
Thermodynamic Stability of Nano-grained Alloys
Against Grain Coarsening and Precipitation
of Macroscopic Phases

GEORGE KAPTAY

Thermodynamic conditions are derived here for binary alloys to have their grain boundary (GB)
energies negative, ensuring the stability of some nano-grained (NG) alloys. All binary alloys are
found to belong to one of the following three types. Type 1 is the unstable NG alloy both
against grain coarsening and precipitation of a macro-phase. Type 2 is the partly stable NG
alloy, stable against coarsening but not against precipitation. Type 3 is the fully stable NG alloy,
both against coarsening and precipitation. Alloys type 1 have negative, or low-positive
interaction energies between the components. Alloys type 2 have medium-positive interaction
energies, while alloys type 3 have high-positive interaction energies. Equations are derived for
critical interaction energies separating alloys type 1 from type 2 and those from type 3, being
functions of the molar excess GB energy of the solute, temperature (T) and composition of the
alloy. The criterion to form a stable NG alloy is formulated through a new dimensionless
number (Ng), defined as the ratio of the interaction energy to the excess molar GB energy of the
solute, both taken at zero Kelvin. Systems with Ng number below 0.6 belong to alloy type 1,
systems with Ng number between 0.6 and 1 belong to alloy type 2, while systems with Ng
number above 1 belong to alloy type 3, at least at T = 0 K. The larger is the Ng number, the
higher is the maximum T of stability of the NG alloy. By gradually increasing temperature
alloys type 3 convert first into type 2 and further into type 1. The Ng number is used here to
evaluate 16 binary tungsten-based (W-B) alloys. At T = 0 K type 3 NG alloys are formed with
B = Cu, Ag, Mn, Ce, Y, Sc, Cr; type 2 is formed in the W-Ti system, while type 1 alloys are
formed with B = Al, Ni, Co, Fe, Zr, Nb, Mo and Ta. For the W-Ag system the region of
stability of the NG alloys is shown on a calculated phase diagram, indicating also the
stable grain size.
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I. INTRODUCTION

NANO-MATERIALS play an increasing scientific
and social role.[1–19] In the past, nano-materials were
simplified to single nano-particles. However, it has been
clear for some decades that the real use of nano-
materials is expected if they form macroscopic articles
with nano-structure inside. One class of such materials is
the poly-crystalline nano-grained (NG) alloys. It should
be admitted that producing such NG alloys is easier
than to ensure their long-term stability, especially at
high-temperatures when diffusion is fast enough to drive

materials towards their equilibrium state within reason-
able times.[20–28] That is why the purpose of this paper is
to develop a model for thermodynamic stability of such
NG alloys. Although there is plenty of previous litera-
ture on both the synthesis[29–47] and on modeling the
stabilization of NG alloys[48–88]) (see also reviews[89–93]),
the present paper is novel as it puts this question into a
wider framework of the nano-Calphad method,[94,95] i.e.,
into the thermodynamic framework originally devel-
oped by Gibbs.[96]

All previous models on GB stability apply the
simplest Langmuir–McLean model[97,98] (see also Ref-
erence 99) for modeling grain boundary (GB) energy.
Since the pioneering works of Weismuller[48,49] it is
known that for the stabilization of PC-NG alloys strong
repulsion between the components is needed in the bulk
alloy. Thus, there is an inner contradiction in the
previous sentences, as the original Langmuir model[97]

treated the surface layer as an ideal solution, and so this
modeling framework is not suited to describe strongly
interacting systems. The novelty of the present paper is
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that here the extended Butler equation is applied to
describe the GB energy.[100] As the Butler equation[101]

was originally designed for strongly interacting systems,
it provides a more natural framework to describe the
stability of strongly interacting NG alloys.

The interplay between thermodynamic and kinetic
reasons of the stability of NG alloys has been also
discussed[102–106] (see also References 107 through 111).
However, in the present paper only thermodynamic
aspects will be discussed in a novel way.

II. ON THERMODYNAMIC INSTABILITY
OF ONE-COMPONENT NG METALS

Following the original ideas of Gibbs,[96] the total
absolute Gibbs energy of a one-component (A) NG
metal (G�

A, J) can be written as:

G�
A ¼ G�

b;A þ A � r�A ½1�

where G�
A;b (J) is the bulk term of G�

A without grain
boundaries, the latter being, the total Gibbs energy of
a one-component (A) bulk single crystal, A (m2) is the
total interface area of grain boundaries within the
poly-crystal, r�A (J/m2) is the grain boundary (free)
energy in a pure A crystal. Now, let us divide Eq. [1]
by n�A (mole), which is the amount of matter in the
phase considered in Eq. [1][95]:

G�
m;A ¼ G�

m;b;A þ Asp � V�
m;A � r�A ½2�

where G�
m;A (J/mol) is the molar Gibbs energy of a

one-component NG metal, G�
m;b;A (J/mol) is the stan-

dard molar Gibbs energy of a one-component single
crystal with no grain boundaries, V�

m;A (m3/mol) is the

molar volume of pure component A, Asp (1/m) is the
average specific interfacial area of the grain bound-
aries, defined as:

Asp �
A

V
½3�

where V (m3) is the total volume of the NG metal.
The average specific interfacial area of 3-dimensional
grains can be modeled as:

Asp ffi k

r
½4�

where r (m) is the average effective grain radius, k (di-
mensionless) is the semi-empirical constant, depending
on the shape of an average grain. For a spherical grain
of radius r: k = 3, while for the cubic grain of the
same volume: k = 3.72. However, in reality grains are
polyhedral (see Figure 1), and for the polyhedral
grains of the same volume as that of a sphere of radius
r the following average value will be used in this
model: k @ 3.36. Substituting this latter value and
Eq. [4] into Eq. [2], the final equation for the molar
Gibbs energy of the NG metal follows as:

G�
m;A ffi G�

m;b;A þ 3:36

r
� V�

m;A � r�A ½5�

In bulk thermodynamics, the standard Gibbs energy
of pure component A at any temperature is usually
taken by definition and for simplicity equal zero, as a
reference value:

G�
m;b;A � 0 ½6�

Equation [5] is shown graphically in Figure 2 taking
into account Eq. [6] with parameters of Table I. One can
see that the molar Gibbs energy of a NG one-compo-
nent metal gradually decreases with increasing the grain
size from a high-positive value towards the zero value
written by Eq. [6], the latter being valid for a macro-
scopic single crystal. Thus, it follows that a one-
component NG metal can never be more stable thermo-
dynamically than the macroscopic single crystal. This is
because all values in the second term of Eq. [5] can have
only positive values for one-component metals, includ-
ing the GB energy.
Similar to pure metals, the specific surface area and

the molar volume have always positive values even for
alloys. However, contrary to pure metals, the GB energy
can be also negative for alloys under special condi-
tions.[48] If this is indeed the case, then NG alloys of
special compositions can be more stable compared to
the corresponding bulk single crystals, at least in a

An average grain 
for modelling

Fig. 1—Crystalline grains of polyhedral shapes are surrounded by
amorphous grain boundaries marked by thick lines around the
grains.
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Fig. 2—The molar Gibbs energy of a one-component NG metal as
function of the average radius of its grains calculated by Eqs. [5] and
[6] and parameters from Table I.
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limited temperature range. In the next sections, the
thermodynamic conditions of the stability of NG alloys
will be discussed.

III. SELECTION OF MODELS
AND PARAMETERS TO DEMONSTRATE

THE STABILITY OF NG ALLOYS

In the present paper, the essential conditions for the
thermodynamic stability of NG alloys are demon-
strated. For this purpose, the simplest possible set of
models and model parameters will be applied, necessary
for stabilization. All those details will be neglected
which are not necessarily needed for this demonstration.
All those neglected details would provide only small
quantitative changes for the final result, without any
qualitative influence. Parameter values for demonstra-
tional purposes are given in Table I.

As was shown above, stability is not possible for one-
component metals. The minimum requirement to ensure
stable NG alloys is to have a two-component alloy, so
this is our choice here. Let us mention that if the number
of components in the alloy is increased further, the
configurational entropy of the macro-solid solution will
increase, stabilizing the macro-alloy vs the NG alloy (see
the extra-stability of high-entropy macro-alloys). Thus,
multi-component alloys are not preferred vs binary
alloys to stabilize NG alloys.

The poly-crystalline alloy modeled here is not limited
in its total size, thus it contains virtually an infinite
number of nano-grains. However, for modeling pur-
poses each nano-grain is considered equal. In real life, it
means that we consider an average nano-grain with
average properties. An average nano-grain will be
characterized by its effective radius (r, m) of its bulk
not including the thickness of the GB surrounding this
grain. The volume of the grain is calculated as if the
grain was spherical, but its surface area is calculated by
Eqs. [3] and [4] with the average value of k = 3.36 (see
above).

For simplicity, we suppose that the two solid compo-
nents A and B of the binary system have in equilibrium
the same crystal structure, and Eq. [6] is valid for both of
them. We also presume for simplicity that the

thermodynamics of the solid solution between compo-
nents A and B can be described by the simplest regular
solution model. However, the exponential T-dependence
of the interaction energy will be taken into account
below; in this way, implicitly the excess molar entropy is
taken into account. We take this T-dependence into
account, as it has a much more significant influence on
the maximum stability of the NG alloys compared to the
neglected T-dependence of x�

B � r�B (see below).
It is also presumed here for simplicity that although

the pure components A and B have different molar
volumes (denoted as V�

m;A and V�
m;B, both in m3/mol),

their temperature dependence has a negligible effect on
the stability of NG alloys. Note that in Table I, the ratio
V�

m;B=V
�
m;A ¼ 1:5 is selected, as it is in the middle of the

interval of actual systems considered in Table II with
values of V�

m;B=V
�
m;A ranging from 0.7 to 2. In addition,

we will suppose for simplicity that the molar volume of
the A–B solid solution will be a linear combination of
V�

m;A and V�
m;B along the mole fraction of component B,

i.e., the excess molar volume of the alloy is also
neglected for simplicity. For simplicity, it is also
supposed that the molar volume of pure solid and pure
liquid B is the same: V�

m;B ¼ V�
m;L;B.

We also presume for simplicity that although the pure
components A and B have different GB energies, their
temperature dependence and their orientation depen-
dence are neglected. Thus, for simplicity only high-angle
GBs are taken into account, with an average GB (free)
energy, denoted as r�A and r�B (both in J/m2). Other (low
angle) GBs are neglected for simplicity, as they have
smaller GB energies. In addition, the outer surface area
of the alloy is neglected as it is usually much smaller
compared to the total GB interfacial area within the NG
alloy; moreover, its contribution is identical for the NG
alloy and for the reference macro-alloy, so this term falls
out when the two are compared. However, the GB
energy of the alloy will be not a linear combination of
r�A and r�B along the average mole fraction of the alloy,
as preferential segregation of the component with
smaller GB energy will be considered. Component B
will be selected as the GB-active component, so in this
paper: r�A>r�B.
Three state parameters will be considered in this

paper: the average mole fraction of component B in the
alloy (denoted by x, dimensionless), absolute tempera-
ture (T, K) and the average radius of the bulk of the
grain (r, m). The radius of the grain is an independent
state parameter here as the concentration and temper-
ature dependences of the molar volumes of the compo-
nents are neglected. Pressure will be kept at standard
constant value of 1 bar. As condensed phases are studied
here, all results will be identical below 100 bar.
This paper is written using mostly the methods of

chemical thermodynamics, which is a statistical science.
Therefore, care will be taken to make sure that there are
at least 1000 atoms in each nano-grain. Taking into
account the average molar volume of 10 cm3/mol of
metals and supposing for simplicity that the grains are
spherical, the effective radius of each nano-grain studied
in this paper will be larger than r = 1.6 nm. Therefore,

Table I. Simplified Parameters Used for Model Calculations

Quantity Unit Value Source

G�
m;b;A J/mol 0 Eq. [6]

G�
m;b;B J/mol 0 Eq. [6]

r�A J/m2 1.00 arbitrary
r�B J/m2 0.30 r�B<r�A
V�

m;A cm3/mol 10.0 arbitrary

V�
m;B ¼ V�

m;L;B cm3/mol 15.0 arbitrary

b — 0.90 approximated
f — 1.25 for bcc grains
x�

A m2/mol 4.90 104 Eq. [8a]
x�

B m2/mol 6.42 104 Eq. [8b]
ra nm 0.157 Eq. [19]
rmin nm 4.3 Eq. [23a]
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the results of the present paper will be valid for NG
alloys with average grain diameters above 3.2 nm.

IV. A MODEL FOR THE CONCENTRATION
DEPENDENCE OF THE GB ENERGY

In this paper, the GB energy will be modeled using the
extended Butler model.[100] The original Butler model
was developed for surface tension of a liquid/gas
surface[101] and it was criticized in the literature for
using un-defined partial surface tensions of the compo-
nents and for being not consistent with thermodynamics
of Gibbs. Recently, the partial surface tensions of the
components were defined[112] in agreement with the
thermodynamics of Gibbs and it was proven that even in
this case the original Butler equations follow. Addition-
ally, it was proven that the Butler equations can also be
derived from the requirement that a solution phase
should have a minimum Gibbs energy including its
surface term.[113] This question was reviewed recently.[95]

In this section, the GB energy will be modeled without
size restrictions, i.e., the bulk and average mole fractions
will be taken as identical (denoted as x for the average
mole fraction of component B). It will be supposed,
however, that the mole fraction of component B in the
GB will have a different value, denoted as xgb. Then, the
two partial GB energies of the two components are
written as[100]:

rA ¼ r�A þ R � T
x�

A

� ln 1� xgb
1� x

� �
þ X
x�

A

� b � x2gb � x2
� �

½7a�

rB ¼ r�B þ R � T
x�

B

� ln xgb
x

� �
þ X
x�

B

� b � 1� xgb
� �2� 1� xð Þ2

h i
½7b�

where rA and rB (J/m2) are the partial GB energies of
components A and B, respectively, roA and roB (J/m2)
are the GB energies of pure components A and B,
respectively, R = 8.3145 J/molK is the universal gas
constant, T (K) is the absolute temperature, X (J/mol)
is the bulk interaction energy between components A
and B in the framework of the regular solution model,
b is the ratio of bonds in the GB to the same in the
bulk of the grain, x�

A and x�
B (m2/mol) are the molar

GB areas of the pure components A and B, respec-
tively, written after Skapski as[114]:

x�
A ¼ f � V�

m;A

� �2=3
�N1=3

Av ½8a�

x�
B ¼ f � V�

m;B

� �2=3
�N1=3

Av ½8b�

where f (dimensionless) is a geometric parameter,
NAv = 6.02 1023 1/mol is the Avogadro number.
Equations ([7a], [7b]) are two versions for the two
components of the first extended Butler equation. The

second extended Butler equation states that the GB
energy of the alloy (= solid solution) and the partial
GB energies of the components of the same solid solu-
tion must be equal in equilibrium[100,101]:

r ¼ rA ¼ rB ½9�

To perform calculations with Eqs. [7] through [9] the
following initial information must be known for the
given A–B system: r�A, V

�
m;A, r

�
B, V

�
m;B, X. Additionally,

the model parameters b and f should be known. Finally,
the state parameters should be given: x and T (note: p=
1 bar is fixed above for the whole paper). If the values of
all these parameters are given, then, first Eqs. [7a] and
[7b] should be substituted into the right-hand side of
Eq. [9] (rA ¼ rB) and from here the equilibrium mole
fraction of component B in the GB region is found (xgb).
Then, substituting this latter value back into Eqs. [7a]
and [7b], both rA and rB are calculated. These two later
values must be equal, and according to Eq. [9] their
values also equal the GB energy of the alloy (= solid
solution).
Now, let us estimate the model parameters. Parameter

b will fall out later, so it is sufficient to provide here only
its approximated value: b ffi 0:90. Parameter f follows
from geometrical considerations[115]:

f ¼ 3 � fb
4

� �2=3

� p
1=3

fgb
½10�

where fb (dimensionless) is the 3-dimensional bulk pack-
ing fraction within the grain, fgb (dimensionless) is the 2-
dimensional packing fraction along the GB if one looks
perpendicular at theGB.Now, let us assume that the bulk
packing fractions of the bulk grains are the same as in
macroscopic crystals, i.e., fb ¼ 0:74 for an fcc grain and
fb ¼ 0:68 for a bcc grain. The GB is assumed to be in a
liquid-like amorphous state, with a 3-dimensional pack-
ing fraction of about 0.65.[115] Thus, the 2-dimensional

packing fraction is about fgb ffi 0:652=3 ¼ 0:75. Substitut-
ing these values into Eq. [10]: f ffi 1:32 for an fcc grain and
f ffi 1:25 for a bcc grain.
Now, let us perform a calculation using the model

parameters of Table I at state parameter values of x ¼
0:15 and T ¼ 500 K. The equilibrium values for both
xgb and r as function of the bulk interaction energy (X)
are plotted in Figure 3. As follows from Figure 3(b), the
GB energy becomes negative above a certain interaction
energy value. As follows from Figure 3(a), around this
value the GB is made almost exclusively of component
B: xgb ffi 1. Substituting this value into Eqs. [7b] and [9],
the following approximated equation is obtained:

r ffi r�B � R � T
x�

B

� ln x� X
x�

B

� 1� xð Þ2 ðat xgb ffi 1Þ

½11a�

Substituting into Eq. [11a] the parameter values from
Table I and those given above, the following simplified
equation is obtained (in J/m2 and kJ/mol):
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r ffi 0:423� 1:13 � 10�5 � X ½11b�

The broken line calculated by Eq. [11b] in Figure 3(b)
overlaps the results of the numerical calculations in the
whole region with xgb ffi 1. The special value Xgb can be
expressed from Eq. [11a] at which r ¼ 0 (and at
X>Xgb : r<0):

Xgb ffi x�
B � r�B � R � T � ln x

1� xð Þ2
: ½12�

Substituting the values from above and from Table I
into Eq. [12]: Xgb ffi 37:6 kJ/mol, which is in agreement
with Figure 3(b). As follows from Eq. [12], at x = 0 and
x = 1: Xgb ¼ 1. As this is an unrealistic requirement,
for pure metals r � 0 is indeed impossible.

As follows from Figure 3(b) and Eq. [12], the GB
energy will be negative when the interaction energy has a
large-positive value. However, in this case, the bulk solid
A-B solution tends to separate into the mixture of two
solid solutions of different compositions. The critical
value of the interaction energy when such phase
separation takes place is expressed from the theory of
regular solution model as:

Xcr ¼
R � T

2 � x� 1
� ln x

1� x

� �
ðfor x 6¼ 0:5Þ ½13�

Substituting parameters x= 0.15 and T= 500 K into
Eq. [13]: Xcr ¼ 10:3 kJ/mol. Compared to the above
value of Xgb ffi 37:6 kJ/mol it follows that Xcr<Xgb (see
also Figure 3(b)). It can be generally proven that this
inequality is obeyed at any reasonable values ofx�

B � r�B, x
and T.[116] It means that when the A–B system is in
equilibrium as a 1-phase macroscopic solid solution, then
r>0, which is a usual boundary condition for any
interfacial energy. On the other hand, r<0 takes place
only, when the A–B system is in equilibrium as a mixture
of two macroscopic solutions of different compositions;
however, in this case the Butler equation is not valid as
applied above, thus r<0 is not a real result for macro-
scopic equilibrium systems. On the other hand, for nano-
grains, the mutual solubility of the components is
increased,[117] thus for NG alloys the case of r<0 is
possible also in equilibrium (see below).

Equation [11a] is one of the most essential equations
of this paper. Let us note that in the literature different
equations are published instead of Eq. [11a]. However,
their detailed critical analysis goes out of the framework
of the present paper.

V. THE MODEL FOR THE MOLAR GIBBS
ENERGY OF MACROSCOPIC ALLOYS

Now, let us select two metallic components A and B
with the same equilibrium crystal structure from 0 K till
their melting points. Suppose that Eq. [6] will be valid for
both solid components, so the molar Gibbs energy of the
mechanical mixture of the two pure solid components will

be zero at any temperature. For the solid A–B-solution
the simplest regular solution model will be applied with a
temperature-independent interaction energy parameter
X, having a high-positive value to ensure negative grain
boundary energy and thus the stabilization of the NG
alloy (see above). Thus, the equilibrium state for the
macroscopic alloy will be the mixture of two solid
solutions, with equilibrium mole fractions of component
B in the two solutions denoted as xe and 1� xe. Let us
note that the average mole fraction of component B in the
alloy should be in the interval between these two values.
The molar Gibbs energy of this equilibrium mixture of
two solid solutions will be calculated as:

Gm;mac ¼ R � T � xe � ln xe þ 1� xeð Þ � ln 1� xeð Þ½ � þ X
� xe � 1� xeð Þ

½14�

To find the equilibrium value of xe, the minimum
point of Gm,mac as function of xe should be found from
Eq. [14]. For that the first derivative of Gm,mac is taken
by xe and then this expression is made equal 0. There are
three solutions to this latter equation. The one with the
smallest xe value is of interest for us. Unfortunately, the
resulting equation does not have an analytical solution,
so the numerical solution is found for the smallest
possible value of xe of the following equation:

0

0,2

0,4

0,6

0,8

1

-50 -25 0 25 50

, kJ/mol

-0,2

0

0,2

0,4

0,6

0,8

1

-50 -25 0 25 50

σ 
, J

/m
2

one equilibrium 
macroscopic solution

the equilibrium mixture 
of two  macroscopic 

solutions

, kJ/mol

(a)

(b)

Fig. 3—The equilibrium mole fraction of component B in the GB (a)
and the equilibrium GB energy (b) as function of interaction energy
(X) calculated by Eqs. [7] through [9], using parameters of Table I
with x = 0.15 and T = 500 K. The dotted line is calculated by
Eq. [11b]. The vertical thin-dotted lines correspond to Xgb and Xcr

calculated by Eqs. [12] and [13].
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R � T � ln xe
1� xe

� �
þ X � 1� 2 � xeð Þ ¼ 0 ½15a�

For example, at T = 500 K and X = 50 kJ/mol the
solution of Eq. [15a] is: xe ffi 5:9803 � 10�6. One can see
that this value is negligible compared to 1 or even to 0.5.
Therefore, the following approximated solution of
Eq. [15a] can be found if 1� 2 � xe ffi 1 is supposed:

xe ffi exp � X
R � T

� 	
½15b�

Substituting the above values of T=500 K and X=50
kJ/mol into Eq. [15b]: xe ffi 5:9795 � 10�6 is obtained.When
the two above solutions to Eqs. [15a] and [15b] are
substituted into Eq. [14], the two results are: Gm;mac ¼
� 0:0249 and � 0.0254 J/mol, the difference being below
0.001 J/mol. This difference is insignificant, so Eqs. [14] and
[15b] can be used in the first approximation to calculate the
reference value of the molar Gibbs energy.

The NG alloy will be thermodynamically fully stable,
if the minimum value of its molar Gibbs energy vs its
radius will be more negative than the reference value
calculated by Eqs. [14] and [15b]. This reference value
will be valid at any temperature below the eutectic
temperature of the eutectic type and eutectic+mono-
tectic type phase diagrams. On the other hand, the same
will be valid at any temperature below the melting point
of the lower melting component for the peritectic type
and the peritectic+monotectic type phase diagrams.

VI. THE MATERIAL BALANCE FOR NG
ALLOYS

The material balance should be separately discussed as
an average grain shown in Figure 1 should be divided into
its crystalline bulk and into its amorphous half-GB. All
physical parameters will be denoted by subscript ‘‘b’’ for
the bulk of the grain and by subscript ‘‘gb’’ for the half-GB
(note: any GB belongs to two grains, so a half-GB belongs
to each grain). For example, the average mole fraction of
component B in the alloy and in the average grain (denoted
as x) will be divided into a value xb (defined as the mole
fraction of component B in the bulk of the grain) and xgb
(defined as the mole fraction of component B in the GB).
For the case when the NG alloys are expected to be stable,
i.e., the GB energy is expected to have a negative value, the
approximation of xgb @ 1 is valid (see Figure 3(a)), i.e., the
GB is composed almost entirely of component B, due to its
segregation to the GB (and due to the selection made
above: r�A>r�B).

Now, let us denote the average effective radius of the bulk
of the grain as r (m). As was explained above, the volume of
the bulk of the grain is modeled as that of a sphere:

Vb ¼ 4:189 � r3 ½16�

The amount of matter within the bulk of the grain can
be found as the ratio of its volume to its molar volume:

nb ¼ Vb

Vm;b
½17�

where Vm;b (m3/mol) is the molar volume of the bulk of
the grain, which can be calculated as the linear combina-
tion of the molar volumes of the pure components as func-
tion of the bulk mole fraction of component B:

Vm;b ¼ V�
m;A þ xb � V�

m;B � V�
m;A

� �
½18�

The radius of atom B in the GB region is expressed
from the usual model for the molar volume of pure
liquid B, supposing spherical atoms of radius ra and the
3-D packing fraction of the grain boundary (0.65) as:

ra ¼ 0:5374 �
V�

m;L;B

NAv

� �1=3

½19�

where V�
m;L;B (m3/mol) is the molar volume of the pure

liquid metal B. Substituting V�
m;L;B ¼ 15 cm3=mol into

Eq. [19]: ra ¼ 0:157 nm. As the GB is composed
mostly of component B, the amount of matter in the
half-GB is the same as the amount of component B in
the same half-GB: ngb ¼ nB;gb. This can be found as
the number of B atoms in the half-GB divided by the
Avogadro number. The number of B atoms in the
half-GB follows as the surface area along the grain of
radius (r + ra), increased by the shape factor of 3.36 /
3 = 1.12 (see above), multiplied by the 2-D packing
fraction in the grain boundary region (0.652/3 = 0.75,
see above) and divided by the cross-sectional area of
one atom (¼ p � r2a). Then, the amount of matter in the
half-GB is written as:

ngb ¼ nB;gb ¼ 3:36

NAv
� rþ rað Þ2

r2a
½20�

By writing Eq. [20], it was supposed that the thickness
of the half-GB is approximately a diameter of one B
atom. According to the material balance, the average
mole fraction of component B in the alloy multiplied by
the total amount of matter in the grain must equal the
sum of the amount of matter of component B in the
bulk of the grain and the same in the half-GB. This
condition can be written using Eqs. [16] through [20] as:

x � 4:189 � r3

V�
m;A þ xb � V�

m;B � V�
m;A

� �þ 3:36

NAv � r2a
� rþ rað Þ2

2
4

3
5

¼ xb �
4:189 � r3

V�
m;A þ xb � V�

m;B � V�
m;A

� �þ 3:36

NAv � r2a
� rþ rað Þ2

½21�
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The bulk mole fraction of component B is expressed
from Eq. [21], as:

xb ¼
4:189 � x �NAv � r2a � r3 � 3:36 � 1� xð Þ � V�

m;A � rþ rað Þ2

4:189 �NAv � r2a � r3 þ 3:36 � 1� xð Þ � V�
m;B � V�

m;A

� �
� rþ rað Þ2

½22�

The boundary condition following from Eq. [22] is
reasonable: at r approaching infinity xb approaches
the value of x. That is why no difference was made
between the bulk mole fraction and the average mole
fraction in Section IV. On the other hand, Eq. [22]
can lead to xb = 0, if the size of the grain has its
minimum possible value (rmin); this condition can be
expressed from Eq. [22] as:

1:247 � x �NAv � r2a � r3min ¼ 1� xð Þ � V�
m;A � rmin þ rað Þ2

½23a�

When rmin 	 ra, Eq. [23a] has the following simple
analytical solution:

rmin ffi 0:802 � 1� xð Þ
x

�
V�

m;A

NAv � r2a
½23b�

where rmin (m) is the minimum size of the grain (r>rmin)
that ensures the GB is fully covered by component B,
i.e., it ensures the possibility of the negative grain
boundary energy, thus the stability of the NG
alloy. Substituting the parameter values of V�

m;A ¼
10 cm3=mol, x ¼ 0:15 and ra ¼ 0:157 nm into Eq.
[23b], the result of this approximated equation is:
rmin = 3.1 nm, while the numerical solution of the
exact Eq. [23a] provides the value of rmin = 3.4 nm. The
dependence of rmin on x is shown in Figure 4. As will be
shown below, the equilibrium grain radius (req, m) is
only slightly larger than the value of rmin, thus Eq. [23b]
and Figure 4 can serve as a design equation and a design
graph for the equilibrium grain size of the NG alloys in
a first approximation.

As follows from Figure 4, to stabilize smaller grain
size, higher average concentration of component B is
needed. Let us note that this latter conclusion has been
known since the work of Weismuller.[48] Eq. [23b] can
also be used to express the minimum average mole
fraction of component B, needed to stabilize the grain of
radius r:

xmin ffi
0:802 � V�

m;A

.
NAv � r2a

rþ 0:802 � V�
m;A

.
NAv � r2a

½24�

Substituting the above parameters and r = 1.6 nm
into Eq. [24], the value of xmin @ 0.25 is found. From
the numerical solution of Eq. [23a] xmin @ 0.29 is
found. Thus, the present model will be thermodynam-
ically valid below about x = 0.3 (see also Figure 7(b)
below).

VII. THE MOLAR GIBBS ENERGY OF NG
ALLOYS; DEMONSTRATION OF THE THREE

ALLOY TYPES

The molar Gibbs energy of the NG alloy (Gm;nano,
J/mol) can be written in an analogous way with Eq. [5]
as:

Gm;nano ffi Gm;nano;b þ
3:36

rþ 2 � ra
� Vm;b � r ½25�

where Gm;nano;b (J/mol) is the bulk molar Gibbs energy
of the NG alloy written by Eq. [26], while r (J/m2) is
the grain boundary energy of the alloy, written by
Eq. [27]:

Gm;nano;b ¼ R � T � xb � ln xb þ 1� xbð Þ � ln 1� xbð Þ½ � þ X
� xb � 1� xbð Þ

½26�

r ffi r�B � R � T
x�

B

� ln xb �
X
x�

B

� 1� xbð Þ2 ½27�

Note that Eq. [26] is similar to Eq. [14] with xe
replaced by xb, while Eq. [27] is similar to Eq. [11a] with
x replaced by xb. In both Eqs. [26] and [27] xb is
calculated by Eq. [22]. In the second term of Eq. [25] the
outer radius of the grain (rþ 2 � ra) is used instead of r,
as the latter is only the radius of the bulk of the grain,
while the former is the radius of the whole grain
including the double thickness of the half-GB.
The calculation is performed using parameters of

Table I with x = 0.12 and T = 500 K. From here,
rmin = 4.3 nm follows from Eq. [23a]. Therefore, the
molar Gibbs energy will be calculated at r ‡ 4.3 nm. The
selected parameters should be substituted into Eq. [22]
to calculate xb. Then, all parameters, including this one
should be substituted into Eqs. [25] through [27] to
calculate the molar Gibbs energy of the NG alloy. The
reference value Gm;mac is calculated by Eqs. [14] and
[15b]. The results of calculation are shown in
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Fig. 4—The x-dependence of rmin calculated by Eq. [23b] (line) and
obtained by numerical solution of Eq. [23a] (points), using
parameters: V�

m;A = 10 cm3/mol, x = 0.15, ra = 0.157 nm.
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Figures 5(a) through (c), for three different values of the
interaction energy X, corresponding to the following
three types of NG alloys:

Type 1 NG alloy (with X ¼ 20 kJ/mol as an example
in Figure 5(a)) is unstable both against grain coars-
ening and precipitation of a macro-phase; its molar
Gibbs energy does not pass through a minimum as
function of grain size and it is more positive at any
grain size than that of the corresponding macro-alloy.
Type 2 NG alloy (with X ¼ 35 kJ/mol as an example
in Figure 5(b)) is partly stable: it is stable against
grain coarsening, but not against precipitation of a
macro-phase; its molar Gibbs energy passes through a
minimum as function of grain size, but the minimum
molar Gibbs energy of the NG alloy is more positive
than that of the corresponding macro-alloy at any
grain size.
Type 3 NG alloy (with X ¼ 50 kJ/mol as an example
in Figure 5(c)) is fully stable both against grain
coarsening and precipitation of a macro-phase; its
molar Gibbs energy passes through a minimum as
function of grain size, and the minimum molar Gibbs
energy of the NG alloy is more negative than that of
the corresponding macro-alloy. In Figure 5(c) the
equilibrium grain radius corresponding to this mini-
mum point is: req = 4.6 nm, being slightly larger than
the value of rmin = 4.3 nm found above.

The evolution of the stability of NG alloys with
increasing values of the interaction energy is similar to
Figures 5(a) through (c) even if different parameter com-
binations are applied. Thus, type 1 alloys appear with
interaction energies having negative or zero or low-positive
values, type 2 alloys appearwith interaction energieshaving
medium-positive values, while type 3 alloys appear with
interaction energies having large-positive values.

VIII. ON A STABILITY CRITERION
AND STABILITY DIAGRAMS TO SELECT

STABLE NG ALLOYS

As was shown above, even in the framework of the
simplest model, the stability of NG alloys depends on
seven independent parameters (V�

m;A, V
�
m;B, r

�
A, r

�
B, X, T,

x). If a more complex solution model, or the excess
volume or the T-dependence of physical quantities are
taken into account, the number of parameters can be
easily doubled, at least (see for example the 24 param-
eters below for the real W-Ag system). Thus, the
identification of a single stability criterion or at least a
2-dimensional stability graph seems elusive. Neverthe-
less, for fast screening of stable NG systems such a
criterion or diagram is desirable.

Now, let us find such a simplified criterion for fully
stable NG alloys (type 3). For this purpose, let us
remind that the key to the full stability of NG alloys is
the negative grain boundary energy. The minimum value
of the interaction energy to reach this goal is written by

Eq. [12]. Although this equation is relatively simple, it
still contains 4 parameters on the right-hand side: x�

B,
r�B, T and x. It should be understood that the highest
chance for the stability of NG alloys exists at T = 0 K.
Partly because the value of Xgb increases with increasing
temperature according to Eq. [12], and partly because
the relative stability of macro-alloys also increases with
temperature according to Eqs. [14] and [15b]. Thus, the
minimum value of the interaction energy needed for
stabilization of NG alloys can be found at T = 0 K.
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Fig. 5—The molar Gibbs energy of the NG alloy and that of the
macro-alloy as function of the grain radius calculated by Eqs. [14],
[15b], [22], [25] through [27] for X = 20 kJ/mol (a), X = 35 kJ/mol
(b) and X = 50 kJ/mol (c). Parameters are from Table I at x = 0.12
and T = 500 K.
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Therefore, neglecting also the minor role of composition
in Eq. [12], the following dimensionless number is
introduced in this paper:

Ng � X
x�

B � r�B

� �
0K

½28�

where the letters ‘‘Ng’’ stand for ‘‘Nano-grained’’ and
the dimensionless Ng number is called here the ‘‘Ng
number’’ or the ‘‘NG-alloy-stability number’’ or the
‘‘poly-crystalline nano-grained alloy stability number’’
and is defined as the ratio of the interaction energy
between the components in the bulk A–B system to the
excess molar GB energy of the GB-active solute,
extrapolated to zero Kelvin. The major property of this
new dimensionless number is that for A–B systems with
Ng � 1 the given A–B system will not be fully
thermodynamically stable as NG alloy at any temper-
ature and at any composition. On the other hand, if
Ng>1, then the given A–B system will be fully stable as
NG alloy at least in a limited temperature and compo-
sition range. The higher is the value of the Ng number
(above 1) for the given A–B system the wider is the
temperature-composition stability range of the given
A–B system as NG alloy. Thus, the value of the Ng
number can be used as a simple and fast criterion to
select potentially stable NG systems. This is demon-
strated for 16 W-based systems in Table II.

Looking at Eq. [12], the effect of temperature and
composition can be taken into account using the follow-
ing new complex, but single parameter Z, defined as:

Z � �R � T � ln x
1� xð Þ2

� with x<0:5 ½29�

where Z (J/mol) is an additional parameter having an
influence on the stability of NG alloys. When Z = 0,
the single Ng number is sufficient to predict whether

the given A–B system is fully stable as NG alloy at
least at 0 K. However, for different values of parame-
ter Z, different demarcation lines will separate the fully
stable / partly stable regions of the stability graph
plotted in coordinates of X vs x�

B � r�B (both values
taken at zero Kelvin). The following approximated
equation is found here to predict the minimum interac-
tion energy needed to fully stabilize the NG alloys:

Xstab 
 exp
Z

66

� �

� 1:40 � Zþ x�
B � r�B � 1þ 0:0235 � Z0:715

� �
 �
½30�

where all physical quantities are substituted and
obtained in kJ/mol. The parameters in the [ ] parenthe-
sis of Eq. [30] are obtained by calculating the molar
Gibbs energy of the NG alloys by Eqs. [22], [25]
through [27] using a large variety of parameter combi-
nations X (at T = 0 K) and x�

B � r�B (at T = 0 K),
coupled with different values of parameter Z (using a
variety of x and T combinations). For this procedure,
the average molar volumes V�

m;A ¼ 10 cm3=mol,

V�
m;B ¼ 15 cm3=mol are used and a bcc structure for

the bulk of the grain is taken. Based on the above, the
smallest possible values of X ¼ Xstab are searched that
just ensure full stability of the NG alloys as function of
x�

B � r�B and Z. Finally, the semi-empirical correlation
between these Xstab values and the two independent
model parameters x�

B � r�B and Z is established, leading
to the expression in the [ ] parenthesis of Eq. [30]. Now,
let us explain the origin of the first, exponential term of
Eq. [30]. For an average alloy, the T-dependence of its
interaction energy is written as[118,119]:

X0K

X
ffi exp

T

3000

� �
½31�

Table II. Coordinates for the Data-Points Given in Figs. 6(a) to (c) for W–B Systems (x�
B � r�B and X are valid at T = 0 K, see

Appendix A)

Component B x�
B � r�B (kJ/mol) X (kJ/mol) Ng NG Stability Alloy Type

Ag 20.6 160 7.8 strong 3
Al 21.6 � 14 � 0.65 none 1
Ce 22.9 144 6.3 strong 3
Co 30.6 � 5 � 0.16 none 1
Cr 29.1 45 1.5 weak 3
Cu 22.7 200 8.8 strong 3
Fe 31.8 0 0 none 1
Mn 21.0 160 7.6 strong 3
Mo 43.1 � 1 � 0.02 none 1
Nb 43.0 � 33 � 0.77 none 1
Ni 30.1 � 12 � 0.42 none 1
Sc 26.9 44 1.6 weak 3
Ta 46.6 0 0 none 1
Ti 37.8 33 0.87 partial 2
W 49.8 — — — —
Y 29.6 112 2.8 medium 3
Zr 40.9 � 36 � 0.88 none 1

The Ng numbers are calculated by Eq. [28]. Evaluation of NG stability: ‘‘none’’ for Ng £ 0.6, ‘‘partial’’ for Ng = 0.6 … 1, ‘‘weak’’ for Ng = 1 …
2, ‘‘medium’’ for Ng = 2 … 4 and ‘‘strong’’ for Ng> 4.
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For an average value of x = 0.15 ± 0.05, Eq. [29]
leads to Z ffi 0:022 � T (where T is substituted in K, and
Z is obtained in kJ/mol). Expressing T from this
equation and substituting it into Eq. [31], the first
exponential term of Eq. [30] is obtained, which is a
correction factor for the T-dependence of the interaction
energy. Note that x�

B slightly increases, while r�B slightly
decreases with temperature, and thus no correction is
used in Eq. [30] for the T-dependence of x�

B � r�B.
Now, let us find the conditions to form unstable (type

1) PC-NG alloys. This corresponds to the largest value
of the interaction energy that is still with no minimum
point in the molar Gibbs energy of the NG alloy as
function of its grain size. Its approximated function is
expressed by an equation, being similar to Eq. [30]:

Xno�st � exp
Z

66

� �
� 2:19þ 0:950 � Z½

þx�
B � r�B � 0:518þ 0:00487 � Zð Þ

� ½32�

where all physical quantities are substituted and
obtained in kJ/mol. The parameters in the [ ] parenthesis
of Eq. [32] are obtained similarly as above for Eq. [30].
The exponential term of Eq. [32] is the same as in
Eq. [30], and is found using the same logic as above. Let
us note that Eq. [32] at Z = 0 and in the characteristic
range of x�

B � r�B ¼ 20 . . . 40 kJ/mol can be written
approximately as Ng @ 0.6. Thus, the alloy types can
be categorized at T = 0 K as:

1. if for a given A–B system Ng £ 0.6, then this system
is unstable as an NG alloy at any temperature and
composition (i.e., it is alloy type 1),

2. if for a given A–B system 0.6<Ng £ 1, then this
system is partly stable as an NG alloy (i.e., it is alloy
type 2), at least in a limited temperature and
concentration range.

3. if for a given A–B system Ng>1, then this system is
fully stable as an NG alloy (i.e., it is alloy type 3), at
least in a limited temperature and concentration range.

Using the above principle, the 16 binary W-based
systems in Table II are predicted as:

1. stable NG alloys are expected in the W-Cu, W-Ag,
W-Mn, W-Ce, W-Y, W-Cr and W-Sc systems,

2. the W-Ti alloy is expected to be a partly stable NG
alloy,

3. unstable NG alloys are expected to form in the W-
Al, W-Co, W-Fe, W-Mo, W-Nb, W-Ni, W-Ta and
W-Zr systems.

In Figures 6(a) through (c), the stability diagrams for
NG alloys are shown at selected values of parameter Z,
showing two demarcation lines calculated by Eqs. [30]
and [32]. Those lines divide Figures 6(a) through (c) into
the following 3 regions at any x–T, corresponding to the
given Z:

i. the lower regions of Figures 6(a) through (c)
correspond to systems of stable macroscopic
alloys (= type 1 alloy);

ii. the middle regions of Figure 6(a) through (c)
correspond to systems of partly stable NG alloys
(= type 2 alloys);
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Fig. 6—The NG stability diagrams at Z = 0 (a at T = 0 K), at Z =
25 kJ/mol (b; at x = 0.2 it corresponds to T = 1195 K) and at Z= 50
kJ/mol (c; at x = 0.2 it corresponds to T = 2391 K) with 16 points of
the 16 binary W-based systems. The straight lines are calculated by
Eqs. [30] and [32]. Points are taken from Table II.
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iii. the upper regions of Figures 6(a) through (c)
correspond to systems of fully stable NG alloys
(= type 3 alloys).

As follows from Figures 6(a) through (c), by increas-
ing the value of Z (i.e., increasing T at fixed x) the
demarcation lines are shifted towards higher X values.
Thus, increasing temperature type 3 alloys become first
type 2 alloys and then type 1 alloys. This is due to the
effect of entropy, stabilizing macro-solutions and de-
stabilizing GB segregation as a 2-D ordered state.

IX. ON THE STABLE REGION OF NG ALLOYS
IN THE W-AG PHASE DIAGRAM

As was shown above, in some A–B systems, the NG
alloy is found fully stable in finite temperature and
composition ranges. This theoretical prediction is of
primary importance. However, the next reasonable
question is about the theoretical prediction on the
temperature and compositional borders of this stability
range. The usual way to show the stability of different
states in materials science is to present stable phases/
states in equilibrium phase diagrams. For binary
macroscopic systems phase diagrams are routinely
constructed in T vs x diagrams at fixed p = 1 bar.[120]

Thus, for engineering purposes the stability of NG
alloys should be shown in the same type of phase
diagrams. In this section an example will be shown for
the W-Ag system, found stable till a relatively high
temperature (see Table II and Figures 6(a) through (c)).

The collection of thermodynamic properties needed
for the calculation of the extended W-Ag phase diagram
is given in Table III. As follows from this table, W is
considered as component A and Ag is considered as
component B in the calculations, as the latter has a
lower GB energy. The existing phase diagram is shown
in Figure 7(a). This diagram is drawn by us, based on

the information on negligible solubilities between bcc-W
and fcc-Ag or bcc-W and liquid Ag at p = 1 bar.[120]
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Fig. 7—The W-Ag equilibrium phase diagram. The current version
from the literature (a) is drawn based on the information on almost
no mutual miscibility of the components in macroscopic solid and
liquid states. The region of stability of NG alloys in the W-rich
corner of the phase diagram is shown in the (b). Almost vertical-
dotted lines show iso-grain-radius lines in nm. The calculated
stability region of the NG alloy is terminated at the Ag-rich side by
the equilibrium grain radius of 1.6 nm.

Table III. Thermodynamic Properties of the W–Ag System (T in K)

Quantity Unit Equation T-Range (K) Source

G�
m;W;bcc J/mol 0 0 … 3695 121

G�
m;Ag;bcc J/mol 3400� 1:05 � T 0 … 3000 121

G�
m;Ag;fcc J/mol 0 0 … 1235 121

G�
m;Ag;L J/mol 11508:141� 9:301748 � T 1235 … 2433 121

G�
m;Ag;V J/mol 292992� 224:04 � Tþ 12:686 � T � lnTþ R � T � ln p

p�

� �
T ‡ 2433 K at p = 1 bar) 122

V�
m;W cm3/mol 9:47 � 1þ 2:04 � 10�5 � T

� �
0 … 3000 123, 124

V�
m;Ag cm3/mol 10:146þ 7:077 � 10�5 � T1:314 0 … 1235 125

9:889þ 8:694 � 10�4 � T 1235 … 3000
V�

m;L;Ag cm3/mol 10:490þ 9:648 � 10�5 � T1:314 0 … 1235 125

10:140þ 1:185 � 10�3 � T 1235 … 3000
r�W J/m2

1:054� 4:55 � 10�5 � T 0 … 3000 Appendix A
r�Ag J/m2

0:393� 3:05 � 10�5 � T 0 … 3000 Appendix A

X kJ/mol 160 � exp � T
4900

� �
0 … 3000 Appendix A
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For the W-Ag system, the algorithm of calculation
shown above should be slightly modified, as in this case
the crystal structures of the two components are
different.[121] Moreover, the NG stability is found also
above the melting point of Ag. Thus, the reference
molar Gibbs energies for macroscopic phases are
calculated in different T-ranges as:

at T ¼ 0 . . . 1235 K : bcc - Wþ fcc - Ag : Gm;macro ¼ 0

½33a�

at 2433K 
 T 
 1235K : bcc - Wþ liq - Ag : Gm;macro

¼ x � G�
m;Ag;L

½33b�

at T 
 2433 Kð1barÞ : bcc - Wþ vap - Ag : Gm;macro

¼ xG�
m;Ag;V

½33c�

where x (dimensionless) is the average mole fraction of
Ag in the alloy. For the same reason, Eq. [26] should
be modified with a new first term as:

Gm;nano;b ¼ xb � G�
m;Ag;bcc

þ R � T � xb � ln xb þ 1� xbð Þ � ln 1� xbð Þ½ �
þ X � xb � 1� xbð Þ

½34�

As the bulk of the grains are W-rich bcc-crystals, the
molar grain boundary areas of both components are
calculated using parameter f = 1.25 (see above). Let us
note that in this case different molar volumes are used
for solid and liquid Ag and also their T-dependencies
are taken into account (see Table III).

The calculation procedure includes the construction
of molar Gibbs energy diagrams similar to Figures 5(a)
through (c) using different values of temperatures and
average mole fractions of Ag. The first conclusion from
each such diagram is whether at any grain size the molar
Gibbs energy of the NG alloy calculated by Eqs. [22],
[25], [27] and [34] is more negative than the most
negative of the molar Gibbs energies of the correspond-
ing macroscopic states calculated by Eqs. [33a] through
[33c]. If the answer is ‘‘yes’’, then at the given T–x point
of the W-Ag phase diagram the NG alloy is found
stable. If the answer is ‘‘no’’, then at the given T–x point
of the W-Ag phase diagram the original stable state
shown in Figure 7(a) is found stable. In this way the
contours of the full stability of the NG alloy can be
drawn in the phase diagram, as shown in left bottom
part of Figure 7(b).

Additionally, for the case of stable NG alloy, the
equilibrium grain radius corresponding to the minimum
of the molar Gibbs energy of the NG alloy can be found.
Using these data, the iso-grain-radius lines were drawn
as dotted, almost vertical lines in Figure 7(b). The
stability range of the NG alloys is terminated when the
equilibrium grain size reaches the smallest allowed value

(r = 1.6 nm, see above), as at a higher Ag-content the
equilibrium grain size would be smaller than this value
and for such small grains the validity of the present
model becomes questionable. Therefore, this line in
Figure 7(b) is shown as a dotted line, as the choice of 1.6
nm above was somewhat arbitrary. The stability region
of the NG alloy in the W-rich side of the phase diagram
Figure 7(b) starts at T= 0 K at x= 0 and terminates at
x = 0.33 … 0.34 at T = 0 … 2130 K.
It should be noted that the stability region of NG

alloys in Figure 7(b) extends above the melting point of
Ag. This might mean GB melting. However, in this
model the GB is supposed to be amorphous / quasi-
liquid anyway, and so this change is not reflected in
Figure 7(b). However, it might have an influence on
properties of the NG alloys.
Similar extended phase diagrams can be calculated for

any other system with its Ng number being higher than
1. Such extended phase diagrams are considered useful
tools for NG alloy design. Let us note that for all
systems with the Ng number not exceeding 1 the existing
macroscopic phase diagrams remain valid,[120] so for
them the production of fully stable NG alloys (type 3) is
hopeless.

X. CONCLUSIONS

1. It is shown that one-component poly-crystalline
nano-grained (NG) metals are prone to grain
coarsening due to their always positive GB energies.

2. Using the extended Butler equation, thermody-
namic conditions are found for negative GB energy
of binary nano-alloys (note: for macro-alloys only
positive GB energies exist). This finding is built into
a general thermodynamic model describing the
molar Gibbs energy of NG alloys. Three types of
alloys are considered: (i). the Type 1 NG alloy is
unstable, as its molar Gibbs energy has no mini-
mum as function of grain size, moreover, its molar
Gibbs energy is more positive than that of the most
stable macro-alloy (‘‘unstable’’ here means it is not
stable against grain coarsening and precipitation of
a macro-phase); (ii). the Type 2 NG alloy is partly
stable, as its molar Gibbs energy passes through a
minimum as function of grain size, but its value is
more positive than that of the most stable macro-
alloy (‘‘partly stable’’ here means it is stable against
grain coarsening but not stable against precipitation
of a macro-phase); (iii). the Type 3 NG alloy is fully
stable, as its molar Gibbs energy passes through a
minimum as function of grain size, and this molar
Gibbs energy is more negative than that of the most
stable macro-alloy (‘‘fully stable’’ here means the
NG alloys is stable both against grain coarsening
and the precipitation of a macro-phase).

3. A new dimensionless number Ng is defined as the
ratio of the bulk interaction energy between the
A–B components to the molar excess GB energy of
the solute component B at zero Kelvin. Based on
the value of this Ng number all A–B systems can be
categorized, at least at T = 0 K. When the Ng
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number is smaller then 0.6, the A–B system is type
1. The A–B system is a type 2 alloy when the Ng
number is between 0.6 and 1 and it is a type 3 alloy
if the Ng number is larger than 1. Higher is the Ng
number for the given A–B system, the wider is the
temperature—composition space of the A–B alloy
that is stable as an NG alloy. With increasing
temperature systems gradually transform from type
3 to type 2 and further to type 1.

4. General equations are worked out for the critical
values of the interaction energy as function of
temperature, composition and excess molar GB
energy of component B. These special interaction
energy values serve as demarcation values/lines to
separate alloys type 1 from alloys type 2 and those
from alloys type 3. The method is demonstrated on
16 binary W-based alloys (see Table II and Fig-
ures 6(a) through (c)).

5. The temperature and concentration ranges of sta-
bility of NG alloys are calculated for the W-Ag
system as an example, and the findings are pre-
sented in the binary equilibrium W-Ag phase
diagram, indicating also iso-grain-size lines (see
Figure 7(b)). The same method can be applied to
calculate the stability ranges of other NG alloys
with Ng> 1.
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APPENDIX A: THE SOURCE OF DATA GIVEN
IN TABLES II THROUGH III

The molar volumes of the elements are taken from
References 123 through 125. The GB energies of pure
elements are estimated from the surface tension of the
same metal at their melting point as[100]:

r�Tm ffi 1:15

3
� r�lg;Tm ½A1�

where r�Tm (J/m2) is the GB energy at the melting
point, r�lg;Tm (J/m2) is the surface tension of the same

pure liquid metal at the melting point, coefficient 1.15
is the average ratio of surface energy of the solid to
the surface tension of the liquid, while coefficient 1/3 is
the ratio of GB energy to the surface energy. Eq. [A1]
is valid for simple pure metals with their stable crystal
structures of bcc, fcc or hcp. Further, the temperature
dependence of the GB energies of pure metals is
derived. For that, let us write a simplest model
equation:

r� ffi
a �H�

c;s

f � V�
m;s

� �2=3
�N1=3

Av

½A2�

where H�
c;s (J/mol) is the cohesion energy within the

pure solid metal, V�
m;s (m

3/mol) is the molar volume of

the pure solid metal, NAv = 6.02Æ1023 1/mol is the
Avogadro number, a and f (both dimensionless) are
model parameters; they (or at least their ratio) are
taken as constant for simple metals of bcc, fcc or hcp
structures. For simplicity, the effect of excess interfa-
cial entropy is neglected in Eq. [A2]. As only parame-
ters H�

c;s and V�
m;s are T-dependent in Eq. [A2], the

ratio of the GB energy of the same pure metal at T =
298 K and at its melting point can be written as:

r�298
r�Tm

ffi
H�

c;s;298

H�
c;s;Tm

�
V�

m;s;Tm

V�
m;s;298

 !2=3

½A3�

Using the data for the molar volumes,[123–125] the GB
energy can be estimated using Eq. [A3] as a linear
function of temperature, through the two temperature
values of 298 K and the melting point. The cohesion
energies of solid metals are uncertain, as in thermody-
namics the standard state is usually selected such that
this quantity is eliminated (see Eq. [6]). That is why
these quantities are estimated from the measured sur-
face tension data and the model on the surface tension
of pure liquid metals at their melting points (see
Eq. [11] in Reference 115):
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r�lg;Tm ffi
�0:174� 0:023ð Þ �H�

c;l;Tm þ 1:2� 2:3ð Þ � Tm

1:00� 0:02ð Þ � V�
m;l;Tm

� �2=3
�N1=3

Av

½A4�

where r�lg;Tm (J/m2) is the surface tension of pure liquid
metal at its melting point Tm (K), H�

c;l;Tm (J/mol) is the

cohesion energy of the pure liquid metal at its melting
point, V�

m;l;Tm (m3/mol) is the molar volume of the

pure liquid metal at its melting point, the numerical
values of Eq. [A4] are theoretical values derived in
Reference 115 for liquid metals resulting from fcc, hcp
and bcc metals. Experimental data on the surface ten-
sions of pure liquid metals at their melting points are
taken from Reference 126. Using these values and
Eq. [A4], the cohesion energy of pure liquid metals
can be estimated at their melting points. From here,
the cohesion enthalpy of the solid metal at its melting
point is calculated as:

H�
c;s;Tm ¼ H�

c;l;Tm � DmH
� ½A5�

where DmH
� (J/mol) is the standard enthalpy of melt-

ing of a pure metal, given in Reference 122. The same
is re-calculated to room temperature as:

H�
c;s;298K ¼ H�

c;s;Tm �
ZTm

298

Cp � dT ½A6�

where Cp (J/molK) is the heat capacity of the pure solid
metal defined at constant pressure of 1 bar; in Eq. [A6]
the enthalpy changes due to solid phase transitions are
also taken into account but not shown here. All these
data are taken from Reference 122. The results of
calculations are given in Tables II through III.

It should be noted that many compilations exist for
surface energies of solid metals (see for example Refer-
ence 127) and for grain boundaries (see for example
References 128 through 130). However, experimental
uncertainties in measuring any interfacial energy involv-
ing any solid phase is much higher compared to the
experimental uncertainty of measured surface tension of
liquids. This also follows from Reference 129, where the
high uncertainty of grain boundary energies is shown
from different sources. To make sure the GB energy
values used in this paper are coherent within each other,
our model was started from the reliable data on surface
tension. Nevertheless, our data in Tables II through III
are not in contradiction with measured values.[127–130]

The interaction energies for the binary systems are
taken from measured enthalpies of mixing[131,132] and
from Calpad assessments.[133–150] The data from the
Miedema model[151] were also taken into account, but
not preferred. In absence of Calphad-type assessments
the interaction energies were estimated from the phase
diagrams.[120] For phase diagrams with solid or liquid
miscibility gap with known (or estimated) critical
temperature, the interaction energy is estimated as:

X ffi 2 � R � Tcr ½A7�

where Tcr (K) is the critical (maximum) point of the
miscibility gap. The same Eq. [A7] is used when the fact
of immiscibility is established in the given system, but no
further details are known. Then, instead of Tcr the
melting point of the higher-melting point component is
taken, and in this case only the possible minimum value
of X can be calculated. For phase diagrams with liquid
miscibility gap with known monotectic temperature
(Tmon, K) and known mole fraction of the high-melting
point component (x), the interaction energy is estimated
as:

X ffi R � Tmon � ln x=1� xð Þ=2x� 1 ½A8�

For phase diagram with known eutectic temperature
(Teu, K) and known eutectic mole fraction (x) of the
higher-melting point component, the interaction energy
is estimated as:

X ffi
G�

M;s � G�
M;l � R � Teu � ln x
1� xð Þ2

½A9�

where G�
M;s (J/mol) is the standard Gibbs energy of the

solid higher-melting point metal,[121] G�
M;l (J/mol) is the

standard Gibbs energy of the liquid higher-melting
point metal.[121] These estimated values are always
obtained at the given temperature (Tcr, Tmon, Teu).
Their T-dependence is expressed as follows[111,119,152]:

X ¼ X0K � exp �T

s

� �
½A10�

s ffi Tm;A þ Tm;B ½A11�

where X0K (J/mol) is the interaction energy at T = 0 K,
s (K) is found approximately using the data of Refer-
ence 121.

NOMENCLATURE

A The total interface area of grain boundaries
(m2)

Asp The average specific interfacial area of the
grain boundaries (1/m)

f A geometric parameter in Eqs. [8a] through
[8b] (ffi 1:25 for bcc grain) (–)

fb The bulk packing fraction within the grain
(= 0.68 for bcc grain (–)

fgb The 2-dimensional packing fraction along
the GB (= 0.75) (–)

G�
A The Gibbs energy of pure component A with

GBs (J)
G�

b;A The bulk Gibbs energy of pure component A
without GBs (J)

G�
m;A The molar Gibbs energy of pure component

A with GBs (J/mol)
G�

m;b;A The molar Gibbs energy of pure component
A without GBs (J/mol)

G�
m;Ag;L The standard molar Gibbs energy of pure

silver in liquid state (J/mol)
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G�
m;Ag;V The standard molar Gibbs energy of pure

silver in vapor state (J/mol)
G�

m;b;B The molar Gibbs energy of pure component
B without GBs (J/mol)

Gm;mac The molar Gibbs energy of equilibrium
mixture of two macroscopic solid solutions
(J/mol)

Gm;nano The molar Gibbs energy of the NG alloy
(J/mol)

Gm;nano;b The bulk molar Gibbs energy of the NG
alloy (J/mol)

k A semi-empirical constant of Eq. [4],
(k ffi 3:36) (–)

n�A The amount of matter in the pure phase A
(mole)

nb The amount of matter within the bulk of one
average grain (mole)

ngb The amount of matter in the half-GB (mole)
nB;gb The amount of matter of component B in the

half-GB (mole)
NAv The Avogadro number (= 6.02 9 1023)

(1/mole)
Ng The dimensionless Ng-number defined by

Eq. [28] (–)
p Pressure in the system (Pa)
r The average effective grain radius (for a

spherical grain) (m)
ra The atomic radius (m)
rmin The minimum size of the grain hat ensures

the GB is fully covered by component B (m)
R The universal gas constant (= 8.3145

J/molK)
T Absolute temperature (K)
V The total volume of the NG metal (m3)
Vb The volume of the bulk of one average grain

(m3)
Vm;b The molar volume of the bulk of the grain

(m3/mol)
V�

m;A The molar volume of pure component A
(m3/mol)

V�
m;B The molar volume of pure component B

(m3/mol)
V�

m;L;B The molar volume of pure liquid component
B (m3/mol)

Z The dimensionless number defined by
Eq. [29] (–)

x The average mole fraction of component B
in the alloy (–)

xb The mole fraction of component B in the
bulk of the grain (–)

xgb The mole fraction of component B in the GB
(–)

xe xe and 1� xe are the equilibrium mole
fractions of B in case of phase separation of
bulk alloy A–B (–)

xmin The minimum average mole fraction of
component B, needed to stabilize the grain
(–)

A The first component (subscript) (–)
a Atomic (subscript) (–)
b Bulk (subscript) (–)

B The second component (subscript) (–)
L Liquid (subscript) (–)
m Molar (subscript) (–)
mac Macroscopic (subscript) (–)
min Minimum (subscript) (–)
nano Nanosized (–)
NG Poly-crystalline nano-grained alloy (–)
no-st No-stability (subscript) (–)
stab Stability (subscript) (–)
b The ratio of bonds in the GB to the same in

the bulk of the grain (–)
r The grain boundary energy of alloy A–B (J/

m2)
rA The partial grain boundary energy of

component A in alloy A–B (J/m2)
r�A The grain boundary (free) energy in a pure A

crystal (J/m2)
rB The partial grain boundary energy of

component B in alloy A–B (J/m2)
r�B The grain boundary (free) energy in a pure B

crystal (J/m2)
x�

A The molar GB interfacial area in pure crystal
A (m2/mol)

x�
B The molar GB interfacial area in pure crystal

B (m2/mol)
X The bulk interaction energy between

components A and B (J/mol)
Xgb The special X value ensuring r ¼ 0 (J/mol)
Xcr The critical X value above which phase

separation takes place (J/mol)
Xstab The minimum interaction energy needed to

fully stabilize the NG alloy (J/mol)
Xno�st The largest value of the interaction energy

below which there is even no partial stability
of the NG alloy (J/mol)
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