
Getting Started
This getting started guide explains how to get started with Prusti – a verifier for the Rust programming language. We provide two
options for testing Prusti: a virtual machine and a Docker image. While the virtual machine is easier to use, we observed that
Prusti inside a VM is up to 10 times slower. Unfortunately, the slow down not only causes problems for reproducing the
performance measurements, but can also lead to spurious verification errors that would not be generated otherwise (see the
ASSERT_TIMEOUT parameter in section V). Therefore, we also provide a Docker image that enables testing Prusti without VM's
performance overhead in case a Linux machine is available.

In this guide we explain how to set up the virtual machine, how to use Prusti in general and how to set up the Docker container
with Prusti. Then, the step by step guide has instructions on how to check the main parts of our evaluation in VM and the full
evaluation in the Docker container.

I. Virtual Machine

You can check whether the ZIP file with the artefact was downloaded without any errors by checking its md5 checksum, e.g. on
Linux/Mac:

md5sum VM.zip

The output should be “67c4ad32346df59e64b9688f762bb92b VM.zip”

The ZIP file contains a VirtualBox image with Ubuntu that has Prusti installed as a command line tool and as an IDE plugin. To
start the virtual machine, follow these steps:

1. Download and install VirtualBox from https://www.virtualbox.org/
2. Extract the ZIP archive.
3. Start VirtualBox.
4. Choose File --> Import VM… (on Linux) or Import Appliance… (on Windows/Mac).
5. Select the extracted Prusti.ova file and follow the instructions. It is highly recommended to provide at least 4 GB of RAM.

If the import was successful, there should be Prusti in the list of virtual machines. Select it and click Start. The OS should log in
without asking for a password. In case you need it, the user is called user and the password is also user .

II. Content of the Virtual Machine

On the desktop there is a folder called prusti . Inside it:

the prusti-dev folder contains Prusti's source code and pre-compiled binaries;
the viper and z3 folders contain the Viper and Z3 dependencies needed to run Prusti;
the demo folder contains small Rust programs and a configuration file for Prusti, which are used as support material for this
guide;
the evaluation-1 , evaluation-2 and evaluation-3 folders contain the material used in Prusti's evaluation (Sec. 7.2 of
the paper).

III. Trying Examples

There are two ways to run Prusti: from the command line or from the Visual Studio Code editor. The former can be easily
integrated in scripts (e.g. benchmarks or tests), while the latter makes it easy to change and iterate over different versions of a
program and its specification (e.g. when verifying a program from scratch).

https://www.virtualbox.org/

Using Prusti from the command line

1. Open a terminal.

2. Change the current directory to the demo directory:

cd "Desktop/prusti/demo"

3. Run Prusti on demo.rs :

prusti-rustc demo.rs

Note that Prusti reports a verification error, because the assertion assert!(max(1, 2) == 1) in the main function would
cause a panic if executed.

Prusti's output, indeed, reports Verification failed , pointing out that at line 19 the condition in the assert!(..)
statement might not hold.

4. To fix the reported error, open the program in an editor (not Visual Studio Code), e.g.:

gedit demo.rs

5. Replace line 19 with assert!(max(1, 2) == 2) , save the change and close the editor.

6. Run Prusti on demo.rs as in step 3. Now the verification of the program succeeds and the last line in the output is
 Successful verification of 3 items indicating that Prusti successfully verified the three functions in demo.rs .

7. Replace line 19 with assert!(max(1, 2) == 1) , to bring the program back to its original version, as required for the steps
in the next section.

Using Prusti from Visual Studio Code

1. Double-click on the prusti folder on the desktop and open the demo folder.

2. Double-click on the demo.rs file to open it in the Visual Studio Code editor. As soon as the editor starts, the Prusti
extension for Visual Studio Code will start verifying the program. If the editor was already open, save the file to start verifying
the program with Prusti.

Note that Prusti reports a verification error, because the assertion assert!(max(1, 2) == 1) in the main function would
cause a panic if executed.

3. For a few seconds the editor will show Running Prusti... in the status bar at the bottom of the editor. Please wait until the
status bar shows Verification failed .

4. In the menu, click on View --> Problems . You can see that Prusti reports a verification error for the assertion at line 19.
The error is listed in the Problems tab and the corresponding source code location is underlined with a red line in the code.

5. To fix the program, replace line 19 with assert!(max(1, 2) == 2) and save the change. The Prusti extension will
automatically start, and at the end the status bar will show Verification succeeded .

Enabling overflow checks

Prusti can be configured via a Prusti.toml configuration file or via some environment variables (whose name always begins
with PRUSTI_). For example, you can configure Prusti to check for absence of integer overflow errors in two different ways:

1. By creating a file named Prusti.toml containing CHECK_BINARY_OPERATIONS=true in the folder from which Prusti is run.
We already provide a Prusti.toml file that you can edit in the demo folder. If Prusti is run using the Visual Studio Code
extension then the Prusti.toml file must be placed in the same folder as the programs to be verified.

An example Prusti.toml file that enables overflow checking can be also seen in the prusti/evaluation-3/with-
overflow-checks folder.

2. By setting the PRUSTI_CHECK_BINARY_OPERATIONS environment variable to true :

PRUSTI_CHECK_BINARY_OPERATIONS=true prusti-rustc program-to-be-verified.rs

This overrides any setting specified in the Prusti.toml file.

If you now try to verify demo.rs again with the overflow checks enabled, Prusti will report attempt to add with overflow in
the following function:

fn average(x: u32, y: u32) -> u32 {
 (x + y) / 2
}

The problem is that x + y may overflow when executed with big values of x and y . A possible solution would be to add a
precondition that requires the sum of x and y to be no larger than the maximum value of u32 type:

#[requires="x + y <= std::u32::MAX"]
fn average(x: u32, y: u32) -> u32 {
 (x + y) / 2
}

This way, Prusti checks that in the function implementation the requirement is sufficient to avoid any overflow. Prusti will also
check that any call to average satisfies the specified requirement.

More advanced examples

We will now try more advanced examples that we obtained from the Rosetta website (https://rosettacode.org). You may open the
following programs in Visual Studio Code, to run Prusti in the IDE. Remember that you need to save the file (CTRL+S) in order to
verify it with Prusti. If you instead prefer the command line version, note that Prusti needs to be run from the same folder of the
program to be verified in order to use the correct configuration file that we prepared in the VM.

For many examples in the demo and prusti/evaluation-3 folders Prusti will warn either about failing lints (e.g. unused
functions) or uses of some partially supported Rust features. All such warnings can be ignored for the examples in these folder:
the currently implemented syntactic checks are too coarse grained to detect that the examples are actually supported.

With overflow checks enabled, try verifying prusti/demo/buggy_binary_search_1.rs . The implementation (obtained from
Rosettacode: https://rosettacode.org/wiki/Binary_search#Rust) contains a bug, which we discovered trying to verify the
correctness of the program. Indeed, the verification fails with an error:

error: [Prusti] loop invariant might not hold at the end of a loop iteration.

https://rosettacode.org/
https://rosettacode.org/wiki/Binary_search#Rust

The error message also points out the location of the failing loop invariant. The IDE highlights it if you click on the error message
the failing assertion is this one in the tab that you can open by clicking on View → Problems.

note: the failing assertion is this one -->
tests/verify/pass-overflow/rosetta/Binary_search_shared_monomorphised.rs:95:18
 |
95 | #[invariant="result.is_none() ==>
 | ^^^^^^^^^^^^^^^^
96 | (forall k: usize :: (base + size <= k && k < arr.len()) ==> *elem != arr.lookup(k))"]
...

The failing loop invariant expresses that the element searched-for is not contained in the range above base + size index. The
implementation has a bug and this invariant actually does not hold: for example, the function would return that 6 is not contained
in array [1, 2, 3, 4, 5, 6] . An executable version of the example that demonstrate the bug can be found here:
https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=ca6b3abd252c819cec76d9b12de22645.

Try now verifying prusti/demo/buggy_binary_search_2.rs : a second implementation of binary search taken from Rosettacode.
Also this implementation has an issue, which is correctly caught by Prusti: the addition in mid = (high + low) / 2; may
overflow.

You can find the fixed (and verified) implementation of binary search in the file prusti/evaluation-3/with-overflow-
checks/Binary_search_shared_monomorphised.rs . An attempt to verify it should succeed: the IDE should display
 Verification succeeded with warnings in the status bar, while the command line version of Prusti should report Successful
verification of 5 items .

You can try more examples from the prusti/evaluation-3 folder. For many examples, Prusti will warn either about unused
functions or uses of some partially supported Rust features. All such warnings can be ignored for the examples in the demo and
 evaluation-3 folder: as mentioned above, the currently implemented syntactic checks are too coarse grained to detect that the
examples are actually supported.

IV. (Linux only) Docker image for performance evaluation

The following instructions are only for Linux OS because on Windows and Mac OS Docker containers are executed inside a
virtual machine and, therefore, are unlikely to perform better than the provided Prusti VM.

To start the Prusti Docker container, follow these steps:

1. Install Docker by following the instructions at https://docs.docker.com/v17.09/engine/installation/linux/docker-ce/ubuntu/.

2. Open a terminal and check that Docker is installed and usable:

docker --version

This command should successfully show the Docker version. If not, Docker is not installed correctly.

3. Download the Docker image for the Prusti artefact

sudo docker pull fpoli/prusti-artefact

4. Check the hash of the downloaded image

sudo docker inspect --format='{{index .RepoDigests 0}}' fpoli/prusti-artefact

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=ca6b3abd252c819cec76d9b12de22645
https://docs.docker.com/v17.09/engine/installation/linux/docker-ce/ubuntu/

The output should contain

sha256:8f1d9d079653cb70fc420e642a16bac676c8d70051e1e1e3336f2ebad26534bc

5. Start a Docker container and open a terminal in it:

sudo docker run -it fpoli/prusti-artefact /bin/bash

This should open a terminal in the tmp/prusti-dev folder of the Docker image, where we placed Prusti's source code.

6. Check that Prusti is available:

prusti-rustc --version

7. Try to verify an example from the test suite:

prusti-rustc evaluation/artifact/examples/Selection_sort.rs

For this example, Prusti should report two warnings that can be ignored and show a message Successful verification
of 2 items .

8. You can exit the container by using the exit command.

V. Additional Notes

Since we observed that, for a few test cases, the presence of non-linear arithmetic caused slow running of the SMT solver,
we incorporated a per-assertion timeout. The downside of using the timeout is that on slower machines (for example, when
executed inside a VM) Prusti may report spurious errors. The timeout can be controlled via the ASSERT_TIMEOUT
configuration parameter (value is in milliseconds). For example, to increase the timeout to 1 minute, set ASSERT_TIMEOUT to
60000 (the default is 10 seconds). This parameter can be set by adding e.g. a line ASSERT_TIMEOUT = 60000 to the
 Prusti.toml configuration file (in the folder where Prusti is run), or by setting an environment variable with the command
 export PRUSTI_ASSERT_TIMEOUT=60000 (note the PRUSTI_ prefix).

You may notice that all Rust programs containing Prusti specifications (the requires , ensures , invariant annotations)
begin with an extern crate prusti_contracts line. This is a technical requirement to let Prusti use special functions in
the specifications (e.g. old , before_expiry , after_expiry). The prusti_contract crate is currently not distributed
over https://crates.io/, but is automatically provided by Prusti.

When it runs, Prusti creates two temporary folders named log and nll-facts . They can be safely deleted after Prusti
terminates.

It is also possible to run Prusti directly on your computer. You can find the setup instructions in the README file in the Prusti
GitHub repository: https://github.com/viperproject/prusti-dev. We have successfully tested Prusti on Ubuntu 18.04 and using
the Windows Linux Subsystem. The VM and the Docker image contains tools built from the following commits:

Prusti (https://github.com/viperproject/prusti-dev): 205019dcd21e61521eeef03ca9153aa938b8b256
Viper Symbolic Execution backend (https://bitbucket.org/viperproject/silicon/):
00186aee346aa824505f7f0816062180c21a2d7e
Viper language (https://bitbucket.org/viperproject/silver/): cff1dc4ea21c48097ffd16e4a98ab67a35fb2795
Z3 (https://github.com/Z3Prover/z3/): 53514281d21ab8e396e199b125ee0d33837c36b4

https://crates.io/
https://github.com/viperproject/prusti-dev
https://github.com/viperproject/prusti-dev
https://bitbucket.org/viperproject/silicon/
https://bitbucket.org/viperproject/silver/
https://github.com/Z3Prover/z3/

Step by Step Guide
This guide describes how to reproduce the evaluation presented in Sec. 7 of the paper. In particular:

Contribution (5), Sec 7.1: We provide an implementation of our technique as a plugin for the Rust compiler. The source code
can be found in the virtual machine.

Sec. 7.2.1: We provide a test suite of more than 300 correct and incorrect Rust programs annotated with expected
verification errors. Supported by sections I and V.

Contribution (5) and Sec. 7.2.1: We construct core proofs on several thousand unannotated Rust functions from the 500
most popular Rust crates that fall within our supported language subset. Supported by sections II and VI.

Sec. 7.2.2: We prove absence of overflows in examples that check for overflows at runtime. Supported by sections III and
VI.

Contribution (5) and Sec. 7.2.3: We verify a range of stronger properties (via our specification language) for selected Rust
implementations. Supported by section IV.

This guide is divided into two parts: the first part covers checking the evaluation in the VM while the second part covers in the
Docker container.

Virtual Machine

I. Development tests (Sec. 7.1)

1. Open a terminal and move to the prusti-dev folder:

cd ~/Desktop/prusti/prusti-dev

2. Prusti provides two programs: prusti-rustc , which can be used as a replacement of rustc to verify Rust programs, and
 cargo-prusti , which can be used as a replacement of cargo check to verify Rust crates. They come already compiled in
the virtual machine. If you want to recompile them run

make release

This command should take less than one minute, because no change has been made to the code. Compiling from scratch
typically takes around 25 minutes.

3. Prusti has a development test suite of more than 300 correct and incorrect Rust programs. To list them:

find prusti/tests/verify/ -name '*.rs'

The tests are divided amongst the following folders:

i. the pass folder contains the programs that should verify successfully.
ii. the pass-overflow folder contains the programs that should verify successfully with overflow checks enabled.
iii. the fail folder contains the programs that should cause at least one verification error, annotated as a special

comment beginning with //~ ERROR .

iv. the fail-overflow folder contains the programs that should cause at least one verification error when overflow checks
are enabled. The expected error is again annotated as a special comment.

4. You can run the whole development test suite (about 300 small programs) using the following command:

make test-examples

Note that running all of the tests typically takes around 2 hours. The test suite checks for each example program that the
verification outcome and error messages match the expected ones. A single test (fail/unsupported_attribute.rs) is currently
disabled because it is invalid: an ignored message is reported for it in the output.

5. To only run the tests matching a particular name (e.g. pass/enum/basic.rs) you can use:

TESTNAME=pass/enum/basic.rs make test-examples

The test above on a virtual machine should take around 2 minutes to run.

The output of the command above may be more verbose than expected: it reports multiple times that 0 tests failed, that
many tests were filter out and that a few tests were successfully executed. All tests are expected to pass. If instead some
test fails the last line in the output would contain error: test failed .

II. Evaluation 1 (Sec. 7.2.1)

We estimate that running the full evaluation described in the paper in a virtual machine would take several days, because we
experienced that Prusti runs up to 10 times slower when run inside a virtual machine than on bare metal. To run the full
evaluation outside the virtual machine please refer to section V of this guide.

To avoid compiling all 500 most popular crates and running the automatic filtering of supported functions on them, we provide in
the virtual machine the intermediate files that can be used to manually run Prusti on a chosen crate:

 prusti/evaluation-1/supported-crates.csv contains the list of the 352 crates over (out of 500) that compile successfully
within 15 minutes (on bare metal) using the standard compiler and the compilation flags described in the paper.

for each of the 352 crates, we provide the list of functions supported by Prusti and a Prusti.toml file which configures
Prusti to verify only the supported functions in the crate.

The following steps describe how to verify the supported functions in one of the 352 crates. The verification of all such crates
should succeed with the message Successful verification .

1. Open a terminal and move to the ~/Desktop/prusti/evaluation-1 folder:

cd ~/Desktop/prusti/evaluation-1

2. Choose a random crate from the list of those that compiled successfully within 15 minutes:

cat supported-crates.csv | sort -R | head -n 1

If you also want to avoid the crates that contain no supported functions use the following command instead of the previous
one:

grep -l '^"' */Prusti.toml | uniq | cut -d/ -f1 | sort -R | head -n 1

In the following steps we'll assume that the chosen crate is 027_semver .

3. Move to the crate's folder

cd 027_semver

4. You can inspect the list of supported functions in the Prusti.toml file:

cat Prusti.toml

In the case of the 027_semver crate, the file will contain the definition of a whitelist of three elements. If the chosen crate
has no supported functions, the last two lines in Prusti.toml will be

Whitelist = [
]

5. Run Prusti on the crate:

cargo clean
cargo-prusti

This command will compile all the dependencies and will generate the core proof for the supported functions of the crate,
checking the core proof with Viper. In total it may take several minutes.

When finished, the output should contain a line starting with Successful verification , meaning that Viper successfully
verified the core proofs.

6. If you wish, you can go back to step 1 and repeat the steps to run Prusti on another crate.

III. Evaluation 2 (Sec. 7.2.2)

For the same reason explained in the previous section, we provide the intermediate files that can be used to manually run Prusti
on a chosen crate, without having to compile and filter the supported functions from the 500 most popular crates. To run the full
evaluation outside the virtual machine please refer to section VI of this guide.

The evaluation-2 folder contains a folder for each function that contains operations that could panic due to an overflow or
assertion failure. Each of those folders contain a Prusti.toml file that configures Prusti to check absence of panics and of
integer overflows for one particular function.

The list of folders in which the command at step 6 is expected to succeed with no verification errors can be shown using the
following command in a terminal:

cat ~/Desktop/prusti/evaluation-2/successful.csv | cut -d, -f1

These folders correspond to the 52 cases of functions for which Prusti verifies absence of panics and overflows without need of
program annotations. In all other cases Prusti should report a verification error.

1. Open a terminal and move to the ~/Desktop/prusti/evaluation-2 folder:

cd ~/Desktop/prusti/evaluation-2

2. You can check the number of functions classified as definitely supported by automatic filtering that might panic due to
overflows:

cat */Prusti.toml | grep '^"' | wc -l

This should show 532. The number is slightly bigger than what reported in the paper (520) because of some improvements
to Prusti in the meantime.

3. Choose a random folder

ls | sort -R | head -n 1

In the following steps we'll assume that the chosen folder is 111_num-complex_2 .

4. Move to the chosen folder

cd 111_num-complex_2

5. You can see the function that is going to be verified in the Prusti.toml file:

cat Prusti.toml

6. Run Prusti on the crate:

cargo clean
cargo-prusti

This command will compile all the dependencies (you may notice that on one dependency Prusti tries to verify 0 items; we
plan to avoid this unnecessary call in the future) and will check for absence of panics and of integer overflows. In total it may
take several minutes.

In case of 111_num-complex_2 Prusti reports a verification error and terminates with messages aborting due to
previous error and could not compile :

error: [Prusti] assertion might fail with "attempt to multiply with overflow"
 --> src/lib.rs:804:51
 |
804 | Complex::new(self * other.re, self * other.im)
 | ^^^^^^^^^^^^^^^
...

Verification failed

error: aborting due to previous error

error: Could not compile `num-integer`.

The error message correctly points to a potential overflow in the method mul , which multiplies the components of two
complex numbers. In this case the caller of the method should ensure that the components are small enough, and Prusti
makes it possible to explicitly write and check this assumption by adding a precondition to the method.

7. If you wish, you can go back to step 1 and repeat the steps to run Prusti on another function.

IV. Evaluation 3 (Sec. 7.2.3)

The following steps were used to generate the performance measurements of the table in Figure 7 of the paper. The same
examples are also available in the folder ~/Desktop/prusti/evaluation-3 and can be manually verified: each line in the table
corresponds to a *.rs files with a self-descriptive name. As was already mentioned above, Prusti inside a VM is significantly
slower. To obtain reliable measurements, see at the end of this section how to run the benchmark in the Docker image.

1. Open a terminal and move to the ~/Desktop/prusti/prusti-dev folder:

cd ~/Desktop/prusti/prusti-dev

2. Use the following commands to prepare Prusti and run the benchmark:

make release
rm -f evaluation/benchmark/bench.csv
python3 evaluation/benchmark/benchmark.py
python3 evaluation/benchmark/analyse.py

The benchmark should take about 30 minutes.

3. The last 16 lines in the output represent a table of 5 columns:

the name of the program (first column in Fig. 7 of the paper)
the average time required by Prusti to verify the example (fifth column in Fig. 7 of the paper)
the standard deviation of the measurement in the previous column
the average time required by Viper to verify the encoding of the example (sixth column in Fig. 7 of the paper)
the standard deviation of the measurement in the previous column

The measurements may differ from the table in Fig. 7 of the paper for two reasons:

The virtual machine slows down the tool, in some cases by a factor of 10. To run the measurements directly on your
computer, please see the two options below.
Since submitting the paper, we implemented some optimizations in Prusti that in some cases decrease the time
required by Prusti to verify the encoding.

To run the measurements above outside the virtual machine there are two options:

1. On your computer, start the Prusti Docker container with

sudo docker run -it fpoli/prusti-artefact /bin/bash

and run the commands described in step 2 of this section.

2. On your computer, set up Prusti as described in the README file in the Prusti GitHub repository
(https://github.com/viperproject/prusti-dev) and run the commands described in step 2 of this section from the root of the
repository.

https://github.com/viperproject/prusti-dev

Docker Container

V. Development tests using the Docker image (Sec. 7.1)

1. Create a container and open a terminal in it:

sudo docker run -it fpoli/prusti-artefact /bin/bash

2. Compile Prusti and run the development test suite (about 300 small programs)

make build
make test-examples

The test suite is expected to terminate successfully. If instead some test fails the last line in the output would contain error:
test failed .

VI. Evaluation 1 and 2 using the Docker image (Sec. 7.2.1, 7.2.2)

To run Prusti without the overhead caused by a virtual machine we provide a Docker image, which should be executed on a non-
virtualized Linux OS.

1. Create a container and open a terminal in it:

sudo docker run -it fpoli/prusti-artefact /bin/bash

2. Start the script which will run from scratch the evaluation described in Sec. 7.2.1 and 7.2.2. of the paper:

./evaluation/script/artifact-evaluation.sh

Note that the script should take about 24 hours to terminate, generating about 11 GB of intermediate files. Please ignore the
output of the script: it is expected to contain many error messages, coming e.g. from crates that fail to compile with the standard
Rust compiler.

The script will perform the following steps, of which you can check the output files:

1. Download the source code of the 500 most popular crates (as of November 2, 2018).

This step will produce 500 folders (one per crate) in the /tmp/crates folder.

2. Filter the crates that compile successfully within 15 minutes using the standard compiler and the compilation flags described
in the paper.

This step produces the file /tmp/crates/supported-crates.csv . The file should contain exactly 352 lines. To check the
number of lines in it use:

cat /tmp/crates/supported-crates.csv | wc -l

The expected content of the file is available at /tmp/prusti-dev/evaluation/crates/supported-crates.csv .

3. Filter the functions that are definitely supported by Prusti.

This step produces the file /tmp/crates/filtering-report.csv . The second column in the CSV should only contain
 true values. A true value indicates that the filtering succeeded as expected without errors or crashes. To check if there is
any false value use:

cat /tmp/crates/filtering-report.csv | grep false

The output of the previous command should be empty.

4. Prepare the whitelists of functions to be verified with Prusti.

This step produces the file /tmp/crates/whitelist-report.csv . The sum
of the values in the numeric columns are expected to be:

Number of procedures: 56236
Number of supported procedures: 11939
Number of supported procedures using assertions: 532

You can compute the sums using the following commands:

(cat /tmp/crates/whitelist-report.csv | grep _ | cut -d, -f2 | tr '\n' '+'; echo 0) | bc
(cat /tmp/crates/whitelist-report.csv | grep _ | cut -d, -f3 | tr '\n' '+'; echo 0) | bc
(cat /tmp/crates/whitelist-report.csv | grep _ | cut -d, -f4 | tr '\n' '+'; echo 0) | bc

As described in the paper, we manually blacklisted ten unusually large functions. This blacklist is available in the following
file: /tmp/prusti-dev/evaluation/crates/global_blacklist.csv .

5. Generate and verify the core proof for each supported crate (Sec. 7.2.1).

This step produces the file /tmp/crates/coarse-grained-verification-report-supported-procedures.csv.csv . The
second column in the CSV should only contain true values. A true value indicates that the generation and verification of
the core proof succeeded as expected without errors or crashes. To check if there is any false values use:

cat /tmp/crates/coarse-grained-verification-report-supported-procedures.csv.csv | grep false

The output of the previous command should be empty.

6. Check for absence of panics and overflows (Sec. 7.2.2).

This step produces the file /tmp/crates/fine-grained-verification-report-supported-procedures-with-
assertions.csv.csv . The second column in the CSV should contain exactly 52 true values and 480 false values. A
 true value indicates that the verification of the function succeeded without need of manual intervention. It is expected that
such verification fails on most examples, as presented in the paper. To count the number of true and false values use:

grep true -c fine-grained-verification-report-supported-procedures-with-assertions.csv.csv
grep false -c fine-grained-verification-report-supported-procedures-with-assertions.csv.csv

The output of the previous commands should be 52 and 480.

The precise list of the 52 functions that have a true value is available at /tmp/prusti-
dev/evaluation/crates/successful-fine-grained.csv .

At the end, in case you want you want to clean up the containers used by Docker and regain disk space, please refer to this
guide: https://docs.docker.com/config/pruning/.

VII. Evaluation 3 using the Docker image (Sec. 7.2.3)

To run the evaluation 3 in a Docker container, start the Prusti Docker container with:

``` 
sudo docker run -it fpoli/prusti-artefact /bin/bash 
```

Then follow the instructions in section IV from step 2.

https://docs.docker.com/config/pruning/

