OOPSLA 2019 Artifact

On the Design, Implementation and Use of Laziness in R

Getting Started

The artifact is a Docker image. The artifact performs a dynamic analysis on packages written in
the R language, and analyzes the generated data. The artifact uses this data to generate an HTML
report containing the graphs and data appearing in our paper.

The report is served by the Docker container on localhost : 80080.

The Docker image has been created and tested on Linux using Docker version 18.09.6-ce.

Docker documentation can be found at: https://docs.docker.com/
Instructions to get started with docker can be found at: https://docs.docker.com/get-started/

1. Download

Instructions to setup Docker on Windows: https://docs.docker.com/docker-for-windows/
Instructions to setup Docker on Mac: https://docs.docker.com/docker-for-mac/
On Linux, Docker can be installed using the package manager. After installation:

- Start Docker daemon (sudo systemctl start docker)

- Adduser to docker group to run Docker commands (sudo addgroup SUSER docker)
It is recommended to restart the machine for the settings to take effect.

We used Docker version 18.09.6-ce to build our artifact image.

Pull the artifact Docker image from https://hub.docker.com/r/aviralgoel/oopsla-2019-r-laziness
with the following command:

docker pull aviralgoel/oopsla-2019-r-laziness:latest

The artifact is a 2 GB compressed Docker image. After pulling, Docker should show the following
sha256 digest:
b7a9becec9f3db51b1bBe9dc20bfdbb12c49c9ce74b8b8e5a0c61447511097e8

2. Start

To start the docker image, run the following command:

docker run --cpus 8 --rm -p 8000:8080 -ti \
aviralgoel/oopsla-2019-r-laziness:latest --name oopsla-2019-r-laziness

This command creates a container (instantiates the artifact image), a minimal Linux distribution
customized to run the artifact, and opens a bash terminal.

https://www.docker.com/
https://docs.docker.com/
https://docs.docker.com/get-started/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-mac/
https://hub.docker.com/r/aviralgoel/oopsla-2019-r-laziness

- The --cpus option specifies how much of your system CPU resources are available for the
container to use.
Details are here: https://docs.docker.com/config/containers/resource _constraints/
Our artifact is CPU and Disk intensive. For scalability, we use parallelism heavily. We
recommend setting it to as high a value as possible. The (only) downside of a lower value is
slower execution.

- The -p optionis used to describe port mapping.
Details are here: https://docs.docker.com/config/containers/container-networking/
The container starts an nginx web server on port 8080 serving files from /var/www/
The container port 8080 is mapped to the system port 8000. You can navigate to
localhost:8000 in your browser to see an index of the container’s /var/www/
directory. It already contains three files: paper.pdf, small.html and large.html
which will be described later on.

- The -tioptionsallocates a tty for the container.
Details are here: https://docs.docker.com/engine/reference/run/

- The --name option assigns a name to the container.
Details are here: https://docs.docker.com/engine/reference/run/#name---name

The Docker container runs Debian Buster. Precise details of the setup can be found in the
Dockerfile: https://hub.docker.com/r/aviralgoel/oopsla-2019-r-laziness/dockerfile

The username and password are aviral. For convenience, user aviral has passwordless sudo
privileges.

Emacs and Vim are included for viewing code. zsh and fish are installed as bash alternatives.

3. Run

To run the artifact, type this in a terminal:
cd ~/promise-dyntracing-experiment

make pipeline TRACE_DIRPATH=small CORPUS_FILEPATH=corpus/small.txt \
PARALLEL_JOB_COUNT=8

PARALLEL _JOB_COUNT should mirror --cpus option when starting the docker container.

This Make command initiates the pipeline that traces R packages, analyzes the data and generates
an HTML report with the figures and data of the paper in a directory named small. This pipeline
is tracing 5 packages listed in corpus/small. txt. You can view the packages using:

cat ~/promise-dyntracing-experiment/corpus/small.txt

On our machine this takes 15 minutes. The command prints copious amounts of progress
information on the terminal. Once done, an HTML report is created at the following location:

~/promise-dyntracing-experiment/small/analysis/report/report.html

This is copied to /var /www/. You can view this report in your browser by navigating to:

https://docs.docker.com/config/containers/resource_constraints/
https://docs.docker.com/config/containers/container-networking/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/#name---name
https://www.debian.org/releases/buster/
https://hub.docker.com/r/aviralgoel/oopsla-2019-r-laziness/dockerfile

localhost:8000/report.hml
The figures generated measure the same things as the ones in the paper (but for fewer packages),
the paper is here:

localhost :8000/paper.pdf
You can check the correctness of the run by comparing with our results for the same packages:

localhost:8000/small.html

Minor variations in the result are possible due to non-deterministic nature of some programs.

Step by Step Instructions

Our artifact is CPU and 10 intensive. The data in the paper was generated from 14,875 R packages over
5 days on two servers with 256 GB RAM, 72 cores and 4 TB Hard Disks. The Docker image has 132 R
packages to keep the size and build time manageable. A complete Docker image containing all R
packages and their dependencies occupies over 140 GB of disk space and takes over 5 hours to build on a
256 GBRAM and 72 core server.

To run the larger version of the artifact (on 25 R packages), run the following commands in the
container:

cd ~/promise-dyntracing-experiment
make pipeline TRACE_DIRPATH=large CORPUS_FILEPATH=corpus/large.txt \
PARALLEL_JOB_COUNT=8

PARALLEL _JOB_COUNT should mirror --cpus option when starting the docker container.

You can check the list of packages using:

cat ~/promise-dyntracing-experiment/corpus/large.txt

Once done, an HTML report will be created at the following location.
~/promise-dyntracing-experiment/large/analysis/report/report.html

This is copied to /var /www/. You can view this report in your browser by navigating to:

localhost:8000/report.hml

You can verify that the report contains all the figures of the paper and compare this with a report
we generated using the same command:

localhost:8000/large.html

Minor variations in the result are possible due to non-deterministic nature of some programs.
The results from 25 packages do not match exactly those of the paper because the number of
packages is too small. The datais generated in adirectory named large.

To analyze other packages, specify them in a text file, one package per line, same as the files in
~/promise-dyntracing-experiment/corpus directory. This directory has 5 corpus files.
The small.txt and large.txt files were created for this artifact. The fast.txt and
slow. txt files were used in our paper. The test . txt file was used for testing and development

of the dynamic analysis.

If you create a corpus file custom.txt in the corpus directory, you can run the dynamic
analysis on it using the following commands:

cd ~/promise-dyntracing-experiment
make pipeline TRACE_DIRPATH=custom CORPUS_FILEPATH=corpus/custom.txt\
PARALLEL_JOB_COUNT=4

As expected, this will run the analysis and upon completion, copy the generated report.html
to /var /www/ which you can view by navigatingto localhost :8000/report.hml

It is important to ensure that the custom packages specified in the corpus file are installed. The list
of currently installed packages can be found in the directory:

~/library

We have preinstalled 132 packages. You can install more packages by specifying the package
names, one package per ling, in the file:

~/promise-dyntracing-experiment/scripts/dependencies. txt
Then, run the following commands:

cd ~/promise-dyntracing-experiment
make install-dependencies

This make command runs the following script to install the packages.
~/promise-dyntracing-experiment/scripts/install-packages.R

If the installation succeeds without errors (it can fail if dependencies are not met) the installed
packages will residein~/1ibrary directory.

For our study, we installed over 15,000 R packages from CRAN and BIOCONDUCTOR, the
official R package repositories. The R program to install all BIOCONDUCTOR and CRAN
packages (~ 16,000 R packages) with our modified R VM (R-dyntrace) is:

~/promise-dyntracing-experiment/scripts/setup-package-repositories.R
This script is invoked by the make rule setup-package-repositories. However, this
program will take more than a day to download all the packages and install them on a standard
desktop or laptop. We only use this command for setting up the environment on our servers.
There is a similar make rule, mirror-package-repositories, that quickly downloads the
source code of all R packages by mirroring CRAN and BIOCONDUCTOR using rsync. Note that
it does not install the packages. This command takes a few hours to run but over 150 GB disk
space.

The artifact is divided into three checked out and pre-installed git repositoriesin

/home/aviral/

The repositories are described below.

R-dyntrace Modified R VM with probes

promisedyntracer Dynamic Analyzer

promise-dyntracing-experiment Dynamic analysis pipeline

promisedyntracer is installed as an R package with our modified R VM R-dyntrace. It uses the
probes exposed by R-dyntrace for catching interpreter events and collecting information about
laziness. promise-dyntracing-experiment is the control center of our study. It extracts
executable programs (test, vignettes, examples) from the R packages, executes them against the
dynamic analyzer in parallel, analyzes the data and generates reports.

The APl exposed by R-dyntrace for dynamic analysis can be found in the file:

~/R-dyntrace/src/include/Rdyntrace.h

The dyntrace_t struct in this file defines an API for callbacks that are executed on specific
interpreter events.

These callbacks are defined in:
~/promisedyntracer/src/probes.cpp

These callbacks in conjunction with various helper classes in the same directory contain the
dynamic analysis logic. The high-level R API for initiating the analysis is defined in:

~/promisedyntracer/R/promisedyntracer.R

The last part of our artifact is the analysis pipeline. This is implemented as a collection of R
programs that are invoked from a top-level Makefile at:

~/promise-dyntracing-experiment/Makefile
The R program to extract runnable code from packages for dynamic analysis is:

~/promise-dyntracing-experiment/scripts/extract-tests-examples-vignett
ed.R

This script is invoked by the make rule extract-tests-examples-and-vignettes.Youcan
see the extracted programs in the ~/promise-dyntracing-experiment/small/corpus or
~/promise-dyntracing-experiment/large/corpus directory. It has the following layout:

small/

—— corpus
| L—— <package-name>

| —— doc

| | —— <filename>.Rmd

| | —— __wrapped__<filename>.R

| —— examples
| —— <filename>.R
\ —— __wrapped__<filename>.R
| L—— tests
| —— <filename>.R
| —— __wrapped__<filename>.R

The doc, examples and tests directory contain vignettes, examples and test scripts respectively,
extracted from the corresponding R package. For each script <filename>.R or
<filename>.Rmd, a script with name __wrapped__<filename>.R is generated which
contains the same code wrapped in a call to the dynamic analyzer.

The data generated by the dynamic analysis is present in the directory
~/promise-dyntracing-experiment/small/analysis/raw with the following layout:

small/
—— analysis
F—— raw
L—— <package-name>
—— <script-type>
| L—— <script-name>
| —— CONFIGURATION
|

|
|
|
|
|
| [—— BEGIN

| | | —— FINISH

| | | —— NOERROR
| | | —— <data-table-name>.bin.zst

The <script-type> is one of doc, examples or tests, the <script-name> is the name of
the program that is traced and <data-table-name> is one of event_counts,
object_counts, call_summaries, function_definitions, arguments,
side-effects, escaped_arguments, promises and promise_lifecycles. The tables
contain information about the corresponding aspect of the dynamic analysis. bin.zst is our
custom binary compressed format. It uses zstd for streaming compression of binary data.

You canview abin.zst file using the following commands:

cd ~/promise-dyntracing-experiment

make r-session

> library(promisedyntracer)

> filename <- “small/analysis/raw/curl/tests/spelling/arguments”
> read_data_table(filename, binary = TRUE, compression_level = 3)

Note that the read_data_table command requires the filename without extension. The
extension is constructed from the binary and compression_level arguments. You have to be
particularly careful about the path. Currently, the process just exits with an error message if the
file is not found.

The BEGIN, FINISH and NOERROR files are created to track the status of the dynamic analysis of
the program. BEGIN file is created when the analysis starts, FINISH file is created when the
analysis ends and a NOERROR file is created if the analysis is successful, otherwise an ERROR file
is created.

After this, the raw data goes through a sequence of analysis steps. The data layout for each step
has been shown on the next page. The directories in green are the names of different analysis
steps. The analysis steps are explained in Section 5.5 of our paper.

The files in orange color in the directory
~/promise-dyntracing-experiment/small/analysis/visualized

are the graphs generated by the reporting step and displayed in the HTML report.

The numbers mentioned in the prose of the report are exported as Latex Macros for inclusion in
the paper to the following file:

~/promise-dyntracing-experiment/small/analysis/latex/
variables.tex

The logs for all steps of the analysis can be seen in:

https://github.com/facebook/zstd

~/promise-dyntracing-experiment/small/logs

The logs directory mirrors the structure of the analysis subdirectories to make it possible to
identify specific logs.

To get a sense of the size of data, you can run the following commands:

cd ~/promise-dyntracing-experiment/small
du -sh

The data layout for the aforementioned analysis is shown below.

small/

—— analysis

—— prescanned

| L—— traced_scripts.csv

— reduced
—— <data-table-name>
L—— <package-name>
—— <script-tpe>
L—— <script-name>

|

| —— BEGIN

| —— FINISH

| —— NOERROR

| —— <sub-data-table-name>.bin.zst
scanned
—— all_scripts.csv
—— idinvalid_scripts.csv

L—— valid_scripts.csv
combined

—— <data-table-name>
| L—— <sub-data-table-name>

| —— aviral-part-000001.bin.zst
| —— BEGIN

| F——— FINISH

| L—— ERROR

—— <script-tpe>

| L—— <script-name>

| —— BEGIN

| —— FINISH

| —— NOERROR

| —— <sub-data-table-name>.bin.zst

R S N

| —— merged

| | —— <sub-data-table-name>.bin.zst

| —— summarized
| | —— <summarized-data-table-name>bin.zst

—— report

| —— report_files

| L—— report.html

—— visualized

—— argument_evaluation_time.pdf
closure_call_distribution_graph.pdf
closure_parameter_distribution_graph.pdf
esc_return_types.pdf
force_order.pdf
grouped_object_count_by_type.pdf
package_function.pdf
package_strictness.pdf
parameter_lookup_class.pdf
param_expr_types.pdf
prom_exp_types.pdf
promise_meta_use.pdf

prom_types.pdf

value_lookup.pdf

TTTTTTTTTTT

L—— latex
L—— variables.tex

I— logs

— combined

| L— <data-table-name>
|— merged

| L— <data-table-name>
— prescanned

| L— log

|— raw

| L— <package-name>

| — seq
| I— stderr

| L— stdout

— reduced

| |— <data-table-name>

| | L— <package-name>

| | — <script-type>

| | | |— <script-name>

| | | |— <script-name>.err
| | | L — <script-name>.seq

| | L— events

| |— scanned

| | - log

| |— summarized

| | L — <data-table-name>
| L — summary

|

|

|

|— raw

L— reduced
L— <data-table-name>
L— procfile

Errors and Warnings

Some errors/warnings have no effect on the correctness of the results.

The following warnings generated by R can be safely ignored. These are either deprecation
warnings or superfluous for they warn us of ignoring some aspect of the computation that we are
not interested in.

Warning: ‘recursive” is deprecated, please use “recurse’ instead
Warning: ‘recursive’ is deprecated, please use “recurse’ instead

Warning messages:

1: In bind_rows_(x, .id)

Vectorizing 'fs_path' elements may not preserve their attributes
2: In bind_rows_(x, .id)

Vectorizing 'fs_path' elements may not preserve their attributes
3: In bind_rows_(x, .id)

Vectorizing 'fs_path' elements may not preserve their attributes
4: In bind_rows_(x, .id)

Vectorizing 'fs_path' elements may not preserve their attributes
5: In bind_rows_(x, .id)

Vectorizing 'fs_path' elements may not preserve their attributes
6: In bind_rows_(x, .id)

Vectorizing 'fs_path' elements may not preserve their attributes
7: In bind_rows_(x, .id)

Vectorizing 'fs_path' elements may not preserve their attributes

The following error generated by xvfb can be safely ignored. Xvfb is X virtual framebuffer. It is an
in-memory display server used for running graphical applications on remote servers with no
display. R needs an X11 server for making graphs and the entire tracing pipeline spawns
processes using xvfb. The following error happens at the end of the tracing and does not affect the
artifact or its results.

xvfb-run: usage error: need a command to run
Usage: xvfb-run [OPTION ...] COMMAND
Run COMMAND (usually an X client) in a virtual X server environment.

Options:

-a --auto-servernum try to get a free server number, starting at
--server-num (deprecated, use --auto-display
instead)

-d --auto-display use the X server to find a display number
automatically

-e FILE --error-file=FILE file used to store xauth errors and Xvfb
output (default: /dev/null)

-f FILE --auth-file=FILE file used to store auth cookie
(default: ./.Xauthority)

-h --help display this usage message and exit

-n NUM --server-num=NUM server number to use (default: 99)

-1 --listen-tcp enable TCP port listening in the X server

-p PROTO --xauth-protocol=PROTO X authority protocol name to use
(default: xauth command's default)

-s ARGS --server-args=ARGS arguments (other than server number and
"-nolisten tcp") to pass to the Xvfb server
(default: "-screen 0 640x480x24")

-w DELAY --wait=DELAY delay in seconds to wait for Xvfb to start
before running COMMAND (default: 3)

make[1]: **% [Makefile:222: trace-ast] Error 2

make[1]: Leaving directory '/home/aviral/promise-dyntracing-experiment'’

make: [Makefile:603: pipeline] Error 2 (ignored)

