
Logarithmic Space Verifiers on NP-complete
Frank Vega
Joysonic, Uzun Mirkova 5, Belgrade, 11000, Serbia
vega.frank@gmail.com

Abstract
P versus NP is considered as one of the most important open problems in computer science. This
consists in knowing the answer of the following question: Is P equal to NP? A precise statement
of the P versus NP problem was introduced independently by Stephen Cook and Leonid Levin.
Since that date, all efforts to find a proof for this problem have failed. NP is the complexity class
of languages defined by polynomial time verifiers M such that when the input is an element of
the language with its certificate, then M outputs a string which belongs to a single language in P.
Another major complexity classes are L and NL. The certificate-based definition of NL is based on
logarithmic space Turing machine with an additional special read-once input tape: This is called
a logarithmic space verifier. NL is the complexity class of languages defined by logarithmic space
verifiers M such that when the input is an element of the language with its certificate, then M
outputs 1. To attack the P versus NP problem, the NP-completeness is a useful concept. We
demonstrate there is an NP-complete language defined by a logarithmic space verifier M such that
when the input is an element of the language with its certificate, then M outputs a string which
belongs to a single language in L.

2012 ACM Subject Classification Theory of computation → Complexity classes; Theory of compu-
tation → Problems, reductions and completeness

Keywords and phrases complexity classes, completeness, verifier, reduction, polynomial time, logar-
ithmic space

1 Preliminaries

In 1936, Turing developed his theoretical computational model [12]. The deterministic and
nondeterministic Turing machines have become in two of the most important definitions
related to this theoretical model for computation [12]. A deterministic Turing machine has
only one next action for each step defined in its program or transition function [12]. A
nondeterministic Turing machine could contain more than one action defined for each step of
its program, where this one is no longer a function, but a relation [12].

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of finite
strings over Σ [3]. A Turing machine M has an associated input alphabet Σ [3]. For each
string w in Σ∗ there is a computation associated with M on input w [3]. We say that M
accepts w if this computation terminates in the accepting state, that is M(w) = 1 (when
M outputs 1 on the input w) [3]. Note that M fails to accept w either if this computation
ends in the rejecting state, that is M(w) = 0, or if the computation fails to terminate, or
the computation ends in the halting state with some output, that is M(w) = y (when M
outputs the string y on the input w) [3].

Another relevant advance in the last century has been the definition of a complexity class.
A language over an alphabet is any set of strings made up of symbols from that alphabet [5].
A complexity class is a set of problems, which are represented as a language, grouped by
measures such as the running time, memory, etc [5]. The language accepted by a Turing
machine M , denoted L(M), has an associated alphabet Σ and is defined by:

L(M) = {w ∈ Σ∗ : M(w) = 1}.

We denote by tM (w) the number of steps in the computation of M on input w [3]. For n ∈ N

https://orcid.org/0000-0001-8210-4126
mailto:vega.frank@gmail.com

2 Logarithmic Space Verifiers on NP-complete

we denote by TM (n) the worst case run time of M ; that is:

TM (n) = max{tM (w) : w ∈ Σn}

where Σn is the set of all strings over Σ of length n [3]. We say that M runs in polynomial
time if there is a constant k such that for all n, TM (n) ≤ nk + k [3]. In other words, this
means the language L(M) can be decided by the Turing machine M in polynomial time.
Therefore, P is the complexity class of languages that can be decided by deterministic Turing
machines in polynomial time [5]. A verifier for a language L1 is a deterministic Turing
machine M , where:

L1 = {w : M(w, c) = 1 for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial time
verifier runs in polynomial time in the length of w [3]. A verifier uses additional information,
represented by the symbol c, to verify that a string w is a member of L1. This information
is called certificate. NP is the complexity class of languages defined by polynomial time
verifiers [10].

I Lemma 1. Given a language L1 ∈ P , a language L2 is in NP if there is a deterministic
Turing machine M , where:

L2 = {w : M(w, c) = y for some string c such that y ∈ L1}

and M runs in polynomial time in the length of w. In this way, NP is the complexity class
of languages defined by polynomial time verifiers M such that when the input is an element
of the language with its certificate, then M outputs a string which belongs to a single language
in P .

Proof. If L1 can be decided by the Turing machine M ′ in polynomial time, then the determ-
inistic Turing machine M ′′(w, c) = M ′(M(w, c)) will output 1 when w ∈ L2. Consequently,
M ′′ is a polynomial time verifier of L2 and thus, L2 is in NP . J

2 Hypothesis

A function f : Σ∗ → Σ∗ is a polynomial time computable function if some deterministic
Turing machine M , on every input w, halts in polynomial time with just f(w) on its tape
[12]. Let {0, 1}∗ be the infinite set of binary strings, we say that a language L1 ⊆ {0, 1}∗
is polynomial time reducible to a language L2 ⊆ {0, 1}∗, written L1 ≤p L2, if there is a
polynomial time computable function f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗:

x ∈ L1 if and only if f(x) ∈ L2.

An important complexity class is NP–complete [8]. A language L1 ⊆ {0, 1}∗ is NP–complete
if:

L1 ∈ NP , and
L′ ≤p L1 for every L′ ∈ NP .

If L1 is a language such that L′ ≤p L1 for some L′ ∈ NP–complete, then L1 is NP–hard
[5]. Moreover, if L1 ∈ NP , then L1 ∈ NP–complete [5]. A principal NP–complete problem is
SAT [6]. An instance of SAT is a Boolean formula φ which is composed of:

F. Vega 3

1. Boolean variables: x1, x2, . . . , xn;
2. Boolean connectives: Any Boolean function with one or two inputs and one output, such

as ∧(AND), ∨(OR), ⇁(NOT), ⇒(implication), ⇔(if and only if);
3. and parentheses.

A truth assignment for a Boolean formula φ is a set of values for the variables in φ. A
satisfying truth assignment is a truth assignment that causes φ to be evaluated as true. A
formula with a satisfying truth assignment is a satisfiable formula. The problem SAT asks
whether a given Boolean formula is satisfiable [6]. We define a CNF Boolean formula using
the following terms:

A literal in a Boolean formula is an occurrence of a variable or its negation [5]. A Boolean
formula is in conjunctive normal form, or CNF , if it is expressed as an AND of clauses, each
of which is the OR of one or more literals [5]. A Boolean formula is in 3-conjunctive normal
form or 3CNF , if each clause has exactly three distinct literals [5].

For example, the Boolean formula:

(x1∨⇁ x1∨⇁ x2) ∧ (x3 ∨ x2 ∨ x4) ∧ (⇁ x1∨⇁ x3∨⇁ x4)

is in 3CNF . The first of its three clauses is (x1∨⇁ x1∨⇁ x2), which contains the three
literals x1, ⇁ x1, and ⇁ x2. Another relevant NP–complete language is 3CNF satisfiability,
or 3SAT [5]. In 3SAT , it is asked whether a given Boolean formula φ in 3CNF is satisfiable.

A logarithmic space Turing machine has a read-only input tape, a write-only output
tape, and read/write work tapes [12]. The work tapes may contain at most O(logn) symbols
[12]. In computational complexity theory, L is the complexity class containing those decision
problems that can be decided by a deterministic logarithmic space Turing machine [10].
NL is the complexity class containing the decision problems that can be decided by a
nondeterministic logarithmic space Turing machine [10].

A logarithmic space transducer is a Turing machine with a read-only input tape, a
write-only output tape, and read/write work tapes [12]. The work tapes must contain at most
O(logn) symbols [12]. A logarithmic space transducer M computes a function f : Σ∗ → Σ∗,
where f(w) is the string remaining on the output tape after M halts when it is started with
w on its input tape [12]. We call f a logarithmic space computable function [12]. We say that
a language L1 ⊆ {0, 1}∗ is logarithmic space reducible to a language L2 ⊆ {0, 1}∗, written
L1 ≤l L2, if there exists a logarithmic space computable function f : {0, 1}∗ → {0, 1}∗ such
that for all x ∈ {0, 1}∗,

x ∈ L1 if and only if f(x) ∈ L2.

The logarithmic space reduction is frequently used for L and NL [10]. A Boolean formula is
in 2-conjunctive normal form, or 2CNF , if it is in CNF and each clause has exactly two
distinct literals. There is a problem called 2SAT , where we asked whether a given Boolean
formula φ in 2CNF is satisfiable. 2SAT is complete for NL [10]. Another special case is
the class of problems where each clause contains XOR (i.e. exclusive or) rather than (plain)
OR operators. This is in P , since an XOR SAT formula can also be viewed as a system of
linear equations mod 2, and can be solved in cubic time by Gaussian elimination [9]. We
denote the XOR function as ⊕. The XOR 2SAT problem will be equivalent to XOR SAT,
but the clauses in the formula have exactly two distinct literals. XOR 2SAT is in L [2], [11].

We can give a certificate-based definition for NL [3]. The certificate-based definition of
NL assumes that a logarithmic space Turing machine has another separated read-only tape
[3]. On each step of the machine the machine’s head on that tape can either stay in place or

4 Logarithmic Space Verifiers on NP-complete

move to the right [3]. In particular, it cannot reread any bit to the left of where the head
currently is [3]. For that reason this kind of special tape is called “read once" [3].

I Definition 2. A language L1 is in NL if there exists a deterministic logarithmic space
Turing machine M with an additional special read-once input tape polynomial p : N → N
such that for every x ∈ {0, 1}∗,

x ∈ L1 ⇔ ∃u ∈ {0, 1}p(|x|) such that M(x, u) = 1

where by M(x, u) we denote the computation of M where x is placed on its input tape and u
is placed on its special read-once tape, and M uses at most O(log |x|) space on its read/write
tapes for every input x where | . . . | is the bit-length function [3]. M is called a logarithmic
space verifier [3].

We state the following Hypothesis:

B Hypothesis 3. Given a language L1 ∈ L, there is a language L2 in NP–complete with a
deterministic Turing machine M , where:

L2 = {w : M(w, u) = y for some string u such that y ∈ L1}

when M runs in logarithmic space in the length of w, u is placed on the special read-once
tape of M , and u is polynomially bounded by w. In this way, there is an NP–complete
language defined by a logarithmic space verifier M such that when the input is an element of
the language with its certificate, then M outputs a string which belongs to a single language
in L.

3 Motivation

The P versus NP problem is a major unsolved problem in computer science [4]. This is
considered by many to be the most important open problem in the field [4]. It is one of
the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a
US$1,000,000 prize for the first correct solution [4]. It was essentially mentioned in 1955 from
a letter written by John Nash to the United States National Security Agency [1]. However,
the precise statement of the P = NP problem was introduced in 1971 by Stephen Cook in
a seminal paper [4]. In 2012, a poll of 151 researchers showed that 126 (83%) believed the
answer to be no, 12 (9%) believed the answer is yes, 5 (3%) believed the question may be
independent of the currently accepted axioms and therefore impossible to prove or disprove,
8 (5%) said either do not know or do not care or don’t want the answer to be yes nor the
problem to be resolved [7]. It is fully expected that P 6= NP [10]. Indeed, if P = NP then
there are stunning practical consequences [10]. For that reason, P = NP is considered as
a very unlikely event [10]. Certainly, P versus NP is one of the greatest open problems in
science and a correct solution for this incognita will have a great impact not only in computer
science, but for many other fields as well [1]. Whether P = NP or not is still a controversial
and unsolved problem [1]. In this work, we show some results that might help us to solve one
of the most important open problems in computer science. This work is implemented into a
GitHub Project programmed in Scala [13]. In this GitHub Project, we use the Assertion on
the properties of the instances of each problem and the Unit Test for checking the correctness
of every reduction [13].

F. Vega 5

4 Problems

These are the problems that we are going to discuss:

I Definition 4. MONOTONE NAE 3SAT
INSTANCE: A Boolean formula φ in 3CNF such that each clause has no negation

variables.
QUESTION: Is there a truth assignment for φ such that each clause has at least one true

literal and at least one false literal?
REMARKS: This is equivalent to the special case of the NP–complete problem known

as SET SPLITTING when the sets in the input have exactly three elements and therefore,
MONOTONE NAE 3SAT ∈ NP–complete [6].

I Definition 5. MINIMUM EXCLUSIVE-OR 2-SATISFIABILITY
INSTANCE: A positive integer K and a Boolean formula φ that is an instance of

XOR 2SAT such that each clause has no negation variables.
QUESTION: Is there a truth assignment in φ such that at most K clauses are unsatis-

fiable?
REMARKS: We denote this problem as MIN ⊕ 2SAT .

I Definition 6. K EXACT COVER-2
INSTANCE: A positive integer K, a “universe" set U of natural numbers and a family

of n sets Si ⊆ U with the property that every element in U appears at most twice in the list
S1, . . . , Sn.

QUESTION: Is it the case there is a subfamily S′1, . . . , S′m with m ≤ n after removing K
different numbers in U from the whole list S1, . . . , Sn, such that S′i∩S′j = ∅ for 1 ≤ i 6= j ≤ m
and S′1 ∪ . . . ∪ S′m = U ′ where U ′ is equal to the set U without the removed K different
numbers?

REMARKS: We denote this problem as KEC–2.

I Definition 7. EXACT SEPARATE COVER-2
INSTANCE: A positive integer m, a family of disjoint sets U1, . . . , Uk from a “universe"

set U1 ∪ . . .∪Uk = U and a collection of n pairs Ti = (x, Si) such that x is a positive integer
and Si ⊆ U is a set with the property that every element in U appears at most twice in the
list S1, . . . , Sn from the pairs T1, . . . , Tn. For every pair Tj = (x, Sj), the positive integer x
appears exactly once in a single pair Ti = (x, Si) for i ≤ m. We assume the elements in the
set Si of each pair Ti appear sorted in the input with ascending order. Moreover, a set Si

from a pair Ti could be equal to the set ∅. Furthermore, if we have two pairs Ti = (x, Si) and
Tj = (y, Sj) such that x = y, i < j, Si 6= ∅ and Sj 6= ∅, then the minimum element of Sj is
greater than the maximum element of Si.

QUESTION: Is it the case there is a family of sets S′1, . . . , S′n′ with n′ ≤ n, such that
S′i ∩S′j = ∅ for 1 ≤ i 6= j ≤ n′ where S′i is equal to the union of sets

⋃
j Sj for all Tj = (y, Sj)

when x = y for a single value x and S′1 ∪ . . . ∪ S′n′ = U?
REMARKS: We denote this problem as ESC–2.

I Definition 8. EXACT COVER-2
INSTANCE: A “universe" set U and a family of n sets Si ⊆ U with the property that

every element in U appears at most twice in the list S1, . . . , Sn.
QUESTION: Is it the case there is a subfamily S′1, . . . , S

′
m with m ≤ n, such that

S′i ∩ S′j = ∅ for 1 ≤ i 6= j ≤ m and S′1 ∪ . . . ∪ S′m = U?
REMARKS: We denote this problem as EC–2. EC–2 ∈ L [2], [11].

6 Logarithmic Space Verifiers on NP-complete

5 Results

I Theorem 9. MIN ⊕ 2SAT ∈ NP–complete.

Proof. It is trivial to see MIN ⊕ 2SAT ∈ NP [10]. Given a Boolean formula φ in 3CNF
with n variables and m clauses such that each clause has no negation variables, we create
three new variables aci , bci and dci for each clause ci = (x ∨ y ∨ z) in φ, where x, y and z
are positive literals, in the following formula:

Pi = (aci ⊕ bci) ∧ (bci ⊕ dci) ∧ (aci ⊕ dci) ∧ (x⊕ aci) ∧ (y ⊕ bci) ∧ (z ⊕ dci).

We can see Pi has at most one unsatisfiable clause for some truth assignment if and only if
at least one member of {x, y, z} is true and at least one member of {x, y, z} is false for the
same truth assignment. Hence, we can create the Boolean formula ψ as the conjunction of
the Pi formulas for every clause ci in φ, such that ψ = P1 ∧ . . .∧Pm. Finally, we obtain that

φ ∈ MONOTONE NAE 3SAT if and only if (ψ,m) ∈MIN ⊕ 2SAT.

Consequently, we prove MONOTONE NAE 3SAT ≤p MIN ⊕ 2SAT where we already know
MONOTONE NAE 3SAT ∈ NP–complete [6]. To sum up, we showMIN⊕2SAT ∈ NP–hard
and MIN ⊕ 2SAT ∈ NP and thus, MIN ⊕ 2SAT ∈ NP–complete. J

I Theorem 10. KEC–2 ∈ NP–complete.

Proof. It is trivial to see KEC–2 ∈ NP [10]. Given a Boolean formula φ that is an instance
of XOR 2SAT with n variables and m clauses such that each clause has no negation variables,
we create a new set Sx for each variable x in φ and we iterate for each clause ci = (x⊕ y)
in φ from i = 1 to m, where x and y are positive literals, and modify the following sets:
Sx = Sx ∪ {i} and Sy = Sy ∪ {i}. We create the “universe" set U as {1, . . . ,m}. In this way,
we obtain a “universe" set U of natural numbers and a family of n sets Sj ⊆ U with the
property that every element in U appears at most twice in the list S1, . . . , Sn.

We can see if we have a subfamily S′1, . . . , S′n′ with n′ ≤ n after removing K different
numbers in U from the whole list S1, . . . , Sn, such that S′i ∩ S′j = ∅ for 1 ≤ i 6= j ≤ n′ and
S′1 ∪ . . .∪ S′n′ = U ′ where U ′ is equal to the set U without the removed K different numbers,
then we obtain exactly m − K satisfiable clauses in φ for a truth assignment where the
variable x is true if and only if Sx belongs to the subfamily S′1, . . . , S′n′ . However, this would
mean if there are exactly m−K satisfiable clauses in φ for a truth assignment, then there are
at most K unsatisfiable clauses in φ for the same truth assignment. Finally, we obtain that

(φ,K) ∈MIN ⊕ 2SAT if and only if (K,U, S1, . . . , Sn) ∈ KEC–2.

Consequently, we prove MIN ⊕ 2SAT ≤p KEC–2 where we already know MIN ⊕ 2SAT ∈
NP–complete by Theorem 9. To sum up, we show KEC–2 ∈ NP–hard and KEC–2 ∈ NP
and thus, KEC–2 ∈ NP–complete. J

I Theorem 11. ESC–2 ∈ L.

Proof. Given a valid instance m,U1, . . . , Uk, T1, . . . , Tn for ESC–2, we can create a family of
sets S1, . . . , Sm′ with m′ ≤ n where Si is equal to the union of sets

⋃
j Sj for all Tj = (y, Sj)

when x = y for a single value x. This family of sets S1, . . . , Sm′ with the “universe" set
U = U1 ∪ . . . ∪ Uk of the instance of ESC–2 is actually a valid instance for EC–2 since every

F. Vega 7

element in U appears at most twice in the list S1, . . . , Sm
′. Moreover, due to the properties

of the acceptance instances of ESC–2, we obtain that:

(m,U1, . . . , Uk, T1, . . . , Tn) ∈ ESC–2 if and only if (U, S1, . . . , Sm
′) ∈ EC–2.

Furthermore, we can make this reduction in logarithmic space since for every pair Tj = (x, Sj),
the positive integer x appears exactly once in a single pair Ti = (x, Si) for i ≤ m. Hence, we
only need to iterate from i = 1 to m on the pairs Ti = (x, Si) and join the sets Si ∪ (

⋃
j Sj)

for all Tj = (y, Sj) when x = y for a single value x and m < j ≤ n. This logarithmic space
reduction will be the Algorithm 1. Certainly, the variables of the Algorithm 1 use at most
logarithmic space in relation to the length of the input. If some problem L1 is logarithmic
space reduced to another problem in L, then L1 ∈ L. Consequently, ESC–2 ∈ L because
EC–2 ∈ L [2], [11]. J

Algorithm 1 Logarithmic space reduction
1: /*A valid instance for ESC–2*/
2: procedure REDUCTION(m,U1, . . . , Uk, T1, . . . , Tn)
3: /*Output the “universe" set U*/
4: output U1 ∪ . . . ∪ Uk

5: /*Iterate for the first m pairs*/
6: for i ← 1 to m do
7: /*Initialize the set output*/
8: output “{”
9: (x, Si)← Ti

10: /*Output the elements of Si*/
11: for all ei ∈ Si do
12: output “, ei”
13: end for
14: /*Iterate for the next elements*/
15: for j ← m+ 1 to n do
16: (y, Sj)← Tj

17: /*If x is equal to y*/
18: if x = y then
19: /*Output the elements of Sj*/
20: for all ej ∈ Sj do
21: output “, ej”
22: end for
23: end if
24: end for
25: /*Finalize the set output*/
26: output “}, ”
27: end for
28: end procedure

I Theorem 12. There is a deterministic Turing machine M , where:

KEC–2 = {w : M(w, u) = y for some string u such that y ∈ ESC–2}

when M runs in logarithmic space in the length of w, u is placed on the special read-once
tape of M , and u is polynomially bounded by w.

8 Logarithmic Space Verifiers on NP-complete

Proof. Given a valid instance K,U, S1, . . . , Sm for KEC–2, we can create a certificate array
A which contains the K different natural numbers in U sorted in ascending order that
we are going to remove from the instance. We read at once the elements of the array A
and we reject whether this is not a valid certificate: That is when the numbers are not
sorted in ascending order, or the array A does not contain exactly K elements, or the array
A contains a number that is not in U . While we read the elements of the array A, we
remove them from the instance K,U, S1, . . . , Sm for KEC–2 just creating another instance
m,U1, . . . , Uk′ , T1, . . . , Tn

′ for ESC–2 where the “universe" set U ′ = U1 ∪ . . .∪Uk′ is equal to
U without the K different numbers in A and m is the number of different sets from the list
S1, . . . , Sm. The final pairs Ti = (x, Si) will not contain inside of Si any of the K different
natural numbers in U . Therefore, we obtain that:

(K,U, S1, . . . , Sm) ∈ KEC–2 if and only if (m,U1, . . . , Uk′ , T1, . . . , Tn
′) ∈ ESC–2.

Furthermore, we can make this verification in logarithmic space such that the array A is
placed on the special read-once tape, because we read at once the elements in the array A
and we remove the K different natural numbers from the output. Hence, we only need to
iterate from the elements of the array A to verify whether the array is a valid certificate and
also remove all the K different natural numbers from the sets Si in the pairs Ti = (x, Si).
This logarithmic space verification will be the Algorithm 2. In this Algorithm we guarantee:

1. The family of sets U1, . . . , Uk′ from a “universe" set U1 ∪ . . . ∪ Uk′ = U ′ are disjoint.
2. Every element in U ′ appears at most twice in the list S1, . . . , Sn

′ from the pairs
T1, . . . , Tn

′.
3. For every pair Tj = (x, Sj), the positive integer x appears exactly once in a single pair

Ti = (x, Si) for i ≤ m.
4. The elements in the set Si of each pair Ti appear sorted in the input with ascending

order.
5. A set Si from a pair Ti could be equal to the set ∅.
6. If we have two pairs Ti = (x, Si) and Tj = (y, Sj) such that x = y, i < j, Si 6= ∅ and

Sj 6= ∅, then the minimum element of Sj is greater than the maximum element of Si.

Note, in the loop ej from min to max−1, we do nothing when max−1 < min: Indeed, in
that iteration the output pairs Ti = (x, Si) will comply with Si = ∅. Certainly, the variables
of the Algorithm 2 use at most logarithmic space in relation to the length of the input.

J

I Theorem 13. The Hypothesis 3 is true.

Proof. This is a consequence of Theorems 10, 11 and 12. J

6 Discussion

Our reduction consists given an instance of an NP–complete problem and its certificate, then
we output an element of another language in the class L. It is not a common reduction, but
a verifier with output string in its tapes using a halting state instead of the accepting or
rejecting state. We hope the existence of such verifier might be an evidence of P = NP ,
because we use a logarithmic space verifier on which is based the class NL and NL is a
subset of P [10].

F. Vega 9

Algorithm 2 Logarithmic space verifier
1: /*A valid instance for KEC–2 with its certificate*/
2: procedure VERIFIER((K,U, S1, . . . , Sm), A)
3: /*Output the value of m*/
4: output m
5: /*Initialize minimum and maximum values*/
6: min← 1
7: max← 0
8: /*Iterate for the elements of the certificate array A*/
9: for i ← 1 to K + 1 do
10: if i = K + 1 then
11: /*There exists a K + 1 element in the array*/
12: if A[i] 6= undefined then
13: /*Reject the certificate*/
14: return 0
15: end if
16: /*maximum(U) is equal to the maximum number in U*/
17: max← maximum(U) + 1
18: else if A[i] = undefined ∨A[i] ≤ max ∨A[i] /∈ U then
19: /*Reject the certificate*/
20: return 0
21: else
22: max← A[i]
23: end if
24: /*Initialize the set output Ur*/
25: output “{”
26: for er ← min to max− 1 do
27: if er ∈ U then
28: output “, er”
29: end if
30: end for
31: /*Finalize the set output*/
32: output “}, ”
33: /*Iterate for the sets Sj*/
34: for j ← 1 to m do
35: /*Initialize the pair output*/
36: output “(j, {”
37: for ej ← min to max− 1 do
38: if ej ∈ Sj then
39: output “, ej”
40: end if
41: end for
42: /*Finalize the pair output*/
43: output “}), ”
44: end for
45: min← max+ 1
46: end for
47: end procedure

10 Logarithmic Space Verifiers on NP-complete

References

1 Scott Aaronson. P ? NP. Electronic Colloquium on Computational Complexity, Report No. 4,
2017.

2 Carme Álvarez and Raymond Greenlaw. A Compendium of Problems Complete for Symmetric
Logarithmic Space. Computational Complexity, 9(2):123–145, 2000. doi:10.1007/PL00001603.

3 Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

4 Stephen A. Cook. The P versus NP Problem, April 2000. In Clay Mathematics Institute at
http://www.claymath.org/sites/default/files/pvsnp.pdf.

5 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. The MIT Press, 3rd edition, 2009.

6 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. San Francisco: W. H. Freeman and Company, 1 edition, 1979.

7 William I. Gasarch. Guest column: The second P ? NP poll. ACM SIGACT News, 43(2):53–77,
2012.

8 Oded Goldreich. P, NP, and NP-Completeness: The basics of computational complexity.
Cambridge University Press, 2010.

9 Cristopher Moore and Stephan Mertens. The Nature of Computation. Oxford University Press,
2011.

10 Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
11 Omer Reingold. Undirected Connectivity in Log-space. J. ACM, 55(4):1–24, September 2008.

doi:10.1145/1391289.1391291.
12 Michael Sipser. Introduction to the Theory of Computation, volume 2. Thomson Course

Technology Boston, 2006.
13 Frank Vega. VerifyReduction, August 2019. In a GitHub repository at https://github.com/

frankvegadelgado/VerifyReduction.

http://dx.doi.org/10.1007/PL00001603
http://www.claymath.org/sites/default/files/pvsnp.pdf
http://dx.doi.org/10.1145/1391289.1391291
https://github.com/frankvegadelgado/VerifyReduction
https://github.com/frankvegadelgado/VerifyReduction

	Preliminaries
	Hypothesis
	Motivation
	Problems
	Results
	Discussion

