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ABSTRACT
Energy harvesting is finding widespread use as a long-term energy
supply for the Internet of Things (IoT). The dependency of these de-
vices on the spatially and temporally variable environment further
complicates reliable application design. We present a long-term
indoor solar harvesting dataset to support the modeling, analysis,
calibration and evaluation of energy harvesting systems. More than
2 years of joint high accuracy power and ambient condition traces
were collected at 6 diverse indoor locations. The dataset provides a
solid foundation for the design and validation of energy prediction,
energymanagement and run-time adaptation schemes. The detailed
description of the measurement setup and the resulting dataset is
accompanied by the public release of the dataset, as well as the
hardware design of the measurement platform and code examples
for post-processing the dataset in R and Python.
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1 INTRODUCTION
Energy Harvesting is seen as key enabler to supply the emerging In-
ternet of Thing (IoT) in a long-term and efficient manner. Extracting
energy from the ambient makes these systems and their operation
inherently dependent on the non-deterministic and highly variable
environment conditions. Systems relying on energy harvesting as
energy supply therefore need to tolerate [2] or adapt [1] to variable
harvesting conditions. Data from the spatial and temporal variable
environment and the energy that can be extracted through harvest-
ing are highly valuable for dimensioning, calibrating and testing

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DATA ’19, November 10, 2019, New York, NY
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-xxxx-xxxx-x/19/11.
https://doi.org/http://dx.doi.org/xx.xxxx/xxxxxxx.xxxxxxx

Figure 1: High-level schematic of the measurement setup.
For details see the publicly released hardware design.

such systems. For outdoor solar harvesting extensive irradiation
data is available from weather service stations around the world,
typically reaching back many decades. In contrast, indoor solar har-
vesting data is only sparsely available, but becoming increasingly
critical for many Internet of Things applications that target deploy-
ment in this environment like building automation and assisted
living.

We present an extensive dataset that addresses the lack of long-
term indoor solar harvesting traces. While others have performed
illuminance measurements in indoor environments [3], we are the
first to jointly monitor the extracted energy from the solar panel,
the energy stored in the battery, and the ambient conditions. The
combination of power measurements using a real harvesting sys-
tem implementation and rich ambient sensor data enables diverse
opportunities for analysis and evaluation, including power estima-
tion, energy harvesting source modeling, and harvesting system
efficiency analysis, to mention a few. The co-location with the
widely adopted FlockLab testbed for distributed network protocol
evaluation [4] enables energy aware design and testing of network
protocols based on real-world harvesting traces.

We release the dataset together with data processing examples
for the popular Python pandas and R data analysis frameworks.
Furthermore, we make the hardware design available that can be
used for consistent and comparable tracing of the harvesting power
and ambient conditions.

2 MEASUREMENT SETUP AND
DEPLOYMENT

For measuring the harvested energy and the ambient conditions we
use a custom designed monitoring platform. The platform consists
of a solar panel (AM-5412, 50mm × 33mm) connected to a maxi-
mum power point tracking DC-DC boost converter (bq25505) that
stores the harvested energy in a virtual battery circuit. The battery
emulation circuit keeps the harvester output operating point fixed
at a typical battery voltage level of 4.2V to guarantee consistent
and comparable harvesting measurements. Two TSL45315 light
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Table 1: Overview of the monitoring positions: characteristics, measurement timespan, and co-located FlockLab nodes.

# Deployment Description and Sunlight Exposure Timespan (YYYY-MM-DD) Daily Energy FlockLab

06 Employee office, wall mounted at 2.4m, little natural light with increased
level in the late afternoon and during summer, no direct sun exposure

2017-07-27 – 2019-06-17 2.02 ± 1.64 J 004

13 Student office, wall mounted at 2.0m, some natural light with increased
level in morning hours and during summer, no direct sun exposure

2017-07-27 – 2019-08-01 1.57 ± 1.28 J 032

14 Laboratory, wall mounted at 2.1m, significant natural light with increased
level and potential direct sunlight in morning hours and during summer

2017-07-27 – 2019-08-01 14.18 ± 11.67 J 011

16 Employee office, table mounted and facing towards ceiling, significant
natural light with increased level in the afternoon, no direct sun exposure

2019-06-18 – 2019-08-01 7.07 ± 1.50 J N/A

17 Employee office, wall mounted at 2.4m, significant natural light with
increased level in the afternoon, no direct sun exposure

2017-07-27 – 2019-08-01 2.87 ± 2.36 J 016

18 Hallway, wall mounted at 2.2m, no natural light, only little, indirect
artificial light due to high wall mount mounting position

2017-07-27 – 2019-08-01 0.19 ± 0.12 J 023

Figure 2: Floor plan with the deployed measurement positions. The rounded part of the position markers indicate the direc-
tions from which light reaches the solar panel.

sensors placed on opposite sides of the solar panel monitor the
illuminance level, while a BME280 sensor logs additional ambient
conditions like temperature, humidity and air pressure.

The solar harvesting and ambient monitoring platform is de-
signed as an I2C extension for the RocketLogger platform [5]. The
logger is used for measuring of the energy flow at the input and
the output of the bq25505 harvesting circuit and for logging the
ambient sensors. The energy extraction and control circuitry of
the battery emulation and the ambient sensors are supplied from
the RocketLogger. The high level schematic of the fully integrated
measurement setup is shown in Figure 1. More details are found
in the hardware design of the monitoring platform, which is also
released to the public as part of this publication1.

1available at: https://gitlab.ethz.ch/tec/public/employees/sigristl/harvesting_tracing

Five of the measurement platforms are deployed in office rooms
of our institute at ETH Zurich, Zurich, Switzerland. The exact
locations of the deployment and the alignment of the rooms are
shown on the floorplan in Figure 2. The locations were selected
to have high diversity in terms of orientation, mixture of artificial
and natural light, direct or indirect sunlight exposure at different
times of the day, and occupancy patterns. The chosen rooms are
either used as permanently occupied employee offices, part-time
occupied student offices, or sporadically used labs. Furthermore,
the positions are co-located with existing observer nodes of the
FlockLab testbed [4] to facilitate the use in network protocol design.
The details on the positions and their specific characteristics are
summarized in Table 1.

https://gitlab.ethz.ch/tec/public/employees/sigristl/harvesting_tracing


Dataset: Tracing Indoor Solar Harvesting DATA ’19, November 10, 2019, New York, NY

Table 2: The data columns of the processed power measure-
ments. These values are sampled at a rate of 10Hz.

Name Description Unit

index Network synced measurement timestamp timestamp
V_in Converter input/solar panel output voltage Volt
I_in Converter input current (solar panel output) Ampere
V_bat Battery voltage (emulated through circuit) Volt
I_bat Net Battery current, in/out flowing current Ampere
dt Time delta between measurements Seconds

Table 3: The data columns of the processed sensor measure-
ments. These values are sampled at a rate of 1Hz.

Name Description Unit

index Network synced measurement timestamp timestamp
Ev_left Illuminance left of solar panel Lux
Ev_right Illuminance left of solar panel Lux
P_amb Ambient air pressure Pascal
RH_amb Ambient relative humidity, between 0 and 1 Unit-less
T_amb Ambient temperature degree ◦C
dt Time delta between measurements Seconds

3 DATASET
The dataset [6] consists of power and ambient measurement traces
from the positions described above. The ongoing measurement
campaign was started in July 2017, the data availability for all
positions is listed in Table 1. Furthermore, the table includes the
average daily energy yield, including the 75 % percentile of the
absolute deviation from the mean. For each position we include the
rawRocketLoggermeasurement traces that are split intomany parts
and separated by power and ambient measurements. The power
measurements are sampled at a data rate of 10Hz, while ambient
measurements are performed at a rate of 1Hz. Beside this raw data,
we provide a merged and filtered series of all measurements for
each position in the HDF5 data format. This allows for fast import
and processing in a wide range of analysis tools.

The HDF5 dataset stores the data timestamps as UNIX nanosec-
onds in the dataset/axis1 data block. The actualmeasurement val-
ues are stored in the dataset/block0_values, and the correspond-
ing column names in the dataset/block0_items data blocks. The
individual columns and their units are listed in Table 2 for the power
and in Table 3 for the ambient measurements. The file structure al-
lows direct loading of the data using the Python pandas’ DataFrame
import functionality, or generating a timeseries sturcture in R. The
import procedures and further post processing sample code for
Python and R are provided along with the dataset. An overview of
two analysis use cases included in these scripts is given below.

4 DATASET ANALYSIS USE CASES
We complement the dataset with two Jupyter notebooks that demon-
strate the import and use of the dataset in both Python and R. Here
we discuss the results of two use cases included in the notebooks.
Energy Prediction Performance As part of the Python note-
book we compare the performance of three prediction schmes that

Figure 3: Error analysis for short-term energy prediction for
the data of position 17. The simple conservative predictor
(CONS) demonstrates a very good performance in compari-
son to themoving average (MA) and exponentially weighted
moving average (EWMA) predictors.

Figure 4: Efficiency of the bq25505 as a function of the input
power for all operating points observed at position 06. After
reaching the minimal input power of about 6 µW to get the
harvesting chip operating, the efficiency of the bq25505 in-
creases very quickly and is close to the optimal efficiency for
input power levels higher than 20 µW.

predict the average power for the next 5min interval. The result
of this analysis is shown in Figure 3 and demonstrates that a sim-
ple conservative prediction of the value observed in the current
interval achieves a high prediction accuracy.
DC-DC Conversion Efficiency In the provided R notebook the
energy efficiency of the bq25505 harvesting chip is analyzed. The
analysis shown in Figure 4 reveals that a high conversion efficiency
is achieved already at input power levels only minimally above the
minimum required input power.
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