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Abstract20

The Arctic icescape is composed by a mosaic of ridges, hummocks, melt ponds, leads21

and snow. Under such heterogeneous surfaces, drifting phytoplankton communities are ex-22

periencing a wide range of irradiance conditions and intensities that cannot be sampled rep-23

resentatively using single-location measurements. Combining experimentally derived pho-24

tosynthetic parameters with transmittance measurements acquired at spatial scales ranging25

from hundreds of meters (using a Remotely Operated Vehicle, ROV) to thousands of meters26

(using a Surface and Under-Ice Trawl, SUIT), we assessed the sensitivity of water-column27

primary production estimates to multi-scale under-ice light measurements. Daily primary28

production calculated from transmittance from both the ROV and the SUIT ranged between29

0.004 and 939 mgC m-2 d-1. Upscaling these estimates at larger spatial scales using satellite-30

derived sea-ice concentration reduced the variability by 22% (0.004-731 mgC m-2 d-1). The31

relative error in primary production estimates was two times lower when combining remote32

sensing and in situ data compared to ROV-based estimates alone. These results suggest33

that spatially extensive in situ measurements must be combined with large-footprint sea-34

ice coverage sampling (e.g., remote sensing, aerial imagery) to accurately estimate primary35

production in ice-covered waters. Also, the results indicated a decreasing error of pri-36

mary production estimates with increasing sample size and the spatial scale at which in37

situ measurements are performed. Conversely, existing estimates of spatially integrated38

phytoplankton primary production in ice-covered waters derived from single-location light39

measurements may be associated with large statistical errors. Considering these implica-40

tions is important for modelling scenarios and interpretation of existing measurements in a41

changing Arctic ecosystem.42

1 Introduction43

The Arctic Ocean (AO) icescape is a mosaic composed of sea ice, snow, leads, melt44

ponds and open water. During the last decades, this AO icescape has been undergoing45

major changes, including a reduction in extent and thickness (Meier et al., 2014), and an46

increased drift speed (Kwok, Spreen, & Pang, 2013). A greater frequency of storm events is47

also making this icescape more prone to deformation (Itkin et al., 2017) and promotes lead48

formation. Because of the surface heterogeneity of the AO icescape, light transmittance49

can be highly variable in space, even over short distances (Hancke et al., 2018; Katlein et50

al., 2015; Nicolaus, Petrich, Hudson, & Granskog, 2013). For example, Perovich, Roesler,51

and Pegau (1998) showed that sea ice and snow transmittance at 440 nm could vary by a52

factor of two over horizontal distances of 25 m. The relative contribution of various sea-ice53

features to under-ice light variability depends on the spatial scale under consideration and54

has significant implications for their application in physical and ecological studies and also55

determines the context in which results can be interpreted. For instance, at small scales56

(< 100 m), local features such as melt ponds and leads have a strong influence on light57

penetration (Frey, Perovich, & Light, 2011; Katlein, Perovich, & Nicolaus, 2016; Massicotte,58

Bécu, Lambert-Girard, Leymarie, & Babin, 2018). At larger scales (> 100 m), it was argued59

that the variability of transmittance is mainly controlled by sea ice thickness (Katlein2015).60

Because phytoplankton is exposed to a highly variable light regime while drifting under61

a spatially heterogeneous, and sometimes dynamic sea-ice surface, single-location irradiance62

measurements are not representative of the average irradiance experienced by phytoplankton63

over a large area (Katlein et al., 2016; Lange, Flores, et al., 2017). This is why traditional64

primary production estimated using in situ incubations at single locations with seawater65

samples inoculated with 14C or 13C are also not appropriate because they reflect primary66

production under local light conditions, which is not representative of the range of irradiance67

experienced by drifting phytoplankton. A better option consists in calculating primary68

production using daily time series of incident irradiance, sea ice transmittance and in-water69

vertical attenuation coefficients, combined with photosynthetic parameters determined using70
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photosynthesis vs. irradiance curves (P vs. E curves) measured with short (under two hours)71

incubations of seawater samples inoculated with 14C. However, this approach requires an72

adequate description of the underwater light field, which cannot be characterized using73

single-location measurements in a spatially heterogeneous sea ice surface. To better estimate74

primary production of phytoplankton under sea ice, the large-area variability in the light75

field should be adequately captured.76

One major challenge in obtaining adequate irradiance estimates under spatially het-77

erogeneous sea ice is that observations are often limited to time-consuming single-location78

measurements made through boreholes. To overcome this limitation, different underwater79

technologies have been developed to study the spatial variability of light transmission under80

spatially heterogeneous sea-ice surfaces. For the last decade, radiometers have been attached81

to remotely operated vehicles (ROV). Small sized ROVs can be deployed through relatively82

small holes (< 2 m) to cover areas in the order of a few hundreds of meters (Ambrose,83

von Quillfeldt, Clough, Tilney, & Tucker, 2005; Katlein et al., 2015, 2017; Lund-Hansen et84

al., 2018; Nicolaus, Hudson, Gerland, & Munderloh, 2010). Navigating directly under sea85

ice, ROVs allow covering various types of sea ice, such as newly formed, ponded and snow-86

covered sea ice, as well as pressure ridges (Katlein et al., 2017). More recently, radiometers87

have been attached to the Surface and Under Ice Trawl (SUIT). The SUIT is a trawl de-88

veloped for sampling meso- and macrofauna in the ice-water interface layer, allowing for89

greater spatial coverage on the order of a few kilometers (Flores et al., 2012; Lange, Flores,90

et al., 2017; Lange, Katlein, Nicolaus, Peeken, & Flores, 2016).91

In a recent study, Massicotte et al. (2018) showed that under spatially heterogeneous sea92

ice and snow surfaces, propagating measured surface downward irradiance just below sea ice93

Ed(0
−) into the water column using upward attenuation coefficient (KLu) calculated from94

radiance profiles is a better choice compared to the traditional downward vertical attenuation95

coefficient (KEd
), because it is less influenced by surface heterogeneity. However, while the96

method allows propagation of irradiance to depth from Ed(0
−) more accurately, estimation97

of representative Ed(0
−) remains difficult. Both ROV and SUIT aim to better describe the98

horizontal variability of Ed(0
−) under heterogeneous sea ice. Since these technologies are99

designed to operate at different scales and in different conditions, they are likely to provide100

complementary information on the light regime experienced by drifting phytoplankton.101

In this study, we investigated the spatial variability of light transmittance measured102

from these two devices and combined them with satellite-derived sea ice concentrations.103

We further used these transmittance data measured at different horizontal spatial scales104

to quantify how they influence primary production estimates derived from photosynthetic105

parameters. The main objective was to determine if combining multiscale under-ice trans-106

mittance observations with photosynthetic parameters could provide a better option to107

estimate primary production under sea ice compared to traditional in situ incubations per-108

formed at single locations using seawater samples inoculated with 14C or 13C. This study109

further aimed at addressing the sensitivity of the phytoplankton to heterogeneous irradi-110

ance. It provides new guidance on how to derive more representative primary production111

estimates under a heterogeneous and changing icescape.112

2 Materials and Methods113

2.1 Sampling campaign and study sites114

Process studies on biological productivity and ecosystem interactions were carried out115

north of Spitsbergen during the international Transitions in the Arctic Seasonal Sea Ice Zone116

(TRANSSIZ) expedition aboard the RV Polarstern (PS92, ARK-XXIX/1) between the 19th117

of May and the 26th June of 2015. In total, eight process studies (stations 19 27, 31, 32, 39,118

43, 46 and 47) were carried out where the ship was anchored to an ice floe, typically for 36119

hours (Figure 1, Table 1). While the ship drifted anchored to ice floe on the port side of the120
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ship, winch-operated instruments were deployed in the open water on the starboard side.121

Water samples for P vs. E curves were collected using a CTD/Rosette. On-ice station work122

included the deployment of a small observation class ROV under the ice to investigate the123

small-scale irradiance variability. Prior to arriving or directly after leaving each ice station,124

the SUIT was deployed for larger scale characterization of the under-ice irradiance field.125

Due to instrument failure, no SUIT data are available for station 32.126

2.2 Sea-ice and snow thicknesses and sea-ice concentrations127

Ground-based multi-frequency electromagnetic induction soundings from a GEM-2128

(Geophex Ltd., Raleigh, NC, USA) were used to measure the total thickness of both sea129

ice and snow following the ROV survey grid. The snow thickness during GEM-2 surveys130

was measured with a Snow-Hydro Magna Probe instrument (SnowHydro LLC, Fairbanks,131

Alaska, USA) with a precision of 3 mm (Sturm et al., 2006). The instrument was inserted in132

the snow approximately every 2 m. The combined GEM-2 and Magna Probe measurements133

started immediately after the ROV light transmission measurements were finished to ensure134

that the snow surface was undisturbed. Sea-ice thickness was calculated as the difference135

between total snow and -ice thickness and snow depth. Due to instrument failure of the136

Magna Probe, no snow measurements were available for stations 46 and 47. The snow thick-137

ness displayed in table 1 is based on ice cores sampled at each station. Sea ice concentration138

(SIC) data were obtained from www.meereisportal.de and processed according to algorithms139

in Spreen, Kaleschke, and Heygster (2008).140

2.3 Underwater light measurements141

2.3.1 ROV measurements142

ROV observations were taken using similar procedures as presented in Nicolaus and143

Katlein (2013) and Katlein et al. (2017) using a V8 Sii ROV (Ocean Modules, Atvidaberg,144

Sweden) and RAMSES-ACC-VIS (TriOs GmbH, Rastede, Germany) spectroradiometers145

mounted both on the ROV and in a fixed location above the sea-ice surface. The ROV was146

deployed through a hole drilled through the ice at a distance of more than 300 m from the147

ship. Optical measurements were performed along two perpendicular 100-m transects and148

in a push-broom pattern over a 100 m by 100 m area. Spectral downward irradiance (Ed,149

W m-2) between 320 and 950 nm was recorded above and below the surface to calculate150

spectral light transmittance as the ratio of irradiance transmitted through the snow/ice to151

incident irradiance. The sensors were triggered in burst mode with the sensors acquiring152

data as fast as possible. To account for ROV movement, all data with ROV roll and pitch153

angles larger than 10 degrees and with a distance of more than 3 m depth to the ice cover154

were rejected from further analysis. To account for light attenuation between the ice-water155

interface and the sensor, an exponential function was used to obtain the transmission at the156

ice-water interface:157

T (zint) =
T (z)

e−KEd
(PAR)×−z (1)158

where T (zint) is the transmittance of the ice and snow at the ice-water interface, T (z) the159

photosynthetically available radiation (PAR) transmittance measured by the ROV at depth160

z (m) andKEd
(PAR) is the downward diffuse attenuation coefficient of PAR (m-1) calculated161

from E(PAR) vertical profiles (equation 2). At each station, at some point during the survey,162

the ROV measured a vertical irradiance profile between the surface and at least 20 m depth.163

Photosynthetically available radiation downwelling irradiance (E(PAR, z), µmol m-2 s-1),164

was calculated as follow:165
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E(PAR, z) =
1

hc

1

N

∫ 700

400

λEd(λ, z)dλ (2)166

where h is Planck’s constant, describing the energy content of quanta (6.623 × 10-34 J s), c167

is the constant speed of light (299 792 458 m s-1), N is the Avogadro’s number (6.022 × 1023
168

mol-1) and Ed(λ, z) is the measured irradiance at wavelength λ (nm) at depth z. Conversion169

from mol to µmol has been done using a factor of 1 × 106. Note that planar, E(PAR), was170

converted to scalar irradiance, E̊(PAR), using a conversion factor of 1.2 (Toole, Kieber,171

Kiene, Siegel, & Nelson, 2003). For each vertical E̊(PAR) profile, KE̊d
(PAR) was calculated172

by fitting the following equation to the measured irradiance data:173

E̊(PAR, z) = E̊(PAR, zint)e
KE̊d

(PAR)z
(3)174

where E̊(PAR, zint) is PAR at the ice-water interface and KE̊d
(PAR) is the diffuse175

vertical attenuation coefficient (m-1) describing the rate at which E̊(PAR) decreases with176

increasing depth. It is assumed constant for a given station in all our calculations. The177

determination coefficients (R2) of the non-linear fits (equation 3) varied between 0.936 and178

0.998.179

2.3.2 SUIT measurements180

On the SUIT, transmittance (T ) and sea ice draft observations were made using a181

mounted environmental sensors array that included a RAMSES-ACC irradiance sensor182

(Trios, GmbH, Rastede, Germany), a conductivity-temperature-depth probe (CTD; Sea183

and Sun Technology, Trappenkamp, Germany), a PA500/6S altimeter (Tritech International184

Ltd., Aberdeen, UK), and an Aquadopp acoustic doppler current Profiler (ADCP; Nortek185

AS, Rud, Norway). A complete and detailed description of the full sensor array can be186

found in David, Lange, Rabe, and Flores (2015) and Lange et al. (2016). Sea ice draft was187

calculated from the CTD depth and altimeter measurements of the distance to the ice and188

corrected for sensor attitude using the ADCP’s pitch and roll measurements according to189

Lange et al. (2016). Irradiance above the ice was measured with a RAMSES spectroradiome-190

ter mounted on the ship’s crow’s nest. Consistent with the ROV spectral measurements,191

the transmittance was calculated as the ratio of under-ice irradiance to incoming irradiance.192

SUIT-mounted downwelling irradiance measurements were acquired every 11 seconds during193

the haul. To account for SUIT movement, all data with SUIT roll and pitch angles larger194

than 15 degrees were rejected from further analysis. Note that we did not correct for the195

light attenuation between the ice-water interface and the sensor because contrary to the196

ROV, the SUIT frame is equipped with buoyancy blocks that keep it at the surface in open197

water or in contact with the sea ice.198

2.4 Incident in-air E̊(PAR)199

A CM 11 global radiation pyranometer (Kipp & Zonen, Delft, Netherlands) installed200

in the crowsnest onboard the Polarstern was used for measuring incident solar photosyn-201

thetically available radiation, (E̊(PAR), W m-2), at 10 minutes intervals. Conversion from202

shortwave flux in energy units to E̊(PAR) in quanta (µmol m-2 s-1) was achieved using203

a conversion factor of 4.49 (McCree, 1972). Data were then hourly averaged. Calculated204

hourly E̊(PAR, 0+) were vertically propagated in the water column between 0 and 40 meters205

with 1-meter increments using the following equation:206

E̊(PAR, z, t) = E̊(PAR, 0+, t)T (zint)e
−KE̊d

(PAR)z
(4)207

= E̊(PAR, zint)e
−KE̊d

(PAR)z
208
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where E̊(PAR, 0+, t) is the incident in-air hourly PAR derived from the pyranometer (µmol m-2 s-1),209

KE̊d
(PAR) is derived from the ROV (see Table 1 and equation 3), z the water depth (m)210

and T (zint) the snow and sea ice transmittance estimated using either the ROV or the SUIT211

data.212

2.5 Photosynthetic parameters derived from P vs. E curves213

To calculate photosynthetic parameters (see the next section for a complete description214

of these parameters), seawater samples were taken from six depths between 1 and 75 m and215

incubated at different irradiance levels in presence of 14C-labelled sodium bicarbonate using216

a method derived from Lewis and Smith (1983). Incubations were carried out in a dimly lit217

radiation van under the deck to avoid any light stress on the algae. Three replicates of 50 mL218

samples were inoculated with inorganic 14C (NaH14CO3, approximately 2 µCi mL-1 final219

concentration). Exact total activity of added bicarbonate was determined by three 20 µL220

aliquots of inoculated samples added to 50 µL of an organic base (ethanolamine) and 6 mL of221

scintillation cocktail (EcoLumeTM, Costa Mesa, US) into glass scintillation vials. One mL222

aliquots of the inoculated sample were dispensed into twenty-eight 7 mL glass scintillation223

vials. The samples were cooled to 0°C in thermo-regulated alveoli. Within the array, the224

vials were exposed to 28 different irradiance levels provided by separate LEDs (LUXEON225

Rebel, Philips Lumileds, USA) from the bottom of each alveolus. Scalar PAR irradiance was226

measured in each alveolus prior to the incubation with an irradiance quantum meter (Walz227

US-SQS + LI-COR LI-250A, USA) equipped with a 4π spherical collector. The incubation228

lasted for 120 minutes and the incubations were terminated by adding with 50 µL of buffered229

formalin to each sample. Note that given the short incubation time, our method for deriving230

primary production likely provides values close to gross production (Lewis & Smith, 1983).231

Thereafter, the aliquots were acidified (250 µL of HCl 50%) in a glove box (radioactive232

14CO2 was trapped in a NaOH solution before opening the glove box) to remove the excess233

inorganic carbon (three hours, Knap, Michaels, Close, Ducklow, and Dickson (1996)). In234

the end, 6 mL of scintillation cocktail was added to each vial prior to counting in a liquid235

scintillation counter (Tri-Carb, PerkinElmer, Boston, USA). The carbon fixation rate was236

finally estimated according to Parsons, Maita, and Lalli (1984). Photosynthetic parameters237

were estimated from P vs. E curves by fitting non-linear models based on the original238

definition proposed by Platt, Gallegos, and Harrison (1980) using equation 5 (parameters239

are presented in the next section):240

P (z) = (1− e−α(z)
E̊(PAR,z)

z )× e−β(z)
E̊(PAR,z)

z + P0 (5)241

2.6 Estimating primary production242

Two different approaches were used to calculate primary production from estimated243

photosynthetic parameters.244

Method 1: under-ice only primary production - This first approach relied on using245

E̊(PAR) propagated in the water column only under the ice using the transmittance values246

derived from either the ROV or the SUIT, the KE̊d
(PAR) from the ROV and the hourly247

incident irradiance from the pyranometer. Primary production was calculated every hour at248

each sampling depth using E̊(PAR, z, t) measurements derived from both ROV and SUIT249

transmittance as follows:250

P device
underice(z, t) = P (z)(1− e−α(z,t)

E̊(PAR,z,t)
z )× e−β(z,t)

E̊(PAR,z,t)
z (6)251

where P device
underice device is primary production (mgC m-3 h-1) calculated using the E̊(PAR, z, t)252

from the transmittances measured from a specific device (ROV, PROV
underice or SUIT, P SUIT

underice),253

P is the photosynthetic rate (mgC m-3 h-1) at light saturation, α is the photosynthetic effi-254
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ciency at irradiance close zero (mgC m-3 h-1 (µmol photon m-2 s-1)-1), β is a photoinhibition255

parameter (same unit as α). The superscript device can be either ROV or SUIT. While fits256

allowed a variable intercept (P0), which tended to be positive, we did not use P0 in the257

primary production computations as we assumed that it was due to methodological issues258

(e.g., light absorbed before incubation started). Photosynthetic parameters were linearly259

interpolated between 0 and 40 m depth by 1 m increment. Daily primary production260

(mgC m-3 h-1) at each depth was calculated by integrating P device
underice(z, t) over a 24h period.261

Depth-integrated primary production (mgC m-2 d-1) was then calculated by integrating262

daily primary production over the first 40 m of the water column.263

Method 2: average production under ice and adjacent open waters - The second ap-264

proach consisted of using a mixing model based on sea ice concentration (SIC) derived from265

satellite imagery to upscale at a larger spatial scale the estimates of primary production266

derived from the ROV and the SUIT. This approach was motivated by the fact that, even267

far away from the marginal ice zone, there were often large leads that increased the amount268

of light available to drifting phytoplankton and may have contributed to under-ice blooms in269

the vicinity as observed by Assmy et al. (2017). To account for this additional light source270

available for phytoplankton, primary production was calculated as follows:271

P device
mixing = SIC× P device

underice + (1− SIC)× Popenwater (7)272

where P device
mixing is the primary production calculated using the mixing model approach273

with the transmittance values from a specific device, SIC is the sea ice concentration av-274

eraged over an area of ≈350 km2 (the mean of a 9-pixels square with the station within275

the center pixel). P device
underice is the primary production calculated under ice using transmit-276

tance measurements (equation 6 & method 1 above) and Popenwater the primary production277

calculated in open water by using a transmittance of 100%. For the mixing-model based278

SUIT-derived primary production, P SUIT
mixing, transmittance observations higher than 10%279

were discarded to remove measurements made under very thin ice and in open leads to280

avoid accounting twice for open water. In the end, four types of primary production were281

considered (2 devices × 2 approaches, Table 2).282

2.7 Error on primary production estimates283

For each of the four scenarios (P SUIT
mixing, PROV

mixing, P SUIT
underice, PROV

underice), the average primary284

production derived from all the transmittance values was viewed as an adequate description285

of the average primary production produced by drifting phytoplankton cells for a given286

area. The relative deviation of each individual primary production estimate to the average287

primary production over all stations was viewed as the error that one would make when288

measuring light at a single location. This relative error was calculated as follow:289

δdevice
P =

| P device − P̄ device |
P̄ device

× 100 (8)290

where δdevice
P is the relative error (%) associated to a specific device (ROV or SUIT),291

P device the primary production estimate and P̄ device the average primary production of the292

device (both in mgC m-2 d-1).293

2.8 Impacts of the number of in situ single-location light measurements on294

primary production estimates295

Because of the sea surface heterogeneity in the field, one needs to carefully choose the296

number of single-location light measurements in order to obtain representative values of297

primary production over a given area. Averaging a high number of local measurements298

is likely to give a better approximation of the average primary production over a given299
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area. However, in the Arctic, it is difficult to sample a high number of uniformly dispersed300

sampling locations due to logistical constraints. Using primary production estimates derived301

from the ROV and the SUIT, we calculated how the error would decrease on average when302

increasing the number of measurements uniformly sampled over a given area. To calculate303

this error, between 1 and 250 values were randomly drawn from the full distribution of304

primary production values calculated with individual transmittance data from the ROV305

or SUIT, and used to calculate average primary production. One can view each of these306

250 numerical experiments as possible number of single-location irradiance measurements307

that one would perform in the field. Each numerical experiment was repeated 100 times to308

calculate an average and the standard deviation of the absolute difference between a given309

estimate of primary production and the reference primary production calculated with all310

transmittance measurements.311

2.9 Statistical analysis312

All statistical analysis and graphics were carried out with R 3.6.0 (R Core Team,313

2019). The non-linear fitting for the P vs. E curves was done using the Levenberg-314

Marquardt algorithm implemented in the minpack.lm R package (Elzhov, Mullen, Spiess,315

& Bolker, 2013). The code used in this study is available under the GNU GPLv3 licence316

(https://github.com/PMassicotte/transsiz).317

3 Results318

3.1 Characterization of the sea-ice and snow cover319

GEM-2 and Magna Probe surveys along and across the ROV transects showed distinct320

differences in sea ice and snow thickness between the sampled stations. An overview of the321

total thickness (i.e., combined snow and ice thickness) is presented in Figure 2A. Overall,322

the mean ice thickness was 1.01 ± 0.52 m (mean ± s.d.), the mean snow thickness was 0.32323

± 0.16 m and the mean total thickness was 1.33 ± 0.49 m (Figure 2B). Stations 19 and 47324

were characterized by an average total thickness over the ROV transect of approximately325

1 m, whereas the average total thickness at station 39 was approximately 2 m. For other326

stations, average total thickness varied around 1.4 m.327

3.2 ROV and SUIT transmittance measurements328

A total of 9211 and 817 transmittance measurements distributed over the seven stations329

were collected from the ROV and SUIT devices, respectively (Figure 3). Transmittance330

values ranged between 0.001% and 68% for the ROV and between 0.002% and 92% for331

the SUIT (Figure 3). The transmittances measured by the SUIT were generally higher332

(mean = 35%) by approximately one order magnitude than those measured with the ROV333

(mean = 2%). The SUIT measurements were also covering greater ranges of transmittances334

compared to the ROV. Histograms showed that transmittance generally followed a bimodal335

distribution (most of the time occurring within the SUIT data) with often one overlapping336

mode between the ROV and SUIT values (Figure 3).337

3.3 Photosynthetically active radiation (PAR)338

Incident hourly E̊(PAR), E̊(PAR, 0+, t), measured by the pyranometer ranged between339

190 and 1400 µmol m-2 s-1 (Figure 4). Stations 32 and 39 experienced the highest inci-340

dent E̊(PAR, 0+, t) whereas stations 27 and 43 received the lowest amount of light. Over341

24h periods, E̊(PAR, zint) calculated using SUIT and ROV transmittances ranged between342

0.005-1358 and 0.005-1012 µmol m-2 s-1 respectively. Due to relatively high attenuation343

coefficients (Table 1), E̊(PAR) decreased rapidly with depth and generally reached the344

asymptotic regime at maximum 30 m depth. The PAR diffuse vertical attenuation coeffi-345
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cients, KE̊d
(PAR), estimated from the ROV vertical profiles varied between 0.07 and 0.59346

m-1 (Table 1).347

3.4 Estimated primary production348

Daily areal primary production derived from photosynthetic parameters and transmit-349

tance values ranged between 0.004 and 939 mgC m-2 d-1 for Punderice and between 0.004350

and 731 mgC m-2 d-1 for Pmixing (Figure 5). In ROV-based estimates, daily areal primary351

productions calculated using the two different approaches (Punderice and Pmixing) generally352

showed consistency especially when SIC was high. At stations 19 and 27, greater differences353

between Punderice and Pmixing were observed in ROV-based estimates due to lower sea ice354

concentrations (Table 1) which allowed for a greater weight of Popenwater on the calcula-355

tions. In SUIT-based estimates, mean daily Punderice values were higher than Pmixing values356

at stations 19, 39 and 43, similar at stations 27, 46 and 47, and lower at station 31 (Figure357

5). The 10% transmittance threshold used to filter out SUIT-based data explains why mean358

values of daily Punderice can be lower than those of based on ROV measurements. The differ-359

ences between the two approaches in SUIT data were related to the varying proportions of360

thin ice and open water during SUIT hauls, which were reflected in the Punderice estimates.361

Overall, both ROV- and SUIT based estimates agreed well with each other when the mixing362

approach (Pmixing) was applied.363

3.5 Error on primary production estimates364

Figure 6 shows the distributions of the relative errors around the calculated average of365

areal primary production (see black dots in Figure 5). Overall, the absolute relative errors366

(δP ) were distributed over a range covering four orders of magnitude, between 0.1% and367

1000% which is corresponding to absolute primary production error varying between 0.0001368

and 640 mgC m-2 d-1. The lowest absolute errors (average ≈50%) were associated with369

primary production estimates made using the mixing model approach (Pmixing). Larger370

absolute errors were made with Punderice derived from only using ROV (mean = 88%) and371

the SUIT (mean = 71%) transmittances.372

3.6 Impacts of the number of in situ light measurements on primary pro-373

duction estimates374

Figure 7 shows the average relative error that one would make when averaging light375

measurements performed at a number of random locations varying between 1 and 250. The376

variability around the means also decreased with increasing number of observations (shaded377

areas in Figure 7). The greatest relative mean error (≈60-100%) occurred when only one378

primary production estimate was randomly selected from the distributions. The number of379

randomly selected observations to reach mean relative errors of 10%, 15%, 20% and 25%380

are presented in Table 3. Overall, about 25% the number of observations were needed381

to reach those targets when sampling from the distribution for Pmixing compared to the382

distribution of Punderice. Additionally, the number of observations required when using the383

SUIT transmittance to derive primary production estimation was also about 25% of the384

number of corresponding ROV-based measurements to reach the same error threshold.385

4 Discussion386

4.1 Primary production under heterogeneous sea ice387

Vertically-integrated net primary production in the Arctic is known to be highly vari-388

able in both time and space (Hill, Ardyna, Lee, & Varela, 2018; Matrai et al., 2013). For389

example, primary production in the central Arctic Ocean estimated using photosynthetic390

parameters was found to vary between 18 and 308 mgC m-2 d-1 in ice-free waters, and be-391
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tween 0.1 and 232 mgC m-2 d-1 in ice-covered waters (Fernández-Méndez et al., 2015). Our392

primary production estimates generally fall within these ranges, although our highest values393

(731 - 939 mgC m-2 d-1) are roughly twice as high. There are many factors such as season,394

cloudiness, sea ice and snow, nutrient concentration, temperature and phytoplankton com-395

munity composition that can influence such variability. In a modeling exercise, Popova et396

al. (2010) found that shortwave light radiation and the maximum depth of winter mixing397

(which determine the amount of nutrients available for summer primary production) ex-398

plained more than 80% of the spatial variability of primary production in the Arctic. In our399

approach, the impact of light history, nutrients, temperature, and community composition400

are implicit in photosynthetic parameters and chl a concentration. The instantaneous effect401

of light variations is explicit.402

4.2 Multi-scale spatial variability of light transmittance403

In the context of obtaining meaningful measurements of transmittance to accurately404

estimate E0(PAR, 0-), one challenge is to define the spatial extent at which light should be405

sampled. Based on a spatial autocorrelation analysis conducted in the central Arctic ocean,406

it was determined that transmittance values were uncorrelated (i.e., randomly spatially407

distributed) to each other after a horizontal lag distance of 65 m (Lange, Katlein, et al.,408

2017). This range is much smaller than the distance covered by drifting phytoplankton over409

a 24h period. Water currents around Svalbard have been found to vary between 0.14 and410

0.21 m s-1 at this time of the year (Meyer et al., 2017). Such speeds are in the same order of411

magnitude as the average sea ice drift speeds of 0.10 m s-1 observed during the expedition.412

On daily timescales, ice-motion is generally decoupled from Ocean currents and is rather413

driven by inertial oscillations and wind stress (Park & Stewart, 2016). This corresponds to414

a relative ice-water displacement varying between 3.5 and 18 km over a 24h period which is415

much greater than the scale of the spatial variability of transmittance, as well as the scale416

of most typical ice floes in this area. Under such a large area, drifting phytoplankton is417

experiencing a wide range of irradiance conditions that can be hardly characterized by a418

single-location light measurement. Our results showed that at medium spatial scales, the419

ROV and the SUIT are able to characterize the local sea-ice variability on the scale of one or420

a few individual ice floes. However, these technologies do not adequately capture the spatial421

variability that originate from larger scale features such as open water areas nor large leads422

that can increase the amount of light available to drifting phytoplankton (Assmy et al.,423

2017). Thus at larger spatial scales, satellite-derived information, such as SIC or lead cover424

products can provide important information on the panarctic context. Such information425

allows to upscale the estimates of primary production derived from the ROV and the SUIT426

to a larger spatial scale. Our results showed that using a simple mixing model (equation427

7), combining both in-situ transmittance measurements and SIC, can be used to upscale428

observations acquired “locally” to larger scales. This approach reduced the relative error by429

approximately a factor of two when spatially integrating devices such as ROVs or SUIT are430

used to measure transmittance (Figure 5). Furthermore, this error was lower when using431

in-situ measurements acquired on a larger spatial scale using the SUIT. This strengthens432

the idea that one needs to characterize the light field over an area as large as reasonably433

possible so the true irradiance variability is captured.434

Our study confirms our earlier hypothesis that estimating primary production from pho-435

tosynthetic parameters and transmittance measured at a single location does not provide436

a representative description of the spatial variability of the primary production occurring437

under a heterogeneous sea surface (Figure 6, Figure 7). Depending on the scale at which438

transmittance was measured, it was found that deriving primary production from photo-439

synthetic parameters using under-ice profile measurements alone would produce on average440

relative errors varying between 47% and 88% (Figure 6). In contrast, much lower errors441

(25%) were made when primary production estimates were upscaled using satellite-derived442

SIC (Pmixing). For stations with lower SIC (stations 19, 27, 31 and 39), primary production443

estimates were more constrained around the average (Figure 4) because Popenwater had a444
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greater weight in the calculation of Pmixing (see equation 7). For stations 43, 46 and 47445

where SIC was 100%, the spread around the mean was higher because only Punderice was446

contributing to the calculation of Pmixing. These results suggest that using a distribution447

of measured transmittances allows calculating a more representative transmittance average448

for a given area, but also provides additional knowledge on its spatial variability.449

Although our results indicate that it is necessary to properly characterize the light field450

under the heterogeneous sea surface, the physiological state of the phytoplankton community451

under the sea ice surface also plays a major role on the sensitivity of the estimates to in-452

coming irradiance. An important parameter of the physiological state of the phytoplankton453

community is the light-saturated photosynthesis regime, Ek an index of photoadaptation.454

If a phytoplankton community was adapted to extremely low light intensity, as example,455

variations in the surface light field would have reduced impacts on the estimates because456

phytoplankton primary production might be systematically light-saturated. In this study,457

the average Ek was 65.2 ± 55.3 (range = 18.0 - 409.5) µmol m-2 s-1, whereas the average of458

all estimates of mean daily, under-ice irradiance made from ROV and SUIT measurements459

was 12.6 ± 7.6 (range = 3.0 - 26.4) µmol m-2 s-1. Since the latter were generally much lower460

than Ek, phytoplankton were able to respond strongly to variability in the under-ice light461

field and take advantage of increased irradiance in occasional leads. This setting underscores462

the importance of adopting a dynamic approach to the estimation of primary production.463

However, the degree of photoadaptation of the phytoplankton communities and their ability464

to adjust rapidly to a variable light field still remains to be evaluated.465

4.3 Influence of the number of sampling locations on primary production466

estimation467

As with any scientific expedition in remote environments such as the Arctic, careful468

planning is needed to find the right balance between the sampling effort and the sufficient469

amount of acquired information to study a particular phenomenon. Our results suggested470

that errors made by estimating primary production using photosynthetic parameters de-471

creased exponentially with increasing number of transmittance measurements (Figure 7).472

Depending on the extent of the spatial scale at which transmittance is measured (order of473

meters for the ROV, order of kilometers for the SUIT) and the targeted error thresholds474

(10%, 15%, 20% or 25%), a number of light measurements varying between four and 359475

were sufficient to reasonably capture the spatial variability of sea ice transmittance to de-476

rive average primary production estimates over a given area. This shows, that local primary477

production estimated from just a single or even a handful of light observations has limited478

value.479

4.4 Implications for Arctic primary production estimates480

It is known that the annual primary production in the ice-covered Arctic is among481

the lowest of all oceans worldwide, because both light and limited nutrient availability are482

the main constraining factors for phytoplankton growth under the ice. In a changing Arc-483

tic icescape, efforts have been devoted to better understand how phytoplankton primary484

production is responding to increasing light availability (Fernández-Méndez et al., 2015;485

Vancoppenolle et al., 2013). Many studies have been conducted in the vicinity of an ice486

edge to characterize primary production occurring under the ice sheet (Arrigo et al., 2012,487

2014; Mundy et al., 2009). However, in such studies, due to logistical constraints, the under-488

water light field was often characterized by a limited number of light measurements. Other489

approaches, based on 24h ship-board incubations performed under incident light, have pro-490

vided local estimates that were simply scaled to an assessment of percent ice-cover in the491

vicinity of the ship (Gosselin, Levasseur, Wheeler, Horner, & Booth, 1997; Mei et al., 2003;492

Smith, 1995). Therefore, depending on whether light is measured under bare ice or in open493

water, the estimated primary production is either under- or overestimated. Different ap-494

proaches based on remote sensing techniques and modelling have been used to reduce the495
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uncertainties associated with estimates derived from local in-situ measurements. However,496

in an ecosystem model intercomparison study, Jin et al. (2016) showed that under-ice pri-497

mary production was very sensitive to the light availability computed by atmospheric and498

sea ice models, reinforcing the need to develop new integrative strategies to adequately char-499

acterize the light field at large scale under heterogeneous sea ice surfaces. Our results show500

that upscaling primary production estimates derived from fine-scale local measurements us-501

ing SIC derived from satellite imagery allowed reducing the error at larger spatial scales.502

Furthermore, it was found that even when SIC was high (> 95%), the use of a mixing-model503

approach helped to obtain better estimates (Figure 5).504

Based on our results, different strategies can be easily adopted to obtain the best505

possible estimates of primary production under spatially heterogeneous sea ice surfaces.506

First, one should measure light transmittance or irradiance at a spatial scale fine enough to507

capture the horizontal variability that is meaningful for the studied process. The number508

of measurements should be chosen as a function of the sampling method and a reasonable509

degree of error (Figure 7, Table 3). Nowadays, this can be relatively easy achieved using510

ROV, SUIT or autonomous underwater vehicles (AUV). Secondly, under heterogeneous511

sea ice surface, one should use extinction coefficients derived from upward radiance (Lu)512

measurements to propagate PAR in the water column because it is less influenced by the513

geometric effects of asea ice surface compared to downward irradiance (Katlein et al., 2016;514

Massicotte et al., 2018). Finally, local measurements can be upscaled at higher spatial scale515

using remote-sensing data such as sea-ice concentration.516

5 Conclusions517

Advances in underwater technologies have made it easier to characterize surface trans-518

mittance over large areas even under dense sea ice. Our results show that combining pho-519

tosynthetic parameters measured in laboratory experiments with spatially representative520

transmittance values sampled with under-ice profiling platforms can significantly improve521

the accuracy of primary production estimates under heterogeneous sea surfaces. A good way522

forward to sample the under-ice light field on a large enough scale without the inherent biases523

of the ROV and SUIT deployment techniques would be the use of long-range autonomous524

underwater vehicles. Furthermore, upscaling in-situ measurements at larger scales using525

remote sensing data becomes necessary when the spatial scale of the studied process (e.g., a526

phytoplankton bloom) is greater than that which is realistically possible to measure in the527

field. This emphasizes the need for spatially integrated observation approaches to charac-528

terize the light field in ice-covered regions in order to provide more representative primary529

production estimates for the Arctic.530

Acknowledgments531

532

We thank F. Bruyant, M. Beaulieu for carrying out the P vs. E curve measurements533

and providing us with the data. We thank Sascha Willmes for onboard processing of the534

ice and snow thickness data. We thank captain Thomas Wunderlich and the crew of ice-535

breaker Polarstern for their support during the TRANSSIZ campaign (AWI PS92 00). This536

study was conducted under the Helmholtz Association Research Programme Polar regions537

And Coasts in the changing Earth System II (PACES II), Topic 1, WP 4 and is part538

of the Helmholtz Association Young Investigators Groups Iceflux: Ice-ecosystem carbon539

flux in polar oceans (VH-NG-800). BAL was partly funded during this study by a Vis-540

iting Fellowship from the Natural Sciences and Engineering Research Council of Canada541

(NSERC). The project was conducted under the scientific coordination of the Canada542

Excellence Research Chair on Remote sensing of Canada’s new Arctic frontier and the543

CNRS & Université Laval Takuvik Joint International laboratory (UMI3376). We also544

acknowledge the Sentinel North Strategy for their financial support. SUIT was devel-545

–12–



manuscript submitted to JGR: Oceans

oped by Wageningen Marine Research (WMR; formerly IMARES) with support from the546

Netherlands Ministry of EZ (project WOT-04-009-036) and the Netherlands Polar Pro-547

gram (project ALW 866.13.009). We thank Jan Andries van Franeker (WMR) for kindly548

providing the Surface and Under Ice Trawl (SUIT) and Michiel van Dorssen for techni-549

cal support with work at sea. Data for the light measurement used in this study can550

be found on Pangaea website. ROV data (https://doi.pangaea.de/10.1594/PANGAEA551

.861048), incident radiation (https://doi.pangaea.de/10.1594/PANGAEA.849663), sta-552

tion list (https://doi.pangaea.de/10.1594/PANGAEA.848841), SUIT data (submitted to553

PANGAEA (https://doi.org/10.1594/pangaea) and are in the curation process. It will554

be available in open access shortly.), photosynthetic parameters (https://doi.org/10555

.1594/PANGAEA.899842) and sea-ice/snow thickness (https://doi.pangaea.de/10.1594/556

PANGAEA.897958).557

References558

Ambrose, W. G., von Quillfeldt, C., Clough, L. M., Tilney, P. V. R., & Tucker, T. (2005,559

oct). The sub-ice algal community in the Chukchi sea: large- and small-scale patterns560

of abundance based on images from a remotely operated vehicle. Polar Biol., 28 (10),561

784–795. Retrieved from http://link.springer.com/10.1007/s00300-005-0002-8562

doi: 10.1007/s00300-005-0002-8563

Arrigo, K. R., Perovich, D. K., Pickart, R. S., Brown, Z. W., van Dijken, G. L., Lowry,564

K. E., . . . Swift, J. H. (2012, jun). Massive Phytoplankton Blooms Under Arctic Sea565

Ice. Science (80-. )., 336 (6087), 1408–1408. Retrieved from http://www.sciencemag566

.org/cgi/doi/10.1126/science.1215065 doi: 10.1126/science.1215065567

Arrigo, K. R., Perovich, D. K., Pickart, R. S., Brown, Z. W., van Dijken, G. L., Lowry,568

K. E., . . . Swift, J. H. (2014, jul). Phytoplankton blooms beneath the sea ice in the569

Chukchi sea. Deep Sea Res. Part II Top. Stud. Oceanogr., 105 , 1–16. Retrieved from570

http://dx.doi.org/10.1016/j.dsr2.2014.03.018http://linkinghub.elsevier571

.com/retrieve/pii/S0967064514000836https://linkinghub.elsevier.com/572

retrieve/pii/S0967064514000836 doi: 10.1016/j.dsr2.2014.03.018573

Assmy, P., Fernández-Méndez, M., Duarte, P., Meyer, A., Randelhoff, A., Mundy, C. J., . . .574

Granskog, M. A. (2017, dec). Leads in Arctic pack ice enable early phytoplankton575

blooms below snow-covered sea ice. Sci. Rep., 7 (1), 40850. Retrieved from http://576

www.nature.com/articles/srep40850 doi: 10.1038/srep40850577

David, C., Lange, B., Rabe, B., & Flores, H. (2015, mar). Community structure of under-ice578

fauna in the Eurasian central Arctic Ocean in relation to environmental properties of579

sea-ice habitats. Mar. Ecol. Prog. Ser., 522 , 15–32. Retrieved from http://www.int580

-res.com/abstracts/meps/v522/p15-32/ doi: 10.3354/meps11156581

Elzhov, T. V., Mullen, K. M., Spiess, A.-N., & Bolker, B. (2013). minpack.lm: R interface to582

the Levenberg-Marquardt nonlinear least-squares algorithm found in MINPACK, plus583

support for bounds. Retrieved from http://cran.r-project.org/package=minpack584

.lm585

Fernández-Méndez, M., Katlein, C., Rabe, B., Nicolaus, M., Peeken, I., Bakker, K., . . .586

Boetius, A. (2015, jun). Photosynthetic production in the central Arctic Ocean during587

the record sea-ice minimum in 2012. Biogeosciences, 12 (11), 3525–3549. Retrieved588

from https://www.biogeosciences.net/12/3525/2015/ doi: 10.5194/bg-12-3525589

-2015590

Flores, H., van Franeker, J. A., Siegel, V., Haraldsson, M., Strass, V., Meesters, E. H., . . .591

Wolff, W. J. (2012, feb). The Association of Antarctic Krill Euphausia superba with592

the Under-Ice Habitat. PLoS One, 7 (2), e31775. Retrieved from http://dx.plos593

.org/10.1371/journal.pone.0031775 doi: 10.1371/journal.pone.0031775594

Frey, K. E., Perovich, D. K., & Light, B. (2011, nov). The spatial distribution of solar radi-595

ation under a melting Arctic sea ice cover. Geophys. Res. Lett., 38 (22), 1–6. Retrieved596

from http://doi.wiley.com/10.1029/2011GL049421 doi: 10.1029/2011GL049421597

Gosselin, M., Levasseur, M., Wheeler, P. A., Horner, R. A., & Booth, B. C. (1997). New598

–13–



manuscript submitted to JGR: Oceans

measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep599

Sea Res. Part II Top. Stud. Oceanogr., 44 (8), 1623–1644. Retrieved from http://600

linkinghub.elsevier.com/retrieve/pii/S0967064597000544 doi: 10.1016/S0967601

-0645(97)00054-4602

Hancke, K., Lund-Hansen, L. C., Lamare, M. L., Højlund Pedersen, S., King, M. D., An-603

dersen, P., & Sorrell, B. K. (2018, feb). Extreme Low Light Requirement for Algae604

Growth Underneath Sea Ice: A Case Study From Station Nord, NE Greenland. J.605

Geophys. Res. Ocean., 123 (2), 985–1000. Retrieved from http://doi.wiley.com/606

10.1002/2017JC013263 doi: 10.1002/2017JC013263607

Hill, V., Ardyna, M., Lee, S. H., & Varela, D. E. (2018, jun). Decadal trends in phytoplank-608

ton production in the Pacific Arctic Region from 1950 to 2012. Deep Sea Res. Part II609

Top. Stud. Oceanogr., 152 , 82–94. Retrieved from https://www.sciencedirect.com/610

science/article/pii/S0967064516300959https://linkinghub.elsevier.com/611

retrieve/pii/S0967064516300959 doi: 10.1016/j.dsr2.2016.12.015612

Itkin, P., Spreen, G., Cheng, B., Doble, M., Girard-Ardhuin, F., Haapala, J., . . . Wilkinson,613

J. (2017). Thin ice and storms: Sea ice deformation from buoy arrays deployed during614

N-ICE2015. J. Geophys. Res. Ocean.. doi: 10.1002/2016JC012403615

Jin, M., Popova, E. E., Zhang, J., Ji, R., Pendleton, D., Varpe, Ø., . . . Lee, Y. J. (2016,616

jan). Ecosystem model intercomparison of under-ice and total primary production617

in the Arctic Ocean. J. Geophys. Res. Ocean., 121 (1), 934–948. Retrieved from618

http://doi.wiley.com/10.1002/2015JC011183 doi: 10.1002/2015JC011183619

Katlein, C., Arndt, S., Nicolaus, M., Perovich, D. K., Jakuba, M. V., Suman, S., . . . German,620

C. R. (2015, sep). Influence of ice thickness and surface properties on light transmission621

through Arctic sea ice. J. Geophys. Res. Ocean., 120 (9), 5932–5944. Retrieved from622

http://doi.wiley.com/10.1002/2015JC010914 doi: 10.1002/2015JC010914623

Katlein, C., Perovich, D. K., & Nicolaus, M. (2016, feb). Geometric Effects of an In-624

homogeneous Sea Ice Cover on the under Ice Light Field. Front. Earth Sci., 4 (6).625

Retrieved from http://journal.frontiersin.org/Article/10.3389/feart.2016626

.00006/abstract doi: 10.3389/feart.2016.00006627

Katlein, C., Schiller, M., Belter, H. J., Coppolaro, V., Wenslandt, D., & Nicolaus, M. (2017,628

sep). A New Remotely Operated Sensor Platform for Interdisciplinary Observations629

under Sea Ice. Front. Mar. Sci., 4 , 281. Retrieved from http://journal.frontiersin630

.org/article/10.3389/fmars.2017.00281/full doi: 10.3389/fmars.2017.00281631

Knap, A. H., Michaels, A., Close, A. R., Ducklow, H., & Dickson, A. G. (1996). Protocols632

for the joint global ocean flux study (JGOFS) core measurements.633

Kwok, R., Spreen, G., & Pang, S. (2013). Arctic sea ice circulation and drift speed: Decadal634

trends and ocean currents. J. Geophys. Res. Ocean.. doi: 10.1002/jgrc.20191635

Lange, B. A., Flores, H., Michel, C., Beckers, J. F., Bublitz, A., Casey, J. A., . . . Haas, C.636

(2017, nov). Pan-Arctic sea ice-algal chl a biomass and suitable habitat are largely637

underestimated for multiyear ice. Glob. Chang. Biol., 23 (11), 4581–4597. Retrieved638

from http://doi.wiley.com/10.1111/gcb.13742 doi: 10.1111/gcb.13742639

Lange, B. A., Katlein, C., Castellani, G., Fernández-Méndez, M., Nicolaus, M., Peeken, I.,640

& Flores, H. (2017, nov). Characterizing Spatial Variability of Ice Algal Chlorophyll641

a and Net Primary Production between Sea Ice Habitats Using Horizontal Profiling642

Platforms. Front. Mar. Sci., 4 (November), 1–23. Retrieved from http://journal643

.frontiersin.org/article/10.3389/fmars.2017.00349/full doi: 10.3389/fmars644

.2017.00349645

Lange, B. A., Katlein, C., Nicolaus, M., Peeken, I., & Flores, H. (2016, dec). Sea ice646

algae chlorophyll a concentrations derived from under-ice spectral radiation profiling647

platforms. J. Geophys. Res. Ocean., 121 (12), 8511–8534. Retrieved from http://648

doi.wiley.com/10.1002/2016JC011991 doi: 10.1002/2016JC011991649

Lewis, M., & Smith, J. (1983). A small volume, short-incubation-time method for mea-650

surement of photosynthesis as a function of incident irradiance. Mar. Ecol. Prog. Ser..651

doi: 10.3354/meps013099652

Lund-Hansen, L. C., Juul, T., Eskildsen, T. D., Hawes, I., Sorrell, B., Melvad, C., & Hancke,653

–14–



manuscript submitted to JGR: Oceans

K. (2018, jul). A low-cost remotely operated vehicle (ROV) with an optical posi-654

tioning system for under-ice measurements and sampling. Cold Reg. Sci. Technol.,655

151 , 148–155. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/656

S0165232X17302331 doi: 10.1016/j.coldregions.2018.03.017657
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