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1 Executive summary

1.1 Challenge overview

A central part of the biopharmaceutical manufacturing process are
bioreactors, i.e. sterile containers in which genetically modified cell
cultures are grown in a controlled environment to produce drugs or
intermediate compounds. One of the major — and mostly unsolved —
challenges is to understand how the vast array of bioreactor settings
influence amount and quality of the drugs produced.

Biopharmaceutical drug manufacturing is a very common but also
expensive process, hence small improvements in efficiency have large
impacts on manufacturers’ operations and the availability of public
healthcare. One major reason for currently high costs of
biopharmaceutical drugs is that the manufacturing process based on
bioreactors is highly complex and difficult to understand using the more
classical engineering tool set.

AstraZeneca is driving efforts to make full use of the available bioreactor
sensor dataa to enhance process control in a smart and automated
way. This report presents the results from the Data Study Group, a
week-long collaboration between AstraZeneca and The Alan Turing
Institute, with the main goal to use modern data science and machine
learning techniques in order to find out if one can accurately predict the
amount of drugs produced and discover key controllable variables.

1.2 Data overview

AstraZeneca provided granular multivariate panel data from a typical
series of bioreactor experiments, i.e. repeated measurements over time
of several variables on multiple bioreactor runs. A bioreactor run covers
the end-to-end process from initial inputs to final outputs.

In total, data was available for 168 bioreactor runs, each with sensor data
of up to 30 different variables observed at roughly 450 time points
throughout the cell culture process.

Drug quantity measurements, which is besides drug quality the most



important process output, were available at four time points, with the last
one measuring the final amount of drugs produced.

Additional data was available on the bioreactor parameter settings for
process control and the cell cultures used in each experiment.

For more details and a discussion of data issues, see section 3.

1.3 Main objectives

Given the overall goal to enhance drug production via modern data
science and machine learning techniques and the available data, the
main objectives were as follows:

1. Infer controllable features that can be leveraged to enhance current
process control mechanisms in terms of the quantity produced,

2. Predict the final amount of drugs produced from partial time-series
of sensor data, i.e. time-series sensor data observed up to a given
cut-off,

3. Classify which bioreactor runs present the highest risk for
unfavourable process outcomes from partial time-series of sensor
data observed up to a cut-off point, where unfavourable process
outcomes are defined in terms of low drug yields.

1.4 Approach
1.4.1 Inference with linear mixed effect models

For the first objective, we used statistical modelling and inference to
discover key controllable variables of the manufacturing process from the
available sample data.

For this purpose, we estimated a linear mixed effect model with varying
slope and intercept for each bioreactor run using the complete time-series
sensor data coupled with drug quantity measurements interpolated to all
time points of the sensor data.



1.4.2 Supervised learning with time-series/panel data

Both the second and third objective represent prediction tasks, with the
distinction that the second one is a classification task predicting a binary
process outcome variable while the third one is a regression task
predicting the exact quantity of drugs produced.

The standard framework for making such predictions is supervised
learning. We used supervised learning algorithms to infer a function from
the data that maps the time-series sensor data to the process output, so
that the inferred function can then be used to make output predictions
from new sensor data.

In particular, we used a combination of time-series feature engineering and
common regression and classification algorithms. Feature engineering is
necessary in this setting to extract useful information from the time-series
sensor data in a format that can be used as inputs to the algorithms. We
applied three feature engineering approaches:

e Time-series as features using each measurement point as a
separate feature ignoring the temporal ordering of observations,

e Manual feature construction based on Medlmmune’s domain
expertise and initial exploratory data analysis including lagged
correlation analysis and outlier detection,

e Automatic feature extraction based on various time-series analysis
and decomposition techniques using available off-the-shelf tools.

With the resultant sets of time-series features, we then trained the
algorithms on a subset of the available bioreactor runs and evaluated
their predictions on a held out test set.

In order to find out if it is possible to make accurate prediction early in the
process, we evaluated the predictive performance at different cut-off
points, limiting the amount of time-series sensor data used in feature
engineering and fitting of the algorithms.

Tried out algorithms include random forest and gradient-boosting
machines. In addition, we examined whether principal component
analysis (PCA) as a common feature reduction technique helps improve
predictive performance.



1.5

Main conclusions

The main conclusion is that the tried out data science and machine
learning techniques helped to better understand and predict process
output.

1.

1.6

For the first objective, the estimated mixed effect model enabled us
to identify injected oxygen as a key variable that shows statistically
significant positive correlation with the amount of drugs produced.

For the regression task, we found that our tried out algorithms reduce
the mean squared error between the predicted values and actual
outcome in the test set by roughly 70% compared to a naive baseline.
This represents a reduction of the mean relative error from roughly
30% to 20% around the actual values, indicating that this approach
is promising.

For the classification task, we achieved an accuracy score of 94% on
the test set compared to a naive baseline score of 89%.

Limitations

Since the challenge demanded a specific combination of data
science skills and domain knowledge, we focused on the
fundamental tasks of inference and prediction rather than the more
advanced topic of process control. Statistical process control not
only requires to predict the process output from sensor data, but
also to estimate the effect of process adjustments on output (see

e.g. [1]).

Due to the technical constraints, we concentrated our efforts on the
data from only one type of bioreactor system, namely the micro-scale
AMBR system mainly used in early process development, leaving
open the question of how well our results generalise to other settings
(i.e. other bioreactors, unseen bioreactor parameter configurations
and production processes at larger scale).

While the available data was rich in its temporal dimension, only
relatively few bioreactor runs were available. Consequently, more
independent samples are needed to statistically corroborate these



results.

e The estimated performance difference for the classification task is
not statistically significant at the 95% level and can be plausibly
explained by chance.

e Found correlations between sensor data and process output do not
imply any causal relationship between them.

1.7 Recommendations and future work

Our work suggests several avenues for future research:

e As a general recommendation for future data scientific projects, it
will be helpful to provide data in more consistent, easily accessible
format and to provide more data on independent bioreactor runs,

¢ Results need to be statistically corroborated, including tests whether
found performance differences between the tried out algorithms and
a reasonable industry baseline are statistically significant and further
investigating how well results generalise to processes at industrial
scale,

e Improve and extend current approaches (e.g. by trying out other
feature engineering techniques, specialised time-series prediction
algorithms and model selection methods for tuning algorithms),

¢ Investigate other tasks of interest, including predictions of drug
quality and estimation of forecast and transfer functions from the
sensor data,

e Ultimately, deploy machine learning methods in the manufacturing
process, with the goal to enhance decision making via early
detection of unfavourable runs and re-design the bioreactor control
system from static parameter configurations to a reponsive control
regime which is automatically adjusted by machine learning
algorithms.



2 Quantitative problem formulation

In order to find opportunities to improve drug production, the
pharmaceutical industry has implemented platform processes, i.e.
standard bioreactor systems that allow to closely monitor and compare
production runs.

Platform bioreactors collect sensor data of many variables throughout the
process in almost real time. By contrast, process output measurements
require more lengthy chemical analysis and only become available after
the end of the process. This includes drug quantity, which is besides drug
quality the most important process output variable.

In this context, reliable process output predictions are crucial for decision
making, for example by signalling to adjust control parameters or
terminate the process. Consequently, early detection is crucial and
predictions will be more helpful the earlier one can reliably make them in
the process.

One of our main objectives was therefore to find out if one can use partial
time-series sensor data observed up to a cut-off point to predict the final
amount of drugs produced. A closely related objective was to use partial
time-series data to classify which processes are at high risk of
unfavourable process outcomes, where an unfavourable outcome was
defined as a process with final drug quantity below a given
threshold.

The standard methodological framework for making such predictions is
supervised learning [4]. However, the standard framework requires data
to be formatted in a tabular form, which time-series and panel data does
not naturally fit into. Consequently, it is necessary to either use more
specialised methods or to transform the data first, so that one can then
make use of the common algorithms. Either way, this entails a number of
additional steps and choices in the prediction workflow. Here, we followed
the more common second approach, reducing the data to the required
tabular format using various feature engineering techniques.

Another central objective was to identify key controllable variables that
influence the final amount of drugs produced. For this task, the standard
approach is to estimate interpretable statistical models which can be



used to infer important relationships between sensor data and process
output from the available sample data. For this purpose, we used
panel-specific linear mixed effect regression models [3].

These objectives already posed considerable data scientific challenges
and we therefore focused on solving them first, | eaving t he q uestion of
enhanced process control design to future research. Ultimately, the goal
is to re-design the bioreactor control system from acting on static
parameter configurations into a responsive regime which uses
predictions from machine learning algorithms to adjust the cell culture
process in a smart and automated way in real time.

3 Data overview

3.1 Dataset description

AstraZeneca provided multivariate panel data from a typical series of
bioreactor experiments, i.e. repeated measurements over time of different
variables on multiple bioreactor runs. A bioreactor run covers the
end-to-end process from initial inputs to final outputs.

The available data came from two types of bioreactor systems, the
micro-scale AMBR system and small-scale DASGIP system. Both are
mainly employed in biopharmaceutical process development as opposed
to industrial-scale production. For the AMBR system, there was data for
144 runs, for the DASGIP system for 24 runs.

For each bioreactor run, the time-series sensor data is collected through
repeated measurements over the duration of the process of several
variables. A list of key variables and their descriptions can be found in
table 1.

In each run, cell cultures are grown for approximately 14 days and
measurements were available for every hour, resulting in observations at
roughly 450 time points. Note that this data had already been
aggregated.  Original measurements are taken at higher but not
necessarily synchronised frequencies. Additional information was
available on the cell cultures used in each run.



The output variable of interest was the total amount of drugs produced
(known as titre), which is measured at 4 time points during the process,
approximately at day 8, 10, 12 and 14, with the last one capturing the final
process output. While these measurements are taken during the process,
they only become available after the end of the process due to the required
lengthy chemical analysis.

Additional data was available for the configuration of control parameters,
called set-points. Based on these setting, bioreactors automatically adjust
certain variables (e.g. stirring speed or dissolved oxygen) via
preprogrammed proportional-integral-derivative controllers to maintain
favourable conditions for the cell cultures.

3.2 Variable description

Table 1 lists key variables and their descriptions.

Airo and co are both flow variables measuring the injection of oxygen and
carbon dioxide into the bioreactor. In order to capture the total inflow of
oxygen and carbon dioxide up to any given time point in the process, we
calculated their cumulative sums over time. Likewise, we computed the
cumulative sum of the measured do-integral-error to capture the total
deviation of the cell culture process.

3.3 Data quality issues

In our analysis, we noticed the following data quality issues:
1. External validity. There are a number of external validity issues:

e The data comes from bioreactor systems used in process
development, not industrial-scale production,

e The drug produced and cell cultures used in each bioreactor run
is not always the same,

e There was data for only a subset of control parameter
configurations of those used in real-world manufacturing
processes,
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e The available bioreactor runs were pre-selected based on
particular temporal profiles of the sensor data and output
(selection bias),

e Bioreactor runs may not be entirely independent, for example
some dependencies may be introduced due to shared
bioreactor control mechanism.

This raises important questions about the representativeness of our
results for the real-world process of interest.  Without further
statistical investigation, our results do not generalise to the
real-world manufacturing setting.

2. Sample size of bioreactor runs. There were relatively few
bioreactor runs for AMBR bioreactors, and even less for DASGIP.
We therefore focused on the AMBR data, even though DASGIP
systems record more sensor measurements and results from
DASGIP data may be easier to scale up to industrial production.

3. Missing values. For many sensor data variables, observations for
time points were missing. For different batches of bioreactor runs,
entire variables were missing. Consequently, these measurements
could not be used when making predictions without additional
preprocessing steps such as data interpolation.

4. Data format and organisation. There were a number of issues with
the data format and organisation:

e For each batch of bioreactor runs, the sensor data was stored
in separate files.

e For the DASGIP system, data were stored in excel files and
spread across tabs and pages, some of which also had charts.

e Column headers (i.e. variables names) were found to be
inconsistent across files. For example, there is a “speed”
measure in the “ambr414.csv” file that is missing from the other
two.

e Column names included special characters and empty spaces.
As a consequence, understanding and loading the data was difficult,
and data preprocessing and cleaning took a significant amount of
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effort.

3.4 Exploratory data analysis

Due to required data cleaning and preprocessing, we focused our
exploratory data analysis on only a subsample of 48 AMBR bioreactor
runs (AB414).

3.4.1 Data visualisation

To better understand the temporal dynamics of the cell culture process, we
show plots for a selection of key variables over time.

1.2 A

1.0 A

0.8 A

Figure 1: Measurements of carbon dioxide (co) (ml) over time (hourly
intervals) for different bioreactor runs.

From the data visualisation, anomalies could be detected in the sensor
data. These anomalies manifested as either high airo values, high co
values or large pH integral errors.

In addition, the plots indicate that for certain variables certain time periods
show higher variation in measurement values than others. For example,
figure 1 shows that most variation of the injected carbon dioxide takes

12



0.8 A
0.6
e
© 0.4 1
0.2 4
0.0
0 100 200 300 400
Time

Figure 2: Measurements of injected oxygen (airo) (ml) over time for
different bioreactor runs.
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Figure 3: Measurements of dissolved oxygen (do) (percentage) over time
for different bioreactor runs.
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Figure 4: Measurements of the deviation of dissolved oxygen from the
set-point (dointegralerror) over time for different bioreactor runs.
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Figure 5: Measurements of the pH-value (ph) over time for different
bioreactor runs.
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Figure 6: The paired scatter plot shows the amount of drugs (amt), airo,
lactate, glucose, ph and total number of cells at the 4 measurement
time points of titre (amt). To highlight the change of variables over the
four time points, data points are coloured by the time point of the titre
measurements, with darker colours representing later time points. To
scale the data, the logarithm of the titre measurements and total number of
cells is shown. From visual inspection, the plot suggests a positive linear
association between the total number of cells and titre.
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place from the start of the process until roughly 200 hours. After 200 hours,
the processes appear to behave relatively similarly in terms of injected
carbon dioxide. Similarly, figure 4 shows that not much variation occurs
during the first 100 hours of the process with regard to the deviation of
dissolved oxygen from its set-points.

While looking at univariate and bivariate distributions enabled us to gain
first insights, many of the variables are inter-related and jointly determine
the final amount of drugs.
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3.4.2 Correlation analysis between titre intercept/slope and lagged
sensor data

After the initial exploratory analysis, drug production was observed to grow
linearly from approximately day 8 to day 14, but with varying initial value
and slope, as can be seen in figure 9.

AB414 drug amount produced through time

3000

drug amount mg/l

1000

day

Figure 9: Drug quantity measurements (litre), linearly interpolated
between the 4 measurements for a subsample of 48 AMBR experiments
(AB414). As can be seen, titre measurements are not taken exactly at day
8, 10, 12 and 14, but rather a few hours earlier.

For this reason, we hypothesised that most information regarding drug
production can be represented as an initial value and associated slope.
We therefore computed the correlation between the initial value and slope
of each bioreactor run with respect to time-series sensor data values at
preceding time points [1]:

1. For each bioreactor run, we first performed smoothing with a 24-
hour rolling mean over each time-series of the sensor data to remove
some of the random noise,

2. For each run, we took the first titre measurement at day 4 as the
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initial value. The slope was computed via a linear regression on the
4 titre production measurements,

3. We then computed a correlation coefficient across all runs between
the initial values or slopes and the sensor data measurement at each
of the time points before the initial titre value.

This gave us a correlation coefficient for both the slopes and initial values
for each sensor data variable at each of the preceding time points. Figure
10 shows the results for the pH value, figure 11 for dissolved oxygen. In
this way, we were able to examine temporal relationships between each
biochemical sensor reading and drug-production across runs.
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Figure 10: The graph shows the estimated correlation coefficient between
pH values (ph) at each of the time points prior to the first titre measurement
(lag) and the values of the first titre measurement and slopes. The lag is
given in hours. The largest lag represents the start of the process, the
smallest lag (zero) represents the time point of the first titre measurement.
pH values was observed to have consistent positive correlation with the
first measurement of drug amount and the slope of drug production. For
smaller lags, the pH value becomes less correlated with the the initial value
than the slope.
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Figure 11: The graph shows the estimated correlation coefficient between
dissolved oxygen (do) values at each of the time points prior to the first
titre measurement (lag) and the values of the first titre measurement and
slopes. The lag is given in hours. The largest lag represents the start of
the process, the smallest lag (zero) represents the time point of the first
titre measurement. In particular, do was observed to be have consistent
positive correlation with the first titre measurement value and slope of titre
production. Between roughly lags 100 and 50, i.e. 100 and 150 hours
after the start of the process, the level of dissolved oxygen shows a strong
correlation with the slope of the production.
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4 Experiments and results

4.1 Inference for identifying key controllable
features

The first main objective is to infer controllable features that can be
leveraged to enhance current process control mechanisms. Note that
estimated associations between variables do not imply any causal
relationships.

4.1.1 Model identification and estimation

For this task, a linear mixed model with random slope and intercept was
fitted to the AMBR data [3]. The model is motivated by the observation
that drug quantity grows roughly linearly over time with varying slope and
intercept for each bioreactor run, as shown in figure 9.

For the mixed model, the response variable is titre, linearly interpolated
between zero and each of the four titre measurements onto the hourly
time points of the sensor data. The explanatory variables are time and
airo-cumsum. For each bioreactor run, a random slope and intercept is
estimated. For simplicity, the response variable was assumed to follow a
normal distribution.

The model was fitted separately for each of the three batches of AMBR
runs, each consisting of 48 bioreactor runs.

4.1.2 Results

For all three batches of runs, there was a statistically significant positive
effect between airo-cumsum and titre.  That is, higher values of
cumulative oxygen have high correlation with an higher values of drug
amount produced. Table 2 shows regression results for the AB414 set of
experiments.

Note that while these results suggest that airo-cumsum is positively
correlated with the process output, there are many potentially
confounding variables that the model does not take into account. Thus,
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the results do not imply any causal relationship between airo-cumsum
and process output.

Table 2: Linear mixed model regression results for AB414 subsample
Estimate Std. error t-value

Intercept —325.06 38.33 —8.48
Airo-cumsum 6.58 0.29 22

4.1.3 Reproducing results

The script to fit the above model is in prelim modelling v1.R.

4.2 Prediction of drug quantity via feature extraction
from partial time-series

The second main objectives is to predict the final quantity of drugs
produced from partial time-series data observed up to a cut-off point.
Being able to accurately predict the outcome early in the process can
help identify low-yield runs and potentially signal interventions to steer
runs into a more favourable direction or stop them early, and ultimately
improve production efficiency.

4.2.1 Experimental Setup

In order to predict the final drug amount, the prediction experiment was set
up as follows:

o After cleaning the data and removing missing values, the remaining
116 experiments from the AMBR data were randomly split into two
disjoint subsets, 75% of the bioreactor runs were used for fitting the
model, the remaining 25% were reserved for evaluating predictions
on an held out test set.

e In order to investigate how early in the process one can reliably make
predictions, cut-off points were set to 100, 150, 200, 300, 400 and
450 hours after the start of the process. For each cut-off point, only
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the time-series data up to that point was used for fitting the model and
making predictions. The last cut-off point served as a reference point
for comparison, letting algorithms make use of the whole sensor data
up to the end of the process.

We used the following variables if they did not contain missing values:
airo, co, do, do-integral-error, ph, lactate, airo-cumsum, co-cumsum
and do-integral-error-cumsum.

Using supervised learning algorithms with panel data requires to
first transform the data into a tabular format via feature engineering.
For the classification task, we consider outlier detection for feature
engineering, as described below. Here, we considered the following
three approaches:

1. Time-series as features. We used each time point of each
variable as a separate feature, ignoring any potential
information carried by their temporal ordering.

2. Manual feature construction. Based on our exploratory data
analysis and Medlmmune’s domain expertise, we constructed
the following features: the mean of pH and lactate value (if not
missing) for subsequent 3-day intervals of the whole time-series
from day 0 to day 12, i.e. for days 1-3, 3-6, 6-9 and 9-12.

3. Automatic feature extraction. We used the tsfresh Python
library [2] to automatically extract hundreds of features from
each time-series using various time-series analysis and
decomposition techniques.

Each approach was applied to each of the included sensor data
variables. We then combined the resultant sets of features and used
them as input features to the regression algorithm.

In addition to feature engineering, we examined whether applying
PCA as a feature reduction technique helps improve prediction
performance. Due to time constraints, PCA was only used on the
time-series as features approach.

In order to have a point of reference, we compared our results to a
naive baseline, simply predicting the mean titre value of the training
set, ignoring any information carried by the input features.
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e The tried out regression algorithms are random forest and
gradient-boosted trees, both are sensible first choices as they work
well as off-the-shelf methods without requiring much tuning and
data preprocessing.

e To evaluate the prediction performance, we computed the mean
squared error which measures the average squared difference
between predicted and actual values.

4.2.2 Results

Figure 12 shows the results for all tried-out strategies over the chosen
cut-off points. All strategies outperform the naive baseline. Out of the
tried out strategies, automatic feature extraction combined with random
forest shows the best performance across all cut-off points. This strategy
reduces the mean squared error on the test set by roughly 70%
compared to the naive baseline. This represents a reduction of the mean
relative absolute error from roughly 30% to 20% around the actual values,
highlighting the usefulness of this approach.

Using random forest with PCA as a feature reduction technique on the
time-series as features approach does not seem to improve predictive
performance.

Prediction performance also does not improve considerably for later
cut-off points as more data becomes available. One reason is likely that
many of the features are extracted from the earlier parts of the time-series
or the time-series as a whole. Therefore, they may fail to pick out useful
information from later segments. Another explanation may be that models
start to over-fit on the training data when more data is used, so that
predictive performance on the test set does not further improve.

Note that due to the time constraints of the challenge, we did not obtain
confidence intervals, hence we could not test whether observed
performance differences are statistically significant.

4.2.3 Reproducing results

The Python Jupyter notebook to replicate the results s
predict_all strategies.ipynb.
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Figure 12: Mean squared error (MSE) for different prediction strategies
over cut-off points.

4.3 Classification of low-yield processes via outlier
detection from partial time-series

The third main objective is to classify which bioreactor runs present the
highest risk for unfavourable process outcomes from partial time-series
of sensor readings observed up to a cut-off point. Accurate classification
early in the process can help identify unsuccessful experiments and thus
help improve production efficiency.

4.3.1 Experimental setup

For this purpose, we set up the classification experiment as follows:

e Data for 48 AMBR experiments was randomly split into two disjoint
subsets, 60% of the bioreactor runs were used for fitting, the
remaining 40% were reserved for evaluating predictions of the fitted
model on a held out test set.

e The target variable was created as a binary indicator equal to one if
the process resulted in a titre concentration above a threshold of
1500 mg/l (high yield) and zero otherwise (low yield), where the
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threshold was chosen based on Medlmmune’s domain experience.

e As input features, the variables do, glucose, lactate, temperature, ph
and airo were considered. To use the time-series sensor data with
standard supervised learning algorithms, we used outlier detection
as a feature extraction technique. For each considered variable, we
identified outliers via the interquartile range outlier detection method
at each time point across bioreactor runs for the first 5 days of the
process. The value of each time point was then encoded into a binary
variable equal to one if it is an outlier and zero otherwise.

e The resultant matrix of binary features was used to predict the binary
target variable using a random forest classification algorithm.

e 10-fold cross-validation was applied to the training set to optimise
hyper-parameters of the algorithm.
4.3.2 Results

This approach achieved an accuracy score of 94.7%, a slight improvement
over the naive baseline of simply predicting the most frequent class (high
yield) of 89.5%.

Note that the performance difference is plausibly explained by chance for
the given test set at the 95% confidence level using the binomial (or Wald)
confidence interval.

4.3.3 Reproducing results

The R script for reproducing these results can be found in
codesPrediction.R.

5 Future work and research avenues

5.1 Remedying data quality issues

e Collect or provide data on more bioreactor runs to statistically
validate results,
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e To speed up data analysis, implement systematic data curation,

5.2

5.3

including standardised data cleaning (consistent, easily
machine-readable encoding of missing values, measurement
names) and data storage in readily accessible formats (e.g. single
CSV-file for each type of bioreactor system). This will allow to
understand data more quickly and start with predictive modelling
sooner in future data scientific projects,

Optimally, data would be stored in a relational database with
standardised table schemata and automatic data quality checks.
For each bioreactor systems, data would be recorded in the
so-called long format, i.e. a matrix with columns for the identifier of
the bioreactor run, the measurement time point and all observed
variables and rows representing the measurement values at each
time point.

Improving tried out approaches

Investigate uncertainty associated with performance estimates, test
statistical significance of results, investigate how well results
generalise to real-world processes (e.g. processes at industrial
scale, of other bioreactor systems with unseen parameter
configurations, other cell cultures and drugs products),

Include more extensive model selection techniques for algorithm
tuning via hyper-parameter optimisation,

Explore other algorithms, particularly more specialised time-series
feature engineering approaches and algorithms,

Regarding the mixed effect model, estimate non-linear mixed
models with more appropriate distributional assumption on
responses variable and additional explanatory variables.

Further research avenues

Predict drug quality, which is besides drug quantity the most
important process outcome,
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Develop forecasting and transfer function models for multivariate
time-series data to better understand process dynamics between
controlled and uncontrolled variables,

Run intervention experiments to study effect of process adjustments
with the aim to develop smarter process control systems,

Create an interactive real-time visualisation of the sensor readings to
monitor processes (e.g. using ShinyR apps).

Ultimately, use predictions from machine learning algorithms to
re-design bioreactor control system from following static parameter
configurations into an responsive regime that makes process
adjustments in a smart and automated way in real time, with the aim
to optimise process stability and output.
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