

RESEARCH ARTICLE

AN INVESTIGATION OF CALCIUM CITRATE MALATE AS A CALCIUM SOURCE FOR YOUNG BROILER CHICKS : A REVIEW.

Kiran Raj G.

Department of Pharmaceutical Sciences, JSS College of Pharmacy, JSS Academy of Higher Education and Research, SS Nagar, Mysuru – 570015, Karnataka, India.

Manuscript Info

Abstract

Manuscript History Received: 06 May 2019 Final Accepted: 08 June 2019 Published: July 2019

*Key words:-*Calcium citrate malate, limestone, broiler.

..... To evaluate calcium citrate malate as a good source of calcium when compared to commercial grade limestone, two experiments were conducted. In the first experiment, two different diets with calcium concentration 0.7% and 09% were formulated using calcium citrate malate and limestone, which had no difference in bone development (dry fat-free tibia, tibia weight, tibia ash, or tibia calcium), but chicks had better 0-18 days body weight gains and feed conversion ratios with calcium citrate malate diet than limestone diet. In the second experiment, five different diets with calcium concentration 0.50%, 0.55%, 0.60%, 0.65% and 0.70% were formulated using calcium citrate malate and limestone along with sodium diphosphate as a phosphorus source. Chicks fed with these diets had similar bone development and tibial dyschondroplasia pathology. Two control diets were formulated using limestone and calcium citrate malate with dicalcium phosphate as a phosphorus source. Limestone diet did not promote good growth of chicks and had lower weights of tibia, tibial bone ash, calcium, and phosphorus compared to calcium citrate malate diet. It was concluded that calcium citrate malate was a good calcium source than limestone.

Copy Right, IJAR, 2019,. All rights reserved.

Introduction:-

Many foods are being fortified with calcium to treat the deficiency or to maintain the calcium levels in the body. Calcium citrate malate is one of many calcium salts which is used to fortify food with calcium for human consumption. It has 21.5% elemental calcium levels and it is 10 times more soluble than calcium carbonate (Andon et al., 1996; Heaney et al., 1990; Smith et al., 1987). Clinical studies on humans have demonstrated that calcium citrate malate has notable absorption and calcium retention than calcium carbonate fortified foods (Andon et al., 1996; Miller et al., 1988). Calcium source and levels in the body has marked effect on trabecular bone in animal studies (Kochanowski, 1990). Rats which were fed on calcium citrate malate diet has 23% to 25% more trabecular bone than those rats which were fed calcium carbonate diet at 4 and 12 weeks and the difference increased to 44%. Based on these results, it is concluded that calcium citrate malate is more bioavailable than calcium carbonate.

Tibial dyschondroplasia (TD) is a major skeletal disorder which is associated with deficiency or imbalance of calcium and phosphorus. TD lesions are characterized by white, unmineralized, opaque, unvascularized cartilage and found predominantely in the metaphysis of tibiotarsus. The prehypertropic cartilage cells fail to undergo

Corresponding Author:-Kiran Raj G.

Address:- Department of Pharmaceutical Sciences, JSS College of Pharmacy, JSS Academy of Higher Education and Research, SS Nagar, Mysuru – 570015, Karnataka, India.

maturation and vascularization (Riddell, 1975; Poulos et al., 1978; McCaskey et al., 1982). As a result lesions are formed. Birds which are affected by TD have bowed legs, sit on their hocks, reluctant to move and spend a significant amount of their time on their breasts, resulting in higher incidence of breast blisters. In most cases, only a small percentage of affected chicks show clinical symptoms which can result in economic loss. Initially the researcher Leach and Nesheim, 1965; Sheridian et al, 1978 ; showed that expression of TD was influenced by genetics and were able to produce by genetic selection of lines of chicken with high (80%) and low (2%) incidence of TD. These lines of chicken were then used to study the effect of calcium and phosphorus on the disease. Riddle (1976) and Edward (1984) showed that TD can be induced by diets with low calcium:phosphorus ratio. Chicks which were fed with diets 1.1% calcium and total phosphorus. These results were later confirmed by several researchers (Lilburn et al., 1983; Edwards, 1984; Hulan et al., 1985; Kling, 1985; Riddell and Pass, 1987; Lilburn et al., 1989) and clearly demonstrate that calcium is important in the prevention of TD.

Materials And Methods:-

M. H. Henry and G. M. Pesti (2002) conducted two experiments to evaluate the effect of calcium citrate malate as a calcium source for young broiler chicks from the Department of Poultry Science, The University of Georgia, Athens, Georgia 30602-2772. Eggs from two different strains of chicken were obtained from a commercial breeder and incubated. At hatch, chicks were vent sexed, tagged and placed in electrically heated Petersime wire-floored battery brooders with eight birds per replicate cage. On 18th day body weights and residual feed were measured and feed conversion ratio was calculated. Three random chicks were chosen per pen and blood samples were drawn via cardiac puncture, centrifuged and plasma was removed. It was stored at -20°C for calcium and phosphorus analysis. Calcium and phosphorus levels were measured by flame atomic absorption using Perkin Elmer 5000 atomic absorption spectroscope (Perkin Elmer Corp., Norwalk, CT). All chicks were euthanized by asphyxiation, and inspected for the presence and severity of TD (Edwards and Veltmann, 1983). The left tibia was removed and stored at -20°C for the determination of tibia fat-free dry weight, tibia ash, calcium, and phosphorus analysis. Tibia fat-free dry weight and tibia ash were determined by the AOAC method (1990).

In the experiment 1, female chicks were used which were obtained from two different strains of chicken. The eggs for one strain of chicken were obtained from Arbor Acres 'High Yield' males mated with Arbor Acres 'High Yield' females and eggs for second strain of chicken were obtained from Peterson × 'Classic' Arbor Acres cross. Five pens were randomly selected from each strain and assigned to each of four diets. Calcium citrate malate (Jost Chemical, St. Louis, MO) and limestone (Franklin Industrial Minerals, Nashville, TN) were added separately to corn and soybean basal diets formulated to obtain elemental calcium concentration of 0.7% and 0.9% each (table 1). Dicalcium phosphate (Dynafos; IMC-AGRICO Feed Ingredients, Bannockburn, IL.) was used as phosphorus source and it provides 34.5% elemental calcium in the basal diets. No poultry by product meal was used.

In the experiment 2, male chicks were used which were obtained from two different strains of chicken. The eggs for one strain of chicken were obtained from Arbor Acres 'High Yield' males mated with Arbor Acres 'High Yield' females and eggs for second strain of chicken were obtained from a 'High Yield' Arbor Acres male crossed with 'Classic' Arbor Acres female cross. Basal diets were formulated similarly to those of first experiment using corn and soybean meal, and fed to chicks for 18 days. Two control diets were formulated in this experiment having elemental calcium levels of 0.7% provided by calcium citrate malate and limestone with dicalcium phosphate (Product No. 3820, IT Baker, Phillipsburg, NJ) as phosphorus source. Experimental diets were formulated using calcium citrate malate and limestone separately to obtain elemental calcium levels of 0.50%, 0.65%, 0.60%, 0.65% and 0.70% each (table 4) with sodium diphosphate as phosphorus source. This resulted in twelve dietary treatment sets: two control and 10 experimental diets. Each diet was assigned to four pens, two of each strain, creating a total of 48 pens. 10% poultry by product meal was used in experimental diets so that higher proportion of total calcium would come from calcium citrate malate and limestone. Only corn and soybean meal was used in control diet.

Slope ratio methodology of Finney(1978) was used to calculate the bioavailability of calcium in experiment 2. Twoway analysis of variance was used to analyse the data obtained within the experiments, with general linear models procedure of SAS software (SAS, 1985). When appropriate, mean differences were separated by Duncan's new multiple range test. Unless otherwise stated, statements of significance are based on P < 0.05. No significant differences were observed between the strains in both the experiments in response to dietary treatments, thus the data was pooled by strains.

Results And Conclusion:-

In experiment 1, two interesting interactions are observed. Chicks have more plasma concentration when fed with calcium citrate malate diet than limestone diet at 0.9% calcium concentration. Tibial weight in chicks are higher when fed with calcium citrate malate diet at 0.7% calcium concentration but low with 0.9% calcium concentration.

In experiment 2, diets formulated with calcium citrate malate and dicalcium phosphate as calcium and phosphorus source resulted in heavier dry fat-free tibia, tibial calcium and tibial bone ash when compared to limestone with dicalcium phosphate diet. TD incidence is also lower in calcium citrate malate with dicalcium phosphate diet, when compared with limestone with dicalcium phosphate diet. The results obtained from five different calcium concentration of the experimental diet formulated with sodium diphosphate as phosphorus source are identical. When slope-ratio analysis of Finney (1978) is applied to the data, there are no significant slope differences found (Table 7). Therefore, the bioavailabilities calcium citrate malate and limestone sample tested here is same.

In both the experiments, chicks grow better when fed with calcium citrate malate diet than limestone diet (table 2 and 5). Feed intake is not affected in both the experiment. Only in experiment 1, differences in feed conversion ratio is identified (at $P \le 0.05$) and at highest calcium level, which is not repeated in experiment 2.

By referring the results obtained from the two experiments, it is concluded that calcium citrate malate is a good source of calcium for growing young chicks. Chicks fed with calcium citrate malate as a calcium supplement have better growth rate and feed efficiency. The price of calcium citrate malate is significantly higher than the limestone, which is the only limiting factor.

Ingredients and composition	Basal limestone diet	Basal calcium citrate malate
		diet
Ground yellow corn (%)	53.241	52.265
Soybean meal (dehulled) (%)	37.537	37.713
Poultry fat (%)	6.019	6.366
Iodized sodium chloride (%)	0.400	0.400
Dicalcium phosphate (%)	1.640	1.643
Limestone (%)	0.595	
Calcium citrate malate		1.047
Vitamin mixture ¹ (%)	0.250	0.250
DL-Methionine	0.193	0.191
Mineral mixture ² (%)	0.075	0.075
Bacitracin (%)	0.050	0.050
Calculated composition ³		
Protein (%)	23.00	23.00
Calcium (%)	0.70	0.70
Available phosphorus (%)	0.45	0.45
chlorine	0.28	0.28
Metabolizable energy kcal/g	3.20	3.20
Chemical analysis		
Protein ⁴ (%)	22.7	22.8
Calcium ⁵ (%)	0.73	0.72

Table 1:-Composition of the basal diets (Experiment 1)

¹Vitamin premix provided per kilogram of diet: vitamin A (as retinyl acetate), 9,920 IU; cholecalciferol, 3,300 IU; vitamin E (as dl- α -tocopheryl acetate), 19.8 IU; menadione, 1.8 mg; vitamin B12, 16.5 μ g, thiamin, 1.65 mg; riboflavin, 9.9 mg; niacin, 58 mg; pantothenic acid, 16.5 mg; folic acid, 1.06 mg; pyroxidine, 2.88 mg; biotin, 0.08 mg.

²Mineral premix provided per kilogram of diet: Mn, 120 mg; Zn, 100 mg; Fe, 60 mg; Cu, 10 mg; I, 2.1 mg; Se, 0.1 mg and contained calcium carbonate, ferrous sulfate, magnesium oxide, manganese sulfate, zinc sulfate, cupric sulfate pentahydrate, calcium iodate, and sodium selenite.

³Based on NRC (1994) feed composition tables. ⁴Etheridge et al. (1998).

⁵Hill (1955).

Table 2:-Effect of calcium source and level on growth, feed intake, and feed conversion of young broiler chicks at 18 d (Experiment 1)¹

Source	Calcium level (%)	Body weight gain	Feed intake (g)	$FCR^{2}(g/g)$
		(g)		
Limestone	0.7	545 ± 11	784 <u>+</u> 21	1.438 ± 0.020
	0.9	553 ± 10	802 ± 20	1.450 ± 0.030
CCM^3	0.7	579 ± 10	815 ± 12	1.407 ± 0.010
	0.9	571 ± 10	790 ± 12	1.383 ± 0.012
		Proba	bility 	
ANOVA				
Source		0.014	0.567	0.044
Level		0.999	0.830	0.812
Source ×		0.427	0.198	0.301
level				

¹Means and standard errors are based on 10 pens of eight chicks per treatment.

 2 FCR = feed conversion ratio (feed intake/body weight gain).

 3 CCM = calcium citrate-malate.

Table 3:-Effects of calcium source and level on plasma calcium, dry fat-free tibia weight, tibia ash, and total tibia calcium of two broiler strains (Experiment 1)

Source	Calcium level	Plasma	Tibia calcium ¹	Dry fat free	Tibia ash ²
	(%)	calcium1 ¹ (mg)		tibia weight ²	
Limestone	0.7	5.99 ± 0.18	254.5 ± 8.6	1.756 ± 0.050	40.09 ± 0.31
	0.9	5.91 ± 0.17	274.7 ± 5.1	1.871 ± 0.032	40.39 ± 0.18
CCM ³	0.7	5.56 ± 0.17	273.7 ± 10.4	1.909 ± 0.050	39.73 ± 0.60
	0.9	6.14 ± 0.16	267.5 ± 8.7	1.829 ± 0.046	40.16 ± 0.22
			-Probability		
ANOVA					
Source		0.640	0.480	0.227	0.418
Level		0.115	0.415	0.693	0.320
Source ×		0.041	0.125	0.037	0.853
Level					

¹Means and standard errors are based on 10 pens of three chicks each per treatment.

²Means and standard errors are based on 10 pens of eight chicks each per treatment.

 3 CCM = calcium citrate-malate.

TABLE 4:-Composition of the basal diets (Experiment 2)

Ingredients and composition	Limestone		Calcium citrate	malate
	Control Basal		Control	Basal
Ground yellow corn (%)	53.173	61.522	52.185	60.974
Soybean meal (dehulled) (%)	37.576	23.068	37.752	13.172
Poultry by-product meal		10.000		10.000
Poultry fat (%)	6.096	3.177	6.443	3.371
Iodized sodium chloride (%)	0.400	0.240	0.400	0.240
Dicalcium phosphate (%)	1.641		1.644	
Sodium phosphate monobasic		0.748		0.749
Limestone (%)	0.594	0.329		

Calcium citrate malate			1.055	0.581
Vitamin premix ¹	0.250	0.250	0.250	0.250
Mineral premix ²	0.075	0.075	0.075	0.075
DL-methionine (%)	0.190	0.244	0.191	0.245
L-Lysine (%)		0.274		0.271
L-threonine (%)		0.068		0.067
Calculated analysis ³				
Protein (%)	23.00	23.00	23.00	23.00
Calcium (%)	0.70	0.50	0.70	0.50
Available phosphorus (%)	0.45	0.45	0.45	0.45
Chlorine (%)	0.28	0.20	0.28	0.20
Metabolizable energy kcal/g	3.20	3.20	3,20	3.20
Chemical analysis ⁴				
Protein ⁴	22.9	23.1	23.2	22.7
Calcium ⁵	0.74	0.53	0.72	0.52

¹Vitamin premix provided per kilogram of diet: vitamin A (as retinyl acetate), 9,920 IU; cholecalciferol, 3,300 IU; vitamin E (as dl- α -tocopheryl acetate), 19.8 IU; menadione, 1.8 mg; vitamin B12, 16.5 μ g, thiamin, 1.65 mg; riboflavin, 9.9 mg; niacin, 58 mg; pantothenic acid, 16.5 mg; folic acid, 1.06 mg; pyroxidine, 2.88 mg; biotin, 0.08 mg.

²Mineral premix provided per kilogram of diet: Mn, 120 mg; Zn, 100 mg; Fe, 60 mg; Cu, 10 mg; I, 2.1 mg; Se, 0.1 mg and contained calcium carbonate, ferrous sulfate, magnesium oxide, manganese sulfate, zinc sulfate, cupric sulfate pentahydrate, calcium iodate, and sodium selenite.

³Based on NRC (1994) feed composition tables.

⁴Etheridge et al. (1998).

⁵Hill (1955).

Treatement	Phosphorus	n	Level	Body weight	Feed intake	Feed conversion
and calcium	source		(%)	gain (g)	(g)	ratio (g/g)
source						
Limestone	Sodium	4	0.50	550 ± 20^{abc}	723 ± 19^{ab}	1.316 ± 0.023
	diphosphate					
		4	0.55	565 ± 14^{ab}	735 ± 20^{ab}	1.301 ± 0.009
		4	0.60	549 ± 9^{abc}	699 ± 25^{abc}	1.272 ± 0.038
		4	0.65	559 ± 15^{abc}	725 ± 43^{ab}	1.295 ± 0.049
		4	0.70	536 ± 22^{bc}	676 ± 33^{abc}	1.267 ± 0.011
$\rm CCM^2$	Sodium	4	0.50	578 ± 4^{ab}	$754 \pm 14^{\mathrm{a}}$	1.304 ± 0.029
	diphosphate					
		4	0.55	575 ± 22^{ab}	730 ± 23^{ab}	1.272 ± 0.038
		4	0.60	$588 \pm 5^{\mathrm{a}}$	738 ± 21^{ab}	1.255 ± 0.042
		4	0.65	568 ± 18^{ab}	742 ± 21^{ab}	1.312 ± 0.065
		4	0.70	556 ± 9^{ab}	701 ± 17^{abc}	1.261 ± 0.025
Limestone	Dicalcium	4	0.70	$512 \pm 10^{\circ}$	624 ± 6^{c}	1.222 ± 0.021
	phosphate					
Calcium	Dicalcium	4	0.70	556 ± 9^{abc}	662 ± 34^{bc}	1.191 ± 0.060
citrate malate	phosphate					
Main effect mea	<u>n</u>					
Limestone	Sodium	20		552 ± 7	711 ± 13	1.289 ± 0.013
	diphosphate					
Calcium	Sodium	20		573 ± 6	733 ± 9	1.280 ± 0.018

Table 5:-The effects of calcium source and level on growth, feed intake, and feed conversion of young broiler chicks (Experiment 2)¹

citrate malate	diphosphate							
		df	probability					
ANOVA								
Source		3	0.022	0.106	0.443			
Limestone vs.		1	0.026	0.185	0.416			
CCM								
Level		4	0.484	0.304	0.646			
Source × level		4	0.823	0.918	0.983			

^{a-c}Values within a column with no common superscript differ significantly ($P \le 0.05$). ¹Means and standard errors are based on four pens of eight chicks each per treatment.

 2 CCM = calcium citrate-malate.

Table	6:-Effects	of	calcium	source	and	level	on	dry	fat-free	tibia	weight,	tibial	bone	ash,	tibia	calcium,	tibia
phosph	norus, and t	the d	evelopn	nent of t	tibial	dysch	ond	ropl	asia in y	oung	broiler cl	nicks (Exper	imen	$(12)^{1}$		

Treatment			Tibial	Tibial Tibia Tibia Tibia Tibial dyschondroph						
Calcium	Phosphorus	Level	weight	1	calciu	phosphoru	Score	Incidenc	Number	
source	source	(%)	(g)	bone	m (mg)	s (mg)	(0-3)	e (%)	3 score ²	
				ash					(%)	
				(%)						
Limeston	Sodium	0.50	1.781 ^{ab}	39.1 ^{ab}	200.1 ^{ab}	76.4 ^{bc}	2.29	43.7	31.7	
e	diphosphat									
	e									
		0.55	1.812 ^{ab}	40.4 ^a	207.5 ^{ab}	77.2 ^{abc}	2.52	31.7	19.2	
		0.60	1.780 ^{ab}	40.5 ^a	210.4 ^{ab}	76.8 ^{bc}	3.00	20.8	20.8	
		0.65	1.882^{ab}	40.6 ^a	218.7 ^{ab}	79.6 ^{ab}	2.94	22.9	19.8	
		0.70	1.810^{ab}	40.6 ^a	212.1 ^{ab}	75.6 ^{bc}	2.67	17.6	14.4	
Calcium	Sodium	0.50	1.892 ^{ab}	37.9 ^b	199.1 ^{ab}	85.2 ^a	2.04	35.3	18.8	
citrate	diphosphat									
malate	е									
		0.55	1.911 ^a	39.5 ^{ab}	212.9 ^{ab}	85.2 ^a	2.40	22.3	12.5	
		0.60	1.890^{ab}	40.6 ^a	220.7 ^a	81.1 ^{ab}	2.23	33.3	16.2	
		0.65	1.842^{ab}	40.5^{a}	210.5^{ab}	78.7 ^{ab}	2.17	33.8	16.1	
		0.70	1.838 ^{ab}	40.3 ^a	210.1 ^{ab}	78.9 ^{ab}	2.66	44.9	29.4	
Limeston	Dicalcium	0.70	1.489 ^c	37.6 ^b	159.9 ^c	69.7 ^c	2.50	34.8	25.5	
e	phosphate									
Calcium	Dicalcium	0.70	1.705 ^b	39. ^{6ab}	192.8 ^b	74.2 ^{bc}	2.48	27.8	14.0	
citrate	phosphate									
malate										
SEM			0.111	1.52	15.6	5.1	0.47	19.1	18.5	
		df				probability				
ANOVA										
Source		3	0.0002	0.023	0.0001	0.007	0.112	0.677	0.798	
Level		4	0.810	0.047	0.272	0.543	0.289	0.659	0.864	
Source x lev	vel	4	0.738	0.916	0.795	0.329	0.394	0.258	0.635	

^{a-c}Values within a column with no common superscript differ significantly ($P \le 0.05$).

¹Means and standard error are based on four pens of eight chicks each per treatment. ²Percentage of birds scored as 3 (large mass of cartilage in the proximal end of the tibiotarsus).

Source of variation	df	Body weight gain	Feed conversion ratio	Tibia weight	Tibia ash	Tibia calcium
				probability		
Average slope	1	0.252	0.108	0.284	0.012	0.005
Slope difference	1	0.110	0.229	0.884	0.590	0.218
Blank	1	0.279	0.599	0.236	0.236	0.783
Intersection	1	0.716	0.942	0.425	0.778	0.944
Curvature	5	0.824	0.915	0.517	0.912	0.940
Parameter						
Intercept		569.00	1.306	1.819	38.7	199.9
Limestone slope		-135.0	-0.154	0.204	12.19	121.6
Calcium citrate		-4.31	-0.458	0.253	17.59	218.4
malate slope						

Table 7:-Bioavailability of calcium citrate-malate compared to that of limestone using slope ratio assay (Experiment 2)

References:-

- 1. Henry M. H. and Pesti G. M. 2002. An investigation of calcium citrate-malate as a calcium source for young broiler chicks. *Poult. Sci.* 81:1149-1155
- 2. Edwards, H. M., Jr., and J. R. Veltmann. 1983. The role of calcium and phosphorus in the etiology of tibial dyschondroplasia in young chickens. J. Nutr. 113:1568–1575.
- 3. Edwards, H. M., Jr. 1984. Studies on the etiology of tibial dyschondroplasia in chickens. J. Nutr. 114:1001–1013.
- 4. Edwards, H. M., Jr. 1992. Nutritional factors and leg disorders. Pages 167–193 in Bone Biology and Skeletal Disorders in Poultry. C. C. Whitehead, ed. Carfax Publishing Co., Abingdon,UK.
- Etheridge, R. D., G. M. Pesti, and E. H. Foster. 1998. A comparison of nitrogen values obtained utilizing the Kjeldahl nitrogen and Dumas combustion methodologies (Leco CNS2000) on samples typical of an animal nutrition analytical laboratory. Anim. Feed Sci. Technol. 73:21–28.
- 6. Finney, D. J. 1978. Statistical Methods in Biological Assay. 3rd ed. Charles Griffin and Co. Ltd., High Wycombe, Buckinghamshire, UK.
- 7. Heaney, R. P. 1988. Nutritional factors in bone health. Pages 297–312 in Osteoporosis: Etiology, Diagnosis, and Management. B. L. Riggs and L. J. Melton, ed. Raven Press, NewYork.
- 8. Heaney, R. P., R. R. Recker, and C. M. Weaver. 1990. Absorbability of calcium sources: The limited role of solubility. Calcif. Tissue Int. 46:300–304.
- 9. Hill, J. B. 1955. Automated fluorometric method for determination of serum calcium. Clin. Chem. 2:122–130.
- 10. Hulan, H. W., G. Degroote, G. Fontaine, and G. Demunter. 1985. The effect of different totals and ratios of calcium and phosphorus on the performance and incidence of leg abnormalities of male and female broiler chickens. Poult. Sci. 64:1157–1169.
- 11. Kling, L. T. 1985. The effects of calcium and phosphorus on the incidence of tibial dyschondroplasia in young chicks. Nutr. Rep. Int. 32:1473–1480.
- 12. Kochanowski, B. A. 1990. Effect of calcium citrate-malate on skeletal development in young, growing rats. J. Nutr. 120:876–881.
- 13. Leach, R. M., and M. C. Nesheim. 1965. Nutritional, genetic and morphological studies of an abnormal cartilage formation in young chicks. J. Nutr. 86:236–244.
- 14. Leach, R. M., and W. O. Twal. 1994. Autocrine, paracrine, and hormonal signals involved in growth plate chondrocyte differentiation. Poult. Sci. 73:883–888.
- 15. Lilburn, M. S. 1994. Skeletal growth of commercial poultry species. Poult. Sci. 73:897–903.
- 16. Lilburn, M. S., T. J. Lauterio, K. N. Rilling, and J. H. Smith.1989. The relationships among mineral balance in the diet, early growth manipulation, and incidence of tibial dyschondroplasia in different strains of meat type chickens. Poult.Sci. 68:1263–1273.
- 17. Lilburn, M. S., K. Nigiani, and J. H. Smith. 1983. The effects of mineral and electrolyte balance on the incidence of leg abnormalities in different strain of commercial broilers. Poult. Sci. 62:1353. (Abstr.)

- 18. McCaskey, P. C., G. N. Rowland, R. K. Page, and L. R. Minear. 1982. Focal failure of endochondral ossification in the broiler. Avian Dis. 26:701–717.
- Miller, J. Z., D. L. Smith, L. Flora, C. Slemenda, X. Jiang, and C. C. Johnson, Jr. 1988. Calcium absorption from calcium carbonate and a new form of calcium (CCM) in healthy male and female adolescents. Am. J. Clin. Nutr. 48:1291–1294.
- 20. Poulos, P. W., S. Reiland, K. Elwinger, and S. E. Olson. 1978. Skeletal lesions in the broiler, with special reference to dyschondroplasia (osteochondrosis). Acta. Radiol. Suppl.358:229–275.
- 21. Riddell, C. 1975. The development of tibial dyschondroplasia in broiler chickens. Avian Dis. 19:443-462.
- 22. Riddell, C. 1976. Selection of broiler chickens for a high and low incidence of tibial dyschondroplasia with observation on spondylolisthesis and twisted legs (perosis). Poult. Sci.55:145–151.
- 23. Riddell, C., and D. A. Pass. 1987. The influence of dietary calcium and phosphorus on tibial dyschondroplasia in broiler chickens. Avian Dis. 31:771–775.
- 24. SAS Institute. 1985. SAS User's Guide: Stastistics. Version 5 Edition. SAS Institute Inc., Cary, NC.
- 25. Sheridan, A. K., C. R. Howlett, and R. W. Burton. 1978. The inheritance of tibial dyschondroplasia in broilers. Br. Poult. Sci. 19:491–499.
- Smith, K. T., R. P. Heaney, L. Flora, and S. M. Hinders. 1987. Calcium absorption form a new calcium delivery system. Calcif. Tissue 41:351–352.
- 27. Weaver, C. M. 1992. Calcium bioavailability and its relation to osteoporosis. Proc. Soc. Exp. Biol. Med. 200:157–160.