiently solve the electromagnetic inverse problem. How-
ever, as more complex questions are being asked of the data, there is a need to explore new
methodologies and approaches for integrating multiple data types. Statistical and machine learn-
ing techniques for including geologic or petrophysical information are active areas of research
(e.g. [48, 11]), as are joint inversion approaches which include multiple types of geophysical data,
each of which is sensitive to different physical properties (e.g. [15, 49]). To support sustained,
extensible research in these directions, a modular set of open, interoperable tools are needed –
this is the motivation for the open-source Python project SimPEG (for Simulation and Parameter
Estimation in Geophysics) [14, 22]. The growing SimPEG community encompasses researchers
at universities including UC Berkeley, Stanford, Colorado School of Mines, and the University of
British Columbia, as well as at geologic surveys around the world (USGS, New Zealand, Canada).

There are two aspects of efficiency we will work to improve: researcher efficiency and compu-
tational efficiency. Setting up and solving the inverse problem requires researcher input and often
tuning and iterative re-evaluation at many steps: from creating a simulation mesh to designing
a survey that will produce data sensitive to the target of interest to selecting tuning parameters
in the stated inverse problem. To improve researcher-efficiency, we will develop custom Jupyter
widgets and dashboards that facilitate exploration and decision making at each of these steps. To
improve computational efficiency, we will work with the Pangeo team to incorporate Xarray and
Dask into SimPEG so that it can scale to tackle large 3D problems on shared computational infras-
tructure. As motivation for these developments, we will examine electromagnetic data collected
over the Okmok volcano in the Aleutian Islands with collaborator Dr. Paul Bedrosian (USGS).
Additionally, we will invite members of the SimPEG community to test-drive the developments.
To facilitate adoption by the wider community, we will develop and deploy educational resources
for inverting a range of geophysical data types (e.g. magnetics, gravity, electromagnetics).
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4 Technical contributions
The lifecycle of research in geoscience presents some common motifs (that are shared with

other data-intensive disciplines): search for relevant data; exploratory data analysis (EDA); in-
depth modeling with appropriate tools ranging from ODE- and PDE-based forward models to
optimization and machine learning techniques; complex visualization of intermediate results (of-
ten with 3D tools), and collaborative discussion with colleagues. This process is typically iterative.
Results drive new questions, which drive new analyses, which ideally lead to the publication of
findings. It may also include communicating results to decision-makers, students, and the general
public. This is especially true for geoscience questions that have a broader societal impact, such
as resource management and climate science.

Throughout this process, components of the geoscientist’s workflow often require access to big
data and significant computational resources. Pangeo and EarthCube have successfully advocated
for standards around earth sciences datasets that are stored in the cloud. Pangeo facilitates the use
of these datasets by deploying JupyterHubs in the cloud that provide the environment and neces-
sary hardware to move their workflows into the cloud and interact with this data. However, there
is still significant friction in this transition. In the subsequent sections we identify several ”pain-
points” along the research cycle that our project will address, along with opportunities to leverage
and adapt emerging open-source technologies to accelerate geoscience research. At each step of
the way, our goals will be to improve exsisting open-source technology, create new technology
where necessary, document our approach and the tools

4.1 Data discovery
An early step of any data-intensive scientific workflow is to find a dataset and load it into

memory. Data catalogs provide a way to expose datasets to the community in a way that is struc-
tured and easier to access. For example, Unidata’s Thematic Real-time Environmental Distributed
Data Services (THREDDS) [8] and the Spatio Temporal Asset Catalog (STAC) [7] have both im-
proved the discoverability and accessibility of valuable datasets in the geosciences. Moreover,
open source tools such as Anaconda’s Intake package make it easy for researchers to build user-
friendly programmatic interfaces to these datasets [3].

Traditional scientific data analysis has been oriented around datasets stored on file systems.
Such pipelines implicitly assume that the data is locally available, and can be loaded into mem-
ory (either all at once or in chunks). The Jupyter Notebook Server has followed this model by
providing a contents REST API for loading whole datasets into the client. As both data and the
compute necessary to analyze it has grown, these assumptions have begun to break. Datasets may
no longer be available on local file systems, or even able to fit on a single hard drive. They may be
hosted in traditional hierarchical array-based formats on HPC systems (like NetCDF or HDF5), or
in cloud-friendly formats on Amazon S3 or Google GCS (like Zarr or Cloud-Optimized-GeoTIFF).
Our project will will work to expose data catalogs through the JupyterLab interface which re-
searchers are using to perform their computational analysis.

Development task: JupyterLab extensions for data catalogs. There are a number of emerg-
ing community standards for data catalogs, and we will build a user interface template to expose
these to researchers. This user interface will be available as a JupyterLab extension which can be
installed by the user or included as a component of a custom institutional deployment. Despite
there being multiple different catalogs available, there are a number of common features that will
be useful to provide. These may include: (a) Metadata for the dataset, including sizes, licenses,
names, authors, and timestamps. (b) Drag-and-droppable code snippets for ingesting and ana-
lyzing data in popular programming languages. (c) Previews of the data, such as the first few
rows of tabular datasets, or downsampled imagery for satellite data. (d) Collaboration tools for
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annotating and commenting on datasets within a multi-user environment.
We will use the THREDDS, STAC, and Intake catalogs as a test cases for this development. We

will build appropriate documentation and general programmatic components for connecting data
catalogs to JupyterLab so that this model can be replicated across other data catalogs and service
in the earth sciences.

4.2 Scientific discovery through interactive computing
The Jupyter Notebook has been adopted by many scientists because it supports an iterative,

exploratory workflow combining code and narrative. Beyond code, text, and images, Jupyter sup-
ports the creation of Graphical User Interfaces with minimal programming effort on the part of
the scientist. The ipywidgets framework lets scientists create a minimal Graphical User Interface
(GUI) with a single line of code, while still allowing for extensive customization and more com-
plex interfaces when required. These ”Research GUIs” provide access to interactive elements such
as sliders, buttons and menus while still living in the Notebook, side by side with regular code
and narrative text. This ”Just in Time” model gives scientists the ability to seamlessly change their
mode of interaction from writing and executing code (e.g. ”researcher-programmer” mode) to
exploring results through a user-interface (”researcher-interpreter” mode). Since they live in the
data and code context of the rest of a Notebook-based exploration, these GUIs can be developed
only with the necessary functionality for the problem at hand. They avoid the complex design
and development cycle typically associated with the development of standalone GUIs and fos-
ter instead the development of modular libraries of mini-GUIs ready to be deployed and used
when needed. Furthermore, these are used within the mental flow of the rest of the analysis and
narrative, without requiring a disruption to open a separate standalone data management or vi-
sualization GUI.

Development task: Widgets and dashboards. In this project, we will develop custom widgets
tailored at the specific scientific needs of each of our driving use cases, as detailed in §§3.1, 3.2 and
3.3. These will be contributed as new modules in existing libraries (e.g. for SimPEG [14, 22]) or as
new standalone tools, as appropriate. As part of this effort we will collaborate with our partners at
Kitware Inc. on the development of custom widgets to support interactive 2d and 3d visualization
in JupyterLab based on their PyGeoJS, JupyterLab GeoJS and ITK Jupyter Widget tools [29, 28, 25].

A Jupyter Notebook document typically contains both the code for an analysis and its com-
panion narrative. This makes it an ideal medium to expose results to audiences who are interested
in these outcomes and may want to explore further, but without the interest or skill set for writing
code. These audiences can be students, policy makers or the media, for example. The (now un-
maintained) Jupyter Dashboards Layout Extension [17] prototype showed that a Notebook could
be presented to such an end user as a live dashboard without the need for re-creating the analy-
sis, thus closing the gap between development and interpretation. In this project, we will partner
with our colleagues at QuantStack, who lead the development of Voila [44]. Voila provides a
secure framework to render notebooks as interactive web applications with fine-grained control
over security, elements to be displayed (such as hiding code), layout and more. We will develop
Voila-based dashboarding tools that can expose the analysis workflows of our domain use cases to
third-party users, e.g. interactive dashboards for groundwater managers or farmers to access hy-
drological predictions and subsurface inversion models, and for policy makers and agency man-
agers to explore, compare and contrast the wealth of data in the CMIP6 model archive.

We will contribute to the Voila codebase all generic improvements, and will provide demon-
strations of how to deploy such dashboards securely against large datasets and with substantial
computational resources (either cloud- or HPC-based).
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4.3 Established tools and data visualization
Once a dataset has been identified, it is then necessary to understand its internal structure and

basic characteristics. Currently this often involves writing custom code to explore the contents
of a dataset, or using desktop-based data viewers such as Ncview [42], a widely used tool for
visualizing the contents of NetCDF files. Like many fit-for-purpose research GUIs (graphical user
interfaces), this work-horse tool is a desktop application and is not easily incorporated into a
cloud or HPC based workflow. This is also true of many of the widely-used tools for exploring
3D datasets (such as Paraview). When a researcher wants to visualize these types of datasets, they
are then faced with the choice of either learning a new set of modern software tools (that may or
may not yet have functionality equivalent to the desktop software), or downloading the dataset
to their local machine. In cases where the dataset is large, the latter option is either completely
impractical or extremely inefficient.

Development task: Running desktop applications on JupyterHub. JupyterHub can read-
ily serve non-Jupyter web-native software applications such as RStudio, Shiny applications, and
Stencila, to users. Under this project we will extend the types of software that can be delivered to
users to include desktop-native applications that run on Linux distributions, such as Ncview and
Paraview. We will use proven Virtual Network Computing[9] technologies to allow users to access
traditional desktop applications without having to modify the applications themselves. Beyond
visualization software, these developments will provide a trajectory for useful legacy software to
be adopted into Cloud and HPC workflows.

4.4 Using and managing shared computational infrastructure
JupyterHub makes it possible to manage computing resources, user accounts, and provide ac-

cess to computational environments online. However, managing this shared infrastructure is not
trivial, and successfully doing so can have a significant impact on the scientist’s ability to explore,
analyze, and share their work. Currently, JupyterHubs in the Pangeo project are deployed and
maintained using the Zero to JupyterHub guide [43] alongside the HubPloy library [40]. Together,
these libraries have simplified the initial setup and automated upgrades to the Hubs. However,
there are many improvements that can make JupyterHub more suitable for larger, more complex
organizations, giving the hub maintainer more insight into the activity patterns and resources that
are being used. Our efforts will focus on two core areas: user management and resource usage.
To improve the use of JupyterHubs in large organizations that provide access to different groups
of users, we will develop more fine-grained information and controls about user identity and
permissions. For example, most universities have complex accounting structures that are tied to
lab-specific grants. In order to make a JupyterHub deployment sustainable for an institution (or a
distributed project such as Pangeo), it is necessary to link user identity with account management
information; this supports payments for the use of computational resources. Keeping track of
users’ resource use in a form that is useful to both users and administrators is a challenge. When
done effectively, it lets users be aware of what resources are currently available to them, enabling
them to use these resources as they see fit with minimal cognitive overhead. Administrators can
also use this to understand the long term usage pattern of their users, and help tailor the deploy-
ment to the community it serves. This can be addressed by both collecting better usage metrics
and presenting these data in clear dashboards for users and administrators.

Development task: Tracking and exposing usage information. To enable more efficient usage
and administration of JupyterHubs on shared computational infrastructure, we will build tools to:
(1) collect actionable metrics about resource usage including CPU and Memory usage, available
Disk space, or hardware and software failures within JupyterHub deployments, (2) expose these
metrics to users so they can adapt their computational work accordingly, (3) expose these metrics
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to administrators so they can plan & customize the deployment to better meet user’s needs. We
will work with institutions and users to figure out what metrics would be most useful to them
and leverage existing software tools such as Grafana or Prometheus to display this information to
users and administrators. The outcome of this work will be a customizable template that can be
included in JupyterHub deployments that follow the Zero to JupyterHub guide.

Development task: Tools for managing complex JupyterHub deployments. Continuous de-
ployment tools are required for administrators to maintain large and complex JupyterHub de-
ployments effectively. They provide reliable and repeatable installation and upgrade processes,
and make it possible for a small number of administrators to manage a large number of complex
deployments. We will work on improving HubPloy and similar tooling to help continuous de-
ployment be adoptable by a wide community of deployment maintainers, including those who
maintain Pangeo deployments. We will also work to create a community of practice around man-
aging complex JupyterHub deployments so that the number of resources available to administra-
tors can continue to grow and best practices can be spread. These tools will be validated at some
of the nation’s HPC facilities. In addition to our work at NCAR, we will collaborate with Rollin
Thomas and his team at NERSC to develop and test these tools in a heavily used HPC environ-
ment. NERSC is a DOE HPC facility that has provided JupyterHub access to its supercomputers
for the last few years and has seen broad and satisfied uptake of these tools by its user base.

4.5 An open foundation for the future
All outcomes from this project will remain as generic as possible on two technical dimensions:

computational platform (cloud vs HPC) and cloud vendor. The Cloud-or-HPC debate is an active
one in the sciences, and arguments continue to be made for workloads that are better suited for ei-
ther option under suitable assumptions. We do not aim in this project to resolve that question, but
rather to offer scientists an interactive computation and data access experience that is as agnostic
to these differences as possible. Furthermore, while all cloud vendors offer at first sight similar
technologies (Linux-based virtual machines and containers, block and object storage, databases,
networks, etc.), in practice they all work hard to gain competitive advantages by presenting their
specific flavor of each of these. Even if science-enabling software is licensed as open-source, if it
relies on an API or set of tools specific to one vendor, then users are locked into that vendor’s pro-
prietary paradigm. Vendor lock-in poses a significant threat to scientific reproducibility and long
term sustainability of projects, so an expressed goal of this project is to provide a layer of tools
that avoids it. We will demonstrate this by partnering with Ryan Abernathey and the broader
Pangeo project to test deployments on diverse infrastructure (currently Pangeo has deployments
on Google, Amazon, and on the Cheyenne HPC System at NCAR). Additionally, PI Pérez, is co-
PI on a submitted proposal for the NSF INFEWS program, that if funded, would also result in
a JupyterHub deployment and can serve as an additional test case. To accomplish this, we will
maintain all JupyterHub deployment tools independent of any cloud vendor-specific APIs. In
cases where connecting to vendor APIs is necessary, we will develop versions for at least two
commercial cloud providers as well as for the OpenStack environment, a vendor-agnostic project
that exposes fully open abstractions for cloud and datacenter management and deployment.

5 EarthCube participation
Our team of domain-specialists in the geosciences, along with members of the Jupyter and sci-

entific Python communities, provides an opportunity to create a strong bridge between the Earth-
Cube community and the broader open source science community. We believe that this will yield
meaningful contributions to the EarthCube mission. Our knowledge of building user-friendly,
interactive workflows that facilitate data analytics will benefit many in the EarthCube program,
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and our focus on scalability and bridging the gap with cloud- and HPC-based computation will
help the community ask and answer more complex questions in the geosciences. We will also be
able to expand the Pangeo community with representation in new fields of geoscience, such as
hydrology and geophysical inversions.

Moreover, because Jupyter’s primary goal is in facilitating pre-existing tools and workflows
in the scientific community, we are well-positioned to increase the adoption and value of other
tools in the EarthCube community. For example, EarthCube has championed many community
standards around data formats and metadata (such as NetCDF, GeoJSON, and THREDDS). Our
team’s goal is to ease the interoperability of these formats so that scientists can leverage the exten-
sive amount of data that is already available to them.

We will participate fully in EarthCube governance, planning, demonstration, and assessment
activities. Science users from UC Berkeley will volunteer for the the Science Committee, and the
team members from NCAR will volunteer for the Technology & Architecture Committee. Annual
travel for all project PIs to the EarthCube All-Hands meeting has been budgeted. We also intend
to help foster increased EarthCube presence on Github, which is the central tool our team uses
for communication, project management, and code version control. Our team’s well-developed
practices for continuous integration and testing could serve as a template for future EarthCube
software-related activities.

6 Measuring effectiveness
We will measure the effectiveness of our work through the following metrics. All target num-

bers are three year totals unless otherwise specified. Community workshops: 2 AGU workshop
for ⇠50 participants each, 2 webinar for ⇠50 participants each, with video recordings available
afterwards. Documentation and tutorials: (a) connecting data catalogs to JupyterLab, (b) de-
ploying desktop apps through JupyterHub, (c) deploying a ”Research App”, (d) accessing user
metrics on JupyterHub, (e) continuous deployment for JupyterHub deployments using Hubploy.
New Pangeo communities: minimum of 2 (hydrology, geophysical inversions). Pangeo deploy-
ments (5 in total) that adopt project technologies and practices. ”Research Apps” (minimum of 3)
that are accessible to the general public, one for each geoscience community-of-practice. Journal
publication: 5. Conference presentations: 10.

7 Intellectual merit, scientific advances, and community growth
This is an interdisciplinary effort at its core, drawing on the expertise of domain geoscientists

working on specific questions to build widely applicable computational tools that will serve a
broad community, in geoscience and beyond. Its intellectual merit comes from this intersection:
often domain scientists will solve only the computational problems strictly required to answer
their own questions, losing the opportunity to reach broad and lasting impact and accelerate dis-
covery in the long run. This is due to understandable and natural constraints on time, effort, soft-
ware engineering and computational expertise. Conversely, scientific computing is littered with
technology developed with overly generic architectural considerations that appears compelling at
first, yet ultimately proves ill-suited for extensive real-world usage and ends up abandoned.

Instead, we use the domain questions as drivers of a user-centered software design process,
for which the Jupyter (formerly IPython) project has over 15 years of proven experience. Through
this process, we will build tools that close the gap between interactive, scientist- and question-
driven exploratory computation and the analysis of heterogeneous and rich data at scale. A key
contribution here will be the co-design of backend data-access tools in JupyterHub deployed either
in the cloud or HPC systems, along with the front-end components in JupyterLab that will make
these data accessible interactively. This co-design process enables us to make tradeoffs between

D-12



latency and bandwidth necessary to provide interactivity on large-scale data and platforms.
A further contribution is the development of tools ranging from data access and visualization

to cluster resource management that are aimed at the domain scientists, reducing the need for
specialized data center staff to assist scientists on a number of tasks. The promise of the cloud for
science won’t be fully realized if working scientists need a lot of dedicated and highly specialized
engineering support (typically not available) or if they need to effectively become such engineers
themselves (not viable nor a good use of their time for most). Instead, our tools will be easy
to adopt by teams with only minimal support thanks to a combination of ease of use, modularity,
documentation, and direct community engagement activities we will pursue as part of this project.

The domain questions outlined in Sec 3 not only serve as context for technical developments
in this project, they are also drivers for advancing open science in each of those communities. We
will produce state-of-the-art demonstrations of open, interactive geoscience research on shared
computational infrastructure. These will be accompanied by tutorials, documentation, and work-
shops that will enable scientists, including the >1000 researchers who have engaged with the
Pangeo project already, to adopt the developed tools in their own work.

8 Broader impacts
Pangeo has shown that there is an appetite for adopting open-source technologies and prac-

tices for the next generation of geoscience research. These have had rippling effects, resulting in
new applications in the earth sciences and beyond. For example, ocean.pangeo.org now serves a
JupyterHub for the oceanography community, and there is currently work on a ”panneuro” de-
ployment for neuroimaging. This project further develops domain-agnostic tools in the Jupyter
ecosystem. The millions of users who currently incorporate Jupyter into their day-to-day work
will have access to all advancements made during the course of this project.

Since 2016 Jupyter has played a significant-enough role to be explicitly mentioned by name in
the title or the project summary of 31 NSF-funded projects (Award numbers: #1735234, #1615848,
#1615001, #1740229, #1739657, #1812786, #1730170, #1550588, #1712282, #1541450, #1712354,
#1661497, #1740315, #1550476, #1550475, #1837661, #1550562, #1738975, #1738979, #1639722,
#1822351, #1835661, #1616709, #1829622, #1550528, #1835791, #1822336, #1835692, #1835566,
#1816388, #1639648). These represent an investment of more than $20 million by the NSF, spanning
education initiatives (e.g. #1735234, #1712282), efforts to improve reproducibility (e.g. #1541450),
and domain research applications from biology (e.g. #1661497), to chemistry (e.g. #1738975) to
earth sciences (e.g. #1740315, #1639722). The outcomes of our proposed research will directly
benefit all of these projects and the communities of researchers they serve.

9 Management plan
9.1 Roles of different institutions and investigators

University of California, Berkeley. P.I. Pérez’s group (Heagy, Holdgraf, Panda, Pérez + soft-
ware engineer + postdoc) consists of Jupyter contributors and domain-scientists. They will lead
the technical developments within the Jupyter ecosystem (see Sec 4). Heagy (Postdoc with Pérez)
will be responsible for the geophysics use-case and will contribute to scientific software develop-
ment (e.g. SimPEG) with unfunded collaborator Dr. Bedrosian (USGS). P.I. Larsen and Dr. Moges
will primarily focus on the Hydrology use-case and will coordinate with Pérez’s group to guide
software-development decisions and priorities.

National Center for Atmospheric Research. P.I. Hamman is a disciplinary scientist and is a
technical contributor to the Pangeo and Jupyter projects. Hamman and a junior software will lead
the integration with the climate data analysis subject area and will provide perspective on the
needs of the current Pangeo community with unfunded collaborators Dr. Abernathey (Columbia)
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and Dr. Signell (USGS). The junior software engineer will integrate developments from this project
into HPC and cloud JupyterHub deployments at NCAR and the broader Pangeo project.

All project members will contribute to outreach. This includes contributing to documentation
and tutorials for geoscientists looking to adopt these tools in their workflows as well as connect-
ing with geoscientists in their networks and encouraging them to try out new developments and
provide feedback.

9.2 Coordination and communication
Technical communication will be conducted on GitHub, which is already where Jupyter, Pan-

geo, and many related scientific Python communities (e.g. Xarray, Dask, SimPEG) coordinate.
GitHub has tools for versioning software, peer-reviewing reviewing changes, tracking issues, and
it interfaces to tools for testing and continuous integration; these features make it one of the most
widely used platforms for developing and maintaining software. For more informal communi-
cation, we will establish a Slack channel. We will also host regular video-conference calls and
participate in the regular Pangeo meetings. Finally, we will hold annual face-to-face meetings at
UC Berkeley; travel has been budgeted for this. These meetings will provide the opportunity to
review the progress of the project, discuss challenges, and prioritize new developments.

9.3 Timeline
In year 1, the scientists will focus on incorporating Jupyter throughout their scientific use-

cases, contributing to underlying scientific software (e.g. Xarray, SimPEG) as needed. Software
developments in JupyterHub (see Sec 4.3 4.4) and JupyterLab (see Sec 4.1, 4.2) in this year will be
”prototype”-phase developments. We will focus on iterating on these tools with the team scien-
tists and their close collaborators on small deployments. Throughout, we will generate API and
user documentation. At the end of year 1, we will demonstrate the prototyped interface for data
catalogs, tools for managing JupyterHubs, and progress on interactive widgets & dashboards at
the EarthCube AHM. In year 2, we will focus on testing and growing the use of the developed
tools. This will include expanding user documentation. In collaboration with the Pangeo project,
we will incorporate tools for managing JupyterHubs and running desktop applications on the
Cloud and HPC centers through JupyterHub into exsisting deployments. In addition, we will
expose the user-interface for accessing data catalogs to Pangeo users. Along with the continued
feedback from our project scientists, we will continue to refine these tools with feedback from the
wider Pangeo community. At the EarthCube AHM, we will provide a production-scale demon-
stration. In year 3, we will continue refining the developed tools, and will focus on dissemination
to the wider geoscience community. We will complete the geoscience use-cases by publishing the
interactive workflows and develop geoscience-motivated tutorials to support the documentation.
In each of years 2 & 3, we will host a webinar and a workshop at the AGU meeting to inform the
wider community about the developments and discuss how they can be contribute to the contin-
ual improvements of these tools. Final demonstrations will be presented at the EarthCube AHM.

10 Sustainability Plan
This proposal has several strategies for ensuring the sustainability of the tools we build. First,

our team has extensive experience working on technical projects with long-lasting and sustainable
impact. The flagship tool in the Jupyter Project has seen sustained development and growth in
its community of developers and users since 2001. Moreover, Pangeo has seen a steady growth of
scientists both using the platform and extending it with new tools.

The key to sustainability for Jupyter, Pangeo, and this proposal is in the modular nature of
the tools we build. By building open source tools in partnership with the broader open science
community, we can build off of the extensive offerings of the open source community, only build-
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ing more specialized tools only when necessary. This keeps tools more well-scoped, technically-
simple, and adaptable to new use-cases. As a team with extensive experience in the open source
community, we know how to make technical choices in order to ensure that a community can be
built around a project, as opposed to optimizing solely for computational elegance or efficiency.
This is crucial to building a sustainable open community, and we will apply these principles to all
tools built as a part of this project.

Finally, this project is driven by use cases in the geosciences, meaning that any new tool devel-
opment will be performed in close consideration with scientists working on their domain-specific
problems. This ensures that the kinds of tools created as a part of this proposal are primarily use-
ful to the geosciences and the Pangeo community. This will increase the likelihood of adoption of
these tools, and will make it easier to build a sustainable developer community around them.

11 Results from Prior NSF Support
Pérez has one concluded NSF award: BIGDATA: Small: DA: Classification Platform for Novel

Scientific Insight on Time-Series Data, NSF 1251274, 08/01/13-07/31/17. (PI Bloom; Pérez is Co-PI)
Intellectual Merit: Implementation of novel and efficient feature extraction algorithms on irregu-
larly sampled time-series data, supporting feature engineering for machine-learning applications
in the domain sciences. Broader Impacts: The development of open-source tools implementing
these ideas (cesium-ml) as well as a modern web framework to adapt them to various scientific
workflows (cesium-web). These tools are now being adapted for use in the Zwicky Transient Fa-
cility (ZTF), a next-generation time-domain astronomical survey. Publications: [37, 38]. Research
Products: Cesium project [5], core algorithms library [6] and open-source web platform [1]. Pérez
is also co-PI on TRIPODS: Berkeley Institute on the Foundations of Data Analysis, NSF 1740855, a
currently active project with a focus on methodological development for data science.

Larsen holds a CAREER grant (NSF-EAR 1455362; 2015-2020) focused on understanding in-
teractions between organic sediment and vegetation in deltaic environments. Resulting peer-
reviewed publications include [30, 36, 31]. This award has resulted in one student dissertation
[33] and one senior honors thesis (Nghiem, forthcoming), research experiences for nine under-
graduate students, and currently funds one postdoctoral scholar. It produced major new research
and teaching infrastructure (the Ecogeomorphology Flume), used as a teaching resource in two
of Larsen’s undergraduate and graduate classes. Two short-courses were developed through the
National Center for Earth Dynamics Summer Institute, and an exhibit was developed for the San
Francisco Exploratorium (opening date December 2017).

Hamman has one active NSF award. Collaborative Proposal: EarthCube Integration: Pangeo: An
Open Source Big Data Climate Science Platform, NSF 1740633, 09/01/2017-08/31/2020. (PI Paul;
Hamman is Co-PI). This EarthCube Integration project combines a suite of open-source software
tools to form the Pangeo Platform, a tool collection can tackle petabyte-scale ESM datasets. The
culmination of the project will be a robust new software toolkit for climate science at scale. In-
tellectual Merit: Some of the most exciting and ambitious ideas in climate science are currently
impossible to realize due to the computational burden of processing petabyte-scale datasets. The
Pangeo Platform will enable a new Big Data era in climate science in which disciplinary scientists
can realize their most ambitious goals. Broader Impacts: Pangeo’s core components are already
widely used in the scientific python community, and the resulting development of these tools
from our proposed work will greatly benefit this upstream community. Additionally, training and
educational materials for these tools will be developed, distributed widely online, and integrated
into existing educational curricula. Research Products & Their Availability: The developments in
this project have resulted in 13 blog posts, multiple software releases, and 4 hands-on tutorials.
The project’s main Pangeo Platform has engaged more than 1000 scientists.
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network for classification of unevenly sampled variable stars. Nature Astronomy, 2(2):151–155,
2018.
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