
Certifying Graph-Manipulating C Programs  
via Localizations within Data Structures

Overview for Docker Artifact  
last updated August 15, 2019

I: Overview

We provide a Docker machine that contains a fully functional, compiled, Coq-checked installation
of our system. The machine also contains an installation of Emacs with ProofGeneral to allow users
to browse our files and “step through” our proofs. To run our Docker machine, proceed as follows:

1. Install Docker from https://www.docker.com/ and start up the Docker daemon on your machine

2. Run docker pull johndoe2019/ramifycoq

3. Run docker run -it johndoe2019/ramifycoq bash

We have also made available the Dockerfile that we used to create our machine. However, if you are
interested in serious extensions of our work, we suggest you download and build our system on
your personal machine, and not on a virtual machine: the virtues of a GUI cannot be overstated.
Feel free to follow the instructions in the Dockerfile, or contact the authors.

If you are unfamiliar with Coq and Emacs in a command line setting, please refer to section III on
page 3, where we provide a helpful guide. Our work is in RamifyCoq_VST/RamifyCoq/.
Please see “try it out” below for an example of how a single example is laid out. Next, please see
the table on page 2 for an overview of where the key files are located for all our algorithms.

Try it out!  
For a quick taste, let us examine find from Fig 1 of the paper. The hyperlinks that follow lead
back into the GitHub repository. The mathematical graph (§4) for find is built using a
generic PreGraph, a suitable LabeledGraph atop the PreGraph, and a suitable GeneralGraph atop
that LabeledGraph. The spatial representation (§5) of this graph is built incrementally over several
steps to improve code reusability, but it comes together here in our code. Finally, you can explore
the C code of union-find, the Coq-readable AST of that code generated using VST’s clightgen tool,
and the Coq verification of that AST.

This completes our quick “kick-the-tires” overview. We provide more details in the next section.

https://www.docker.com/
https://github.com/anshumanmohan/RamifyCoq_VST/blob/f0afce0137ffdfe7635646f1398beae5224a14d8/RamifyCoq/graph/graph_model.v%23L18-L23
https://github.com/anshumanmohan/RamifyCoq_VST/blob/f0afce0137ffdfe7635646f1398beae5224a14d8/RamifyCoq/msl_application/UnionFindGraph.v%23L35
https://github.com/anshumanmohan/RamifyCoq_VST/blob/f0afce0137ffdfe7635646f1398beae5224a14d8/RamifyCoq/msl_application/UnionFindGraph.v%23L26-L36
https://github.com/anshumanmohan/RamifyCoq_VST/blob/f0afce0137ffdfe7635646f1398beae5224a14d8/RamifyCoq/sample_mark/verif_unionfind.v%23L21-L25
https://github.com/anshumanmohan/RamifyCoq_VST/blob/master/RamifyCoq/sample_mark/unionfind.c
https://github.com/anshumanmohan/RamifyCoq_VST/blob/master/RamifyCoq/sample_mark/unionfind.v
https://github.com/anshumanmohan/RamifyCoq_VST/blob/master/RamifyCoq/sample_mark/verif_unionfind.v

II: Step by Step Instructions

Just like find described above, we have similar developments for each of our examples. As ex-
plained in our paper, we enjoy code reuse with the mathematical and spatial graphs, but the C code,
the AST, and the verification files are individually customised.

We verified the following algorithms:

With the exception of the last row, all the .c and .v files are in the directory  
RamifyCoq_VST/RamifyCoq/sample_mark/.  
The garbage collector algorithm was sufficiently involved that we placed its files in a separate direc-
tory, RamifyCoq_VST/RamifyCoq/CertiGC/.

As the table shows, we verified some C programs repeatedly, i.e. using different Coq specifications.
For instance, we verified mark_bi.c by abstracting the problem to a mathematical bigraph (ver-
if_mark_bi.v) and also by abstracting the problem to a mathematical directed acyclic graph
(verif_mark_bi_dag.v).

The artifact supports the claims made in the paper in that it does actually verify six algorithms, as
summarised in the table above. The mathematical graph model described in §4 of the paper is built
over several files in the directory RamifyCoq_VST/RamifyCoq/graph and the spatial graph
explored in §5 is in RamifyCoq_VST/RamifyCoq/msl_application.

Algorithm Code File Verification File

1 Marking a bigraph mark_bi.c
verif_mark_bi.v

verif_mark_bi_dag.v

2 Unionfind using struct Node unionfind.c

verif_unionfind.v

verif_unionfind_rank.v

verif_unionfind_slim.v

3 Unionfind using an array unionfind_arr.c verif_unionfind_arr.v

4 Unionfind using iter unionfind_iter.c
verif_unionfind_iter.v

verif_unionfind_iter_rank.v

5 Disposing a bigraph dispose_bi.c verif_dispose_bi.v

6 Garbage collector gc.c verif_garbage_collect.v

III: Coq + Emacs + ProofGeneral Guide

For those unfamiliar with Coq, Emacs, and ProofGeneral, we provide a guided to opening, explor-
ing, and understanding the verification of unionfind inside our Docker build. Here we explain
Emacs commands as a+b, c+d. By this we mean four keystrokes: “hold a and type b, and then
hold c and type d”. The plus and the comma are meant for readability and are not to be typed.

1. After entering our Docker machine, type emacs to start Emacs.

2. To open a file, type Ctrl+x, Ctrl+f. This will enter you into “find file” mode, and you will
see a prompt on the bottom left asking you for a file name. At the prompt, key in  
~/RamifyCoq_VST/RamifyCoq/sample_mark/verif_unionfind.v.

3. In the Docker machine, we have installed ProofGeneral, which is a plugin into Emacs that arms
the simple text editor with additional proof-specific features. Since you just opened a Coq file
(i.e. with a .v extension), ProofGeneral will automatically kick into action in “coq mode”.

4. Now you can use ProofGeneral's commands to navigate the proof. In particular:  
Ctrl+c, Ctrl+n makes the editor “step through” the next line of the proof in a REPL style.  
Ctrl+c, Ctrl+u reverses this, retracting by one line.  
Ctrl+c, Ctrl+b steps through the entire file (warning, lengthy step).  
Ctrl+c, Ctrl+RET steps until whichever line the cursor is on.

5. When a particular line of code gets underlined and there are no complaints from ProofGeneral,
that means that the commands/tactics on that line of code were accepted happily by Coq.

6. We will often see Lemma <NAME>: <STATEMENT>. Proof. <TACTICS>. Qed. 
The assertion here is that the TACTICS following Proof will prove the lemma’s STATEMENT.
This assertion is checked by the command Qed. So if we are able to “step through” until Qed
without complaint from Coq, we know that the lemma was proved.

7. The key proof in this example is Lemma body_find starting on line 183. Its statement is a
little obscure, but it is saying that the function find (f_find from our C code) conforms to the
specification we defined for it (find_spec from line 43 of the file verif_unionfind.v).

8. find_spec combines definitions and relations defined in other parts of our development. In
general, to dig a little deeper and see any definition more fully, users can move the cursor to the
definition in question and type Ctrl-c, Ctrl-a, Ctrl-p, RET. This prints out the def-
inition. Alternately, users can type Ctrl-c, Ctrl-a, Ctrl-p and then type out the name
of the definition they are interested in, followed by RET. A little investigation of find_spec
shows that this corresponds to the specification we claimed in Fig 1 of the paper.

9. To exit Emacs, type Ctrl-x, Ctrl-c. You may be prompted to save changes to the file  
(we recommend not editing our files) and may be warned about exiting while active processes
are running (type “yes”). This will bring you back to the Docker machine's command line
prompt. To exit the Docker machine and go back to your own machine, type exit.

This guide can be extended to our other examples by substituting the name of the verif_ file in
step 2 above. Please refer to the table on page 2 to see what the relevant file names are. Please note
that the files pertaining to the garbage collector are in a separate directory, i.e. RamifyCoq_VST/
RamifyCoq/CertiGC/.

