
1

Artifact Guide
A Path to DOT: Formalizing Fully Path-Dependent Types

MARIANNA RAPOPORT, University of Waterloo, Canada
ONDŘEJ LHOTÁK, University of Waterloo, Canada

The Dependent Object Types (DOT) calculus aims to formalize the Scala programming language with a focus
on path-dependent types — types such as x .a1 . . . an .T that depend on the runtime value of a path x .a1 . . . an to
an object. Unfortunately, existing formulations of DOT can model only types of the form x .Awhich depend on
variables rather than general paths. This restriction makes it impossible to model nested module dependencies.
Nesting small components inside larger ones is a necessary ingredient of a modular, scalable language. DOT’s
variable restriction thus undermines its ability to fully formalize a variety of programming-language features
including Scala’s module system, family polymorphism, and covariant specialization.

This paper presents the pDOT calculus, which generalizes DOT to support types that depend on paths of
arbitrary length, as well as singleton types to track path equality. We show that naive approaches to add paths
to DOT make it inherently unsound, and present necessary conditions for such a calculus to be sound. We
discuss the key changes necessary to adapt the techniques of the DOT soundness proofs so that they can be
applied to pDOT. Our paper comes with a Coq-mechanized type-safety proof of pDOT. With support for paths
of arbitrary length, pDOT can realize DOT’s full potential for formalizing Scala-like calculi.

1 GETTING STARTED GUIDE
This artifact presents the Coq formalization of the pDOT type-safety proof as presented in Section
5 of our paper.

Our Coq proof can be either found
– preinstalled on the following VirtualBox VM:

https://drive.google.com/open?id=1XsQGPywn2ElOE9VGmh09pwBLPSftxTQk
– or in the following Github repository:

https://git.io/dot-with-paths

1.1 Compiling the Proof
1.1.1 On VirtualBox. To use the VM,
1) start up VirtualBox;
2) select New VM;
3) add a new Linux (Ubuntu 64-bit) machine with the provided .vdi file as the hard disk;
4) start the VM;
5) it should log in automatically as user osboxes (password is osboxes.org if necessary);

Authors’ addresses:Marianna Rapoport, University ofWaterloo, Canada, mrapoport@uwaterloo.ca; Ondřej Lhoták, olhotak@
uwaterloo.ca, University of Waterloo, Canada.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2475-1421/2019/10-ART1
https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: October 2019.

https://drive.google.com/open?id=1XsQGPywn2ElOE9VGmh09pwBLPSftxTQk
https://git.io/dot-with-paths
https://doi.org/

1:2 Marianna Rapoport and Ondřej Lhoták

You will find the directory containing a README.html file and the artifact on the Desktop. You may
open this file from the VM using Firefox. For IDE options for Coq the VM comes preinstalled with
the Proof General Emacs interface.

To compile the proof open a terminal and run:
cd dot-calculus/src/extensions/paths
make

This will compile the proof and re-generate the documentation.

1.1.2 On your machine. System requirements:
– make
– an installation of Coq 8.9.0, preferably through opam
– the TLC library which can be installed through

opam repo add coq-released http://coq.inria.fr/opam/released
opam install -j4 coq-tlc

To check out the repository and compile the proof do the following:
git clone https://github.com/amaurremi/dot-calculus
cd dot-calculus/src/extensions/paths
make

This will compile the proof and generate the documentation.

2 STEP BY STEP INSTRUCTIONS
2.1 Overview
The Coq development presented in this artifact formalizes the type-safety proof of the pDOT
calculus as presented in our paper. Specifically, it defines the calculus itself (its abstract syntax, type
system, and operational semantics) and its type safety proof. The Type Soundness Theorem proves
that well-typed terms in pDOT either diverge (i.e. run forever) or reduce to a normal form, which
includes values (functions and objects) or paths. Since the operational semantics does not reduce
paths we present an Extended Type Soundness Theorem defined in terms of the reduction relation
extended with the lookup operation that looks up paths in the runtime environment. This theorem
states that a well-typed term either diverges or reduces to a value (which does not include paths).

2.2 How to Review this Artifact
2.2.1 Inspecting Source files. The documentation can be accessed through the Readme.html file, or
directly through the dot-calculus/src/extensions/paths/doc directory. The README.html file lists links to
pretty printed Coq source files, but the raw .v files can be found in the dot-calculus/src/extensions/paths
directory. In the pretty-printed versions, the proof scripts are hidden by default; you may click on
“Show Proofs” at the top of the page to display all the proofs, or click under the Lemma or Theorem
statements to display their proofs.

2.2.2 Verifying Correctness and Paper Correspondence. Successful compilation usingmake indicates
a correct proof.
You can grep for strings like admit and Admitted in the proof files to verify that we proved all

the theorems. You can also browse the code in Emacs using the Proof General mode and see what
assumptions or hypotheses have used by adding the following Coq command:
Print Assumptions <lemma name>.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: October 2019.

https://coq.inria.fr/opam-using.html
https://opam.ocaml.org/
https://gitlab.inria.fr/charguer/tlc

A Path To DOT: Artifact 1:3

For example, to see what assumptions the Extended Soundness Theorem uses, add the command
Print Assumptions extended_safety. in Safety.v on Line 557 (after the proof of the extended_safety
theorem).

2.3 Used Libraries and Axioms
The pDOT calculus is a generalization of the simple DOT proof by Rapoport et al. [2017]. The Coq
formalization of this proof can be found in the dot-calculus/src/simple-proof/proof folder.
The pDOT calculus is formalized using the locally nameless representation with cofinite quan-

tification [Aydemir et al. 2008] in which free variables are represented as named variables, and
bound variables are represented as de Bruijn indices. We use the TLC library developed by Arthur
Charguéraud that provides useful infrastructure for metatheory proofs. We include the Sequences
library by Xavier Leroy into our development to reason about the reflexive, transitive closure of
binary relations.

We configure Coq with the following axioms:
– functional extensionality
– propositional extensionality
– indefinite description
– law of excluded middle
– John Major’s equality

We use John Major’s equality to do dependent induction in Coq. We inherit the remaining axioms
from the TLC library.

2.4 Paper Correspondence
The correspondence between the paper and Coq formalization is documented in Tables 1, 2, and 3.

Table 1. Correspondence of Definitions

Definition In paper File Paper notations Proof notations In proof

Abstract
Syntax

Fig. 1 Definitions.v

- variable Fig. 1 Definitions.v avar
- term member Fig. 1 Definitions.v trm_label
- type member Fig. 1 Definitions.v typ_label
- path Fig. 1 Definitions.v x .a .b .c

p .a
p .b

p_sel x (c::b::a::nil)
p·a
p· ·b

path

- term Fig. 1 Definitions.v trm
- stable term Fig. 1 Definitions.v def_rhs
- value Fig. 1 Definitions.v ν (x : T)d

λ (x : T) t
ν(T)d
λ(T)t

val

- definition Fig. 1 Definitions.v {a = t }
{A = T }

{a := t}
{A := T}

def

- type Fig. 1 Definitions.v {a : T }
{A : T ..U }
∀(x : T)U
p .A
p .type
µ (x : T)
T ∧U
⊤

⊥

{a : T}
{A >: T <: U}
∀(T)U
p↓A
{{p}}
µ(T)
T ∧ U
⊤

⊥

typ

Type System
- term typing Fig. 2 Definitions.v Γ ⊢ t : T Γ ⊢ t : T ty_trm

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: October 2019.

https://gitlab.inria.fr/charguer/tlc/blob/master/README.md
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Sequences.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Definitions.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Definitions.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Definitions.html#avar
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Definitions.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Definitions.html#trm_label
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Definitions.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Definitions.html#typ_label
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Definitions.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Definitions.html#path
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Definitions.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Definitions.html#trm
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Definitions.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Definitions.html#def_rhs
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Definitions.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Definitions.html#val
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Definitions.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Definitions.html#def
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Definitions.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Definitions.html#typ
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Definitions.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Definitions.html#ty_trm

1:4 Marianna Rapoport and Ondřej Lhoták

Table 1. Correspondence of Definitions

Definition In paper File Paper notations Proof notations In proof

- definition
typing

Fig. 2 Definitions.v p ; Γ ⊢ d : T x; bs; Γ ⊢ d : T
(single definition)
x; bs; Γ ⊢ d :: T
(multiple definitions)
Here, p=x.bs, i.e. x is p’s receiver,
and bs are p’s fields in reverse
order

ty_def
ty_defs

- tight bounds Fig. 2 Definitions.v tight_bounds
- subtyping Fig. 2 Definitions.v Γ ⊢ T <: U Γ ⊢ T <: U subtyp
Operational
semantics

Fig. 3 Reduction.v γ | t 7−→ γ ′ | t ′
γ | t 7−→∗ γ ′ | t ′

(γ , t) 7−→ (γ ', t')
(γ , t) 7−→* (γ ', t')

red

Path lookup Fig. 4 Lookup.v γ ⊢ p { s
γ ⊢ s {∗ s ′

γ ⟦ p { s ⟧
γ ⟦ s {* s' ⟧

lookup_step

Extended
reduction

Sec. 5 Safety.v γ | t ↠ γ ′ | t ′
γ | t ↠∗ γ ′ | t ′

(γ , t)↠ (γ ', t')
(γ , t)↠∗ (γ ', t')

extended_red

Inert and
record types

Fig. 5 Definitions.v inert T
inert Γ

inert_typ
inert

Well-formed
environments

Sec. 5.2.1 PreciseTyping.v wf

Correspondence
between a
value and type
environment

Sec. 5 Definitions.v γ : Γ γ ... Γ well_typed

Table 2. Correspondence of Lemmas and Theorems

Theorem File In proof
Theorem 5.1 (Soundness) Safety.v safety
Theorem 5.2 (Extended Soundness) Safety.v extended_safety
Lemma 5.3 (Progress) Safety.v progress
Lemma 5.4 (Preservation) Safety.v preservation
Lemma 5.5 CanonicalForms.v canonical_forms_fun

Table 3. Correspondence of Examples

Example In paper File
List example Figure 6 a ListExample.v
Compiler example Figure 6 b CompilerExample.v
Singleton type example Figure 6 c SingletonTypeExample.v

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: October 2019.

https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Definitions.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Definitions.html#ty_def
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Definitions.html#ty_defs
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Definitions.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Definitions.html#tight_bounds
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Definitions.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Definitions.html#subtyp
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Reduction.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Reduction.html#red
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Lookup.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Lookup.html#lookup_step
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Safety.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Safety.html#extended_red
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Definitions.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Definitions.html#inert_typ
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Definitions.html#inert
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/PreciseTyping.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/PreciseTyping.html#wf
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Definitions.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Definitions.html#well_typed
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Safety.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Safety.html#safety
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Safety.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Safety.html#extended_safety
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Safety.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Safety.html#progress
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Safety.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Safety.html#preservation
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/CanonicalForms.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/CanonicalForms.html#canonical_forms_fun
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/ListExample.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/CompilerExample.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/SingletonTypeExample.html

A Path To DOT: Artifact 1:5

2.5 Proof Organization
2.5.1 Safety Proof. The Coq proof is split up into the following modules:

– Definitions.v: Definitions of pDOT’s abstract syntax and type system.
– Reduction.v: Normal forms and the operational semantics of pDOT.
– Safety.v: Final safety theorem through Progress and Preservation.
– Lookup.v: Definition of path lookup and properties of lookup.
– Binding.v: Lemmas related to opening and variable binding.
– SubEnvironments.v: Lemmas related to subenvironments.
– Weakening.v: Weakening Lemma.
– RecordAndInertTypes.v: Lemmas related to record and inert types.
– Replacement.v: Properties of equivalent types.
– Narrowing.v: Narrowing Lemma.
– PreciseFlow.v and PreciseTyping.v: Lemmas related to elimination typing. In particular,
reasons about the possible precise types that a path can have in an inert environment.

– TightTyping.v: Defines tight typing and subtyping.
– Substitution.v: Proves the Substitution Lemma.
– InvertibleTyping.v and ReplacementTyping.v: Lemmas related to introduction typing.
– GeneralToTight.v: Proves that in an inert context, general typing implies tight typing.
– CanonicalForms.v: Canonical Forms Lemma.
– Sequences.v: A library of relation operators by Xavier Leroy.

2.5.2 Examples.
– CompilerExample.v: The dotty-compiler example that contains paths of length greater than
one.

– ListExample.v: A covariant-list implementation.
– SingletonTypeExample.v: Method chaining through singleton types.
– ExampleTactics.v: Helper tactics to prove the above examples.

Figure 1 shows a dependency graph between the Coq modules.

REFERENCES
Brian E. Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and Stephanie Weirich. 2008. Engineering

formal metatheory. In Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2008, San Francisco, California, USA, January 7-12, 2008. 3–15.

Marianna Rapoport, Ifaz Kabir, Paul He, and Ondřej Lhoták. 2017. A simple soundness proof for dependent object types.
PACMPL 1, OOPSLA (2017), 46:1–46:27.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: October 2019.

https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Definitions.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Reduction.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Safety.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Lookup.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Binding.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/SubEnvironments.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Weakening.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/RecordAndInertTypes.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Replacement.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Narrowing.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/PreciseFlow.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/PreciseTyping.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/TightTyping.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Substitution.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/InvertibleTyping.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/ReplacementTyping.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/GeneralToTight.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/CanonicalForms.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Sequences.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/CompilerExample.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/ListExample.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/SingletonTypeExample.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/ExampleTactics.html

1:6 Marianna Rapoport and Ondřej Lhoták

Fig. 1. Dependency between Coq proof files

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: October 2019.

	Abstract
	1 Getting Started Guide
	1.1 Compiling the Proof

	2 Step by Step Instructions
	2.1 Overview
	2.2 How to Review this Artifact
	2.3 Used Libraries and Axioms
	2.4 Paper Correspondence
	2.5 Proof Organization

	References

