

Acoustic scattering simulations in coupled fluid-porous media problems

Ashwin S. Nayak^{1,2}, Andrés Prieto^{1,2}, Daniel Fernández-Comesaña³ Valencia, Spain – July 17, 2019

¹Technological Institute of Industrial Mathematics, Spain

²University of A Coruña, Spain

³Microflown Technologies B.V, Netherlands

Table of contents

- 1. Introduction
- 2. Mathematical model
- 3. Benchmark case
- 4. Numerical results
- 5. Conclusions

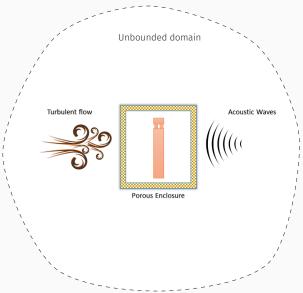
Introduction

Introduction: The Microflown

- Microflown PU probe is an acoustic sensor measuring particle velocity.
- · Transducer designed on thermal principle
- · Sensitive to fluid flow conditions
- Requires windscreens for wind velocities > 15 m/s

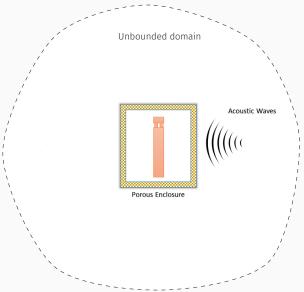
A microscopic view of the Microflown transducer (*left*), a regular PU probe (*middle*) and a 3D intensity probe (*right*)

Main goal of the project

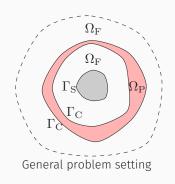


A schematic of the objective coupled problem

Simplified problem setting



A schematic of the simplified coupled problem

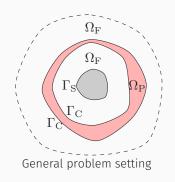


For a given angular frequency $\omega > 0$:

$$\begin{split} -\nabla(\rho_{\mathrm{F}}\,c_{\mathrm{F}}^2\,\mathrm{div}\,\pmb{u}_{\mathrm{F}}) - \rho_{\mathrm{F}}\omega^2\pmb{u}_{\mathrm{F}} &= \pmb{f}_{\mathrm{F}} \quad \text{in } \Omega_{\mathrm{F}}, \\ -\nabla(K_{\mathrm{P}}(\omega)\,\mathrm{div}\,\pmb{u}_{\mathrm{P}}) - \rho_{\mathrm{P}}(\omega)\omega^2\pmb{u}_{\mathrm{P}} &= \pmb{f}_{\mathrm{P}} \quad \text{in } \Omega_{\mathrm{P}}, \\ \pmb{u}_{\mathrm{F}}\cdot\pmb{n} &= \pmb{g} \quad \text{on } \Gamma_{\mathrm{S}}, \\ \pmb{u}_{\mathrm{F}}\cdot\pmb{n} - \pmb{u}_{\mathrm{P}}\cdot\pmb{n} &= 0 \quad \text{on } \Gamma_{\mathrm{C}}, \\ \rho_{\mathrm{F}}\,c_{\mathrm{F}}^2\,\mathrm{div}\,\pmb{u}_{\mathrm{F}} - K_{\mathrm{P}}(\omega)\,\mathrm{div}\,\pmb{u}_{\mathrm{P}} &= 0 \quad \text{on } \Gamma_{\mathrm{C}}, \\ \lim_{|\pmb{x}| \to \infty} |\pmb{x}| \left(\mathrm{div}\,\pmb{u}_{\mathrm{F}} - \mathrm{i}k_{\mathrm{F}}\,\pmb{u}_{\mathrm{F}}\cdot\frac{\pmb{x}}{|\pmb{x}|}\right) &= \pmb{0}, \end{split}$$

Assumptions:

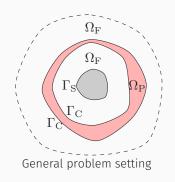
- Fluid: Homogeneous, non-viscous, compressible, isotropic, isentropic acoustic fluid
- Porous medium: Homogeneous, isotropic, isothermal porous material



For a given angular frequency $\omega > 0$:

$$\begin{split} -\nabla(\rho_{\mathrm{F}}\,c_{\mathrm{F}}^2\,\mathrm{div}\,\pmb{u}_{\mathrm{F}}) - \rho_{\mathrm{F}}\omega^2\pmb{u}_{\mathrm{F}} &= \pmb{f}_{\mathrm{F}} \quad \text{in } \Omega_{\mathrm{F}}, \\ -\nabla(K_{\mathrm{P}}(\omega)\,\mathrm{div}\,\pmb{u}_{\mathrm{P}}) - \rho_{\mathrm{P}}(\omega)\omega^2\pmb{u}_{\mathrm{P}} &= \pmb{f}_{\mathrm{P}} \quad \text{in } \Omega_{\mathrm{P}}, \\ \pmb{u}_{\mathrm{F}}\cdot\pmb{n} &= \pmb{g} \quad \text{on } \Gamma_{\mathrm{S}}, \\ \pmb{u}_{\mathrm{F}}\cdot\pmb{n} - \pmb{u}_{\mathrm{P}}\cdot\pmb{n} &= 0 \quad \text{on } \Gamma_{\mathrm{C}}, \\ \rho_{\mathrm{F}}\,c_{\mathrm{F}}^2\,\mathrm{div}\,\pmb{u}_{\mathrm{F}} - K_{\mathrm{P}}(\omega)\,\mathrm{div}\,\pmb{u}_{\mathrm{P}} &= 0 \quad \text{on } \Gamma_{\mathrm{C}}, \\ \lim_{|\pmb{x}| \to \infty} |\pmb{x}| \left(\mathrm{div}\,\pmb{u}_{\mathrm{F}} - \mathrm{i}k_{\mathrm{F}}\,\pmb{u}_{\mathrm{F}}\cdot\frac{\pmb{x}}{|\pmb{x}|}\right) &= \pmb{0}, \end{split}$$

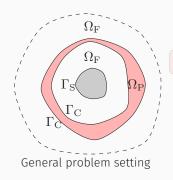
- · $\Omega_{
 m F}$: fluid subdomain, $f_{
 m F}$: fluid source term
- · $\Omega_{
 m P}$: porous subdomain, $f_{
 m P}$: porous source term
- \cdot $\Gamma_{\rm S}$: rigid solid boundary, g: structural normal displacement
- $\Gamma_{\rm C}$: coupled fluid-porous boundary



For a given angular frequency $\omega > 0$:

$$\begin{split} -\nabla(\rho_{\mathrm{F}}c_{\mathrm{F}}^{2}\operatorname{div}\boldsymbol{u}_{\mathrm{F}}) - \rho_{\mathrm{F}}\omega^{2}\boldsymbol{u}_{\mathrm{F}} &= \boldsymbol{f}_{\mathrm{F}} \quad \text{in } \Omega_{\mathrm{F}}, \\ -\nabla(K_{\mathrm{P}}(\omega)\operatorname{div}\boldsymbol{u}_{\mathrm{P}}) - \rho_{\mathrm{P}}(\omega)\omega^{2}\boldsymbol{u}_{\mathrm{P}} &= \boldsymbol{f}_{\mathrm{P}} \quad \text{in } \Omega_{\mathrm{P}}, \\ \boldsymbol{u}_{\mathrm{F}} \cdot \boldsymbol{n} &= \boldsymbol{g} \quad \text{on } \Gamma_{\mathrm{S}}, \\ \boldsymbol{u}_{\mathrm{F}} \cdot \boldsymbol{n} - \boldsymbol{u}_{\mathrm{P}} \cdot \boldsymbol{n} &= 0 \quad \text{on } \Gamma_{\mathrm{C}}, \\ \rho_{\mathrm{F}}c_{\mathrm{F}}^{2}\operatorname{div}\boldsymbol{u}_{\mathrm{F}} - K_{\mathrm{P}}(\omega)\operatorname{div}\boldsymbol{u}_{\mathrm{P}} &= 0 \quad \text{on } \Gamma_{\mathrm{C}}, \\ \lim_{|\boldsymbol{x}| \to \infty} |\boldsymbol{x}| \left(\operatorname{div}\boldsymbol{u}_{\mathrm{F}} - \mathrm{i}k_{\mathrm{F}}\boldsymbol{u}_{\mathrm{F}} \cdot \frac{\boldsymbol{x}}{|\boldsymbol{x}|}\right) &= \boldsymbol{0}, \end{split}$$

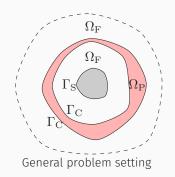
- \cdot $u_{
 m F}$, $u_{
 m P}$: fluid and porous displacement field
- + $ho_{
 m F}$, $ho_{
 m P}(\omega)$: fluid and dynamic porous mass density
- \cdot c_{F} : fluid sound speed
- $K_{\rm P}(\omega)$: dynamic porous bulk modulus



For a given angular frequency $\omega > 0$:

$$\begin{split} -\nabla(\rho_{\mathrm{F}}\,c_{\mathrm{F}}^2\,\mathrm{div}\,\pmb{u}_{\mathrm{F}}) - \rho_{\mathrm{F}}\omega^2\pmb{u}_{\mathrm{F}} &= \pmb{f}_{\mathrm{F}} \quad \mathrm{in}\;\Omega_{\mathrm{F}}, \\ -\nabla(K_{\mathrm{P}}(\omega)\,\mathrm{div}\,\pmb{u}_{\mathrm{P}}) - \rho_{\mathrm{P}}(\omega)\omega^2\pmb{u}_{\mathrm{P}} &= \pmb{f}_{\mathrm{P}} \quad \mathrm{in}\;\Omega_{\mathrm{P}}, \\ \pmb{u}_{\mathrm{F}}\cdot\pmb{n} &= \pmb{g} \quad \mathrm{on}\;\Gamma_{\mathrm{S}}, \\ \pmb{u}_{\mathrm{F}}\cdot\pmb{n} - \pmb{u}_{\mathrm{P}}\cdot\pmb{n} &= 0 \quad \mathrm{on}\;\Gamma_{\mathrm{C}}, \\ \boxed{\rho_{\mathrm{F}}\,c_{\mathrm{F}}^2\,\mathrm{div}\,\pmb{u}_{\mathrm{F}} - K_{\mathrm{P}}(\omega)\,\mathrm{div}\,\pmb{u}_{\mathrm{P}} &= 0 \quad \mathrm{on}\;\Gamma_{\mathrm{C}}, \\ |\underline{u}_{\mathrm{F}}|_{|\pmb{x}|\to\infty} |\pmb{x}| \left(\mathrm{div}\,\pmb{u}_{\mathrm{F}} - \mathrm{i}k_{\mathrm{F}}\pmb{u}_{\mathrm{F}}\cdot\frac{\pmb{x}}{|\pmb{x}|}\right) &= \pmb{0}, \end{split}$$

- \cdot $u_{
 m F}$, $u_{
 m P}$: fluid and porous displacement field
- + $ho_{
 m F}$, $ho_{
 m P}(\omega)$: fluid and dynamic porous mass density
- \cdot $c_{
 m F}$: fluid sound speed
- $K_{\rm P}(\omega)$: dynamic porous bulk modulus



For a given angular frequency $\omega > 0$:

$$\begin{split} -\nabla(\rho_{\mathrm{F}}\,c_{\mathrm{F}}^2\,\mathrm{div}\,\pmb{u}_{\mathrm{F}}) - \rho_{\mathrm{F}}\omega^2\pmb{u}_{\mathrm{F}} &= \pmb{f}_{\mathrm{F}} \quad \text{in } \Omega_{\mathrm{F}}, \\ -\nabla(K_{\mathrm{P}}(\omega)\,\mathrm{div}\,\pmb{u}_{\mathrm{P}}) - \rho_{\mathrm{P}}(\omega)\omega^2\pmb{u}_{\mathrm{P}} &= \pmb{f}_{\mathrm{P}} \quad \text{in } \Omega_{\mathrm{P}}, \\ \pmb{u}_{\mathrm{F}}\cdot\pmb{n} &= \pmb{g} \quad \text{on } \Gamma_{\mathrm{S}}, \\ \pmb{u}_{\mathrm{F}}\cdot\pmb{n} - \pmb{u}_{\mathrm{P}}\cdot\pmb{n} &= 0 \quad \text{on } \Gamma_{\mathrm{C}}, \\ \rho_{\mathrm{F}}\,c_{\mathrm{F}}^2\,\mathrm{div}\,\pmb{u}_{\mathrm{F}} - K_{\mathrm{P}}(\omega)\,\mathrm{div}\,\pmb{u}_{\mathrm{P}} &= 0 \quad \text{on } \Gamma_{\mathrm{C}}, \end{split}$$

$$\lim_{|x| o \infty} |x| \left(\mathrm{div} \ u_{\mathrm{F}} - \mathrm{i} k_{\mathrm{F}} u_{\mathrm{F}} \cdot rac{x}{|x|}
ight) = 0,$$

- \cdot $u_{
 m F}$, $u_{
 m P}$: fluid and porous displacement field
- + $ho_{
 m F}$, $ho_{
 m P}(\omega)$: fluid and dynamic porous mass density
- \cdot c_{F} : fluid sound speed
- $K_{\rm P}(\omega)$: dynamic porous bulk modulus

Fluid-equivalent porous model

Johnson-Champoux-Allard-Lafarge (JCAL) model

- Valid for porous materials with arbitrarily shaped pores
- Six-parameter model to describe rigid-frame porous media properties

Parameter	#	Value
Porosity	ϕ	0.94
Flow Resistivity	σ	4e4
Tourtuosity	α_{∞}	1.06
Viscous Characteristic Length	Λ	56e-6
Thermal Characteristic Length	Λ'	110e-6
Static Thermal Permeability	k_0'	2.5e-10

The model aso involves the fluid mass density $ho_{
m F}$, specific heat ratio γ , Prandtl Number ${
m Pr}$, and equillibrium fluid pressure $P_{
m F}$

Fluid-equivalent porous model

Johnson-Champoux-Allard-Lafarge (JCAL) model

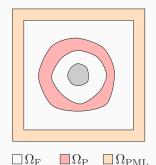
- · Valid for porous materials with arbitrarily shaped pores
- Six-parameter model to describe rigid-frame porous media properties

$$\rho_{P}(\omega) = \frac{\rho_{F}}{\phi} \alpha_{\infty} \left(1 - i \frac{\sigma \phi}{\omega \rho_{F} \alpha_{\infty}} \sqrt{1 + i \frac{4\alpha_{\infty}^{2} \eta \rho_{F} \omega}{\sigma^{2} \Lambda^{2} \phi^{2}}} \right),$$

$$K_{P}(\omega) = \frac{\gamma P_{F}/\phi}{\gamma - (\gamma - 1) \left(1 - i \frac{\eta \phi}{\rho_{F} k_{0}' \omega Pr} \sqrt{1 + i \frac{4k_{0}'^{2} \rho_{F} \omega Pr}{\eta \Lambda'^{2} \phi^{2}}} \right)^{-1}}$$

The model aso involves the fluid mass density $\rho_{\rm F}$, specific heat ratio γ , Prandtl Number Pr, and equillibrium fluid pressure $P_{\rm F}$

Perfectly Matched Layers (PML) technique



Schematic of PML Model

- Truncate the domain at some finite distance
- · Wrap by an absorption layer Ω_{PML} ,
 - Involve complex-valued stretching of the spatial coordinates:

$$\widetilde{\nabla}\phi = \sum_{j=1}^{3} \frac{1}{\gamma_j} \frac{\partial \phi}{\partial x_j} \mathbf{e}_j,$$

$$\widetilde{\operatorname{div}}\boldsymbol{w} = \sum_{j=1}^{3} \frac{1}{\gamma_j} \frac{\partial w_j}{\partial x_j},$$

with
$$\gamma_j \in \mathbb{C}, \ j=1,2,3.$$

Bermúdez A., Hervella-Nieto L. M., Prieto A., Rodríguez R., "An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems", J. Comput. Phys., 223, 469-48, 2007

Perfectly Matched Layers (PML) technique

$$\square \Omega_{\mathrm{F}} \quad \square \Omega_{\mathrm{P}} \quad \square \Omega_{\mathrm{PML}}$$

Schematic of PML Model

$$\Omega_{\text{PML}} = \prod_{j=1}^{3} [-L_j^{\infty}, L_j^{\infty}] \setminus \prod_{j=1}^{3} [-L_j, L_j]$$

 $\gamma_j \in \mathbb{C}, \ j=1,2,3$ are modeled by a piecewise smooth function,

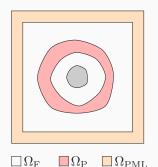
$$\gamma_j(x_j) = \begin{cases} 1 & |x_j| \le L_j, \\ 1 + i\sigma_j(x_j) & L_j \le |x_j| \le L_j^{\infty}, \end{cases}$$

with
$$\sigma_j(x_j) = c_F/(\omega(L_j^{\infty} - |x_j|))$$

- Singular on boundary
- Optimally tuned to absorb waves of any frequency

Bermúdez A., Hervella-Nieto L. M., Prieto A., Rodríguez R., "An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems", J. Comput. Phys., 223, 469-48, 2007

Perfectly Matched Layers (PML) technique



Schematic of PML Model

The governing (PML) equation in Ω_{PML} :

$$-\widetilde{\nabla}(\rho_{\mathrm{PML}} c_{\mathrm{F}}^2 \widetilde{\mathrm{div}} \boldsymbol{u}_{\mathrm{PML}}) - \rho_{\mathrm{F}} \omega^2 \boldsymbol{u}_{\mathrm{PML}} = \boldsymbol{0},$$

or, in an equivalent form,

$$-\operatorname{div}(\rho_{\mathrm{F}}c_{\mathrm{F}}^{2}\widetilde{\mathsf{C}}(\nabla\textbf{\textit{u}}_{\mathrm{PML}}))-\rho_{\mathrm{F}}\omega^{2}\widetilde{\textbf{\textit{M}}}\textbf{\textit{u}}_{\mathrm{PML}}=\textbf{0},$$
 where

4th order tensor:
$$\widetilde{\mathsf{C}}(\nabla w) = (\widetilde{\operatorname{div}} w) I$$
,

2nd order tensor:
$$\widetilde{\boldsymbol{M}} = \sum_{j=1}^3 \gamma_j \boldsymbol{e}_j \otimes \boldsymbol{e}_j$$
.

Bermúdez A., Hervella-Nieto L. M., Prieto A., Rodríguez R., "An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems", J. Comput. Phys., 223, 469-48, 2007

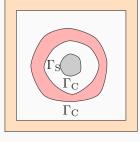
Planewave scattering problem

Total fields are decomposed in incident and scattering fields: $\pmb{u}_{\rm F} = \pmb{u}_{\rm F}^{\rm inc} + \pmb{u}_{\rm F}^{\rm sc}$ with $\pmb{u}_{\rm F}^{\rm inc} = \frac{1}{\rho_{\rm F}\omega^2} \nabla \big(A_{\rm F} \exp(\pmb{k}_{\rm F} \cdot \pmb{x})\big)$, $|\pmb{k}_{\rm F}| = \omega/c_{\rm F}$.

• $u_{
m F}^{
m inc}$ is a solution of Helmholtz-like equation in $\Omega_{
m F}$:

$$-\nabla(\rho_{\rm F}c^2\operatorname{div}\boldsymbol{u}_{\rm F}^{\rm inc}) - \rho_{\rm F}\omega^2\boldsymbol{u}_{\rm F}^{\rm inc} = \mathbf{0},$$

· but not in the porous subdomain Ω_{P} , where $m{u}_{\mathrm{P}} = m{u}_{\mathrm{P}}^{\mathrm{sc}} + m{u}_{\mathrm{F}}^{\mathrm{inc}}$, so $-\nabla (K_{\mathrm{P}}(\omega) \operatorname{div} m{u}_{\mathrm{P}}^{\mathrm{inc}}) -
ho_{\mathrm{P}}(\omega) \omega^2 m{u}_{\mathrm{P}}^{\mathrm{inc}} = m{f}_{\mathrm{P}}
eq \mathbf{0}$.



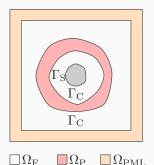
 $\square \Omega_{\mathrm{F}} \quad \square \Omega_{\mathrm{P}} \quad \square \Omega_{\mathrm{PML}}$

Schematic of Final Model

Planewave scattering problem

Since the normal components of displacement fields are continuous across interfaces, the scattering displacement field is defined as,

$$m{u} = egin{cases} m{u}_{
m F}^{
m sc} & ext{in } \Omega_{
m F}, \ m{u}_{
m P}^{
m sc} & ext{in } \Omega_{
m P}, \ m{u}_{
m PML} & ext{in } \Omega_{
m PML}. \end{cases}$$



Schematic of Final Model

Variational Formulation

Introduce $\Omega = \Omega_F \cup \Omega_P \cup \Omega_{PML}$ and the functional space

$$\mathbf{V} = \left\{ \begin{aligned} & \quad \quad & \quad$$

Variational problem

Given $\omega>0$, find ${\pmb u}\in {\bf V}$ such that ${\pmb u}\cdot {\pmb n}=-{\pmb u}_{\rm F}^{\rm inc}\cdot {\pmb n}$ on $\Gamma_{\rm S}$, and

$$\int_{\Omega_{\mathcal{F}}} \rho_{\mathcal{F}} c^{2}(\operatorname{div} \boldsymbol{u})(\operatorname{div} \boldsymbol{v}) dV - \int_{\Omega_{\mathcal{F}}} \rho_{\mathcal{F}} \omega^{2} \boldsymbol{u} \cdot \boldsymbol{v} dV
+ \int_{\Omega_{\mathcal{P}}} K_{\mathcal{P}}(\omega)(\operatorname{div} \boldsymbol{u})(\operatorname{div} \boldsymbol{v}) dV - \int_{\Omega_{\mathcal{P}}} \rho_{\mathcal{P}}(\omega) \omega^{2} \boldsymbol{u} \cdot \boldsymbol{v} dV
+ \int_{\Omega_{\mathcal{PML}}} \rho_{\mathcal{F}} c^{2} \widetilde{\mathsf{C}}(\nabla \boldsymbol{u}) : \nabla \boldsymbol{v} dV - \int_{\Omega_{\mathcal{PML}}} \rho_{\mathcal{F}} \omega^{2} \widetilde{\boldsymbol{M}} \boldsymbol{u} \cdot \boldsymbol{v} dV$$

$$= \int_{\Omega_{\mathcal{P}}} \boldsymbol{f}_{\mathcal{P}} \cdot \boldsymbol{v} dV,$$

for all $v \in V$ with $v \cdot n = 0$ on Γ_S .

Finite Element Method

We discretize using the first-order Raviart-Thomas Finite Elements (\mathbf{RT}_{h}^{1}) over a tetrahedral mesh \mathcal{T}_{h} of Ω ,

Raviart-Thomas Finite Element Space

$$\mathbf{RT}_{\mathrm{h}}^{1}(\Omega) = \left\{ \boldsymbol{v} \in \mathbf{H}(\mathrm{div}, \Omega) : \ \boldsymbol{v}|_{T} = \boldsymbol{a} + b\boldsymbol{x}, \boldsymbol{a} \in \mathbb{C}^{3}, b \in \mathbb{C}, T \in \mathcal{T}_{h} \right\}$$

- · Constant divergence in each element
- · Constant normal component on all faces of tetrahedra
- Completely determined if their normal components are known on each face.

Post-Processing

Pressure fields are computed from the fluid and porous displacement field:

$$p_{\rm F} = -\rho_{\rm F} c^2 \operatorname{div} \mathbf{u}_{\rm F} \quad \text{in } \Omega_{\rm F},$$

$$p_{\rm P} = -K_{\rm P}(\omega) \operatorname{div} \mathbf{u}_{\rm P} \quad \text{in } \Omega_{\rm P}.$$

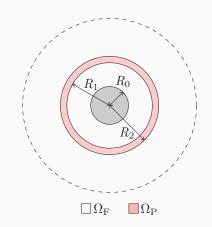
Since $\boldsymbol{u}_{\mathrm{F}}^h \in \mathbf{RT}_h^1(\Omega_{\mathrm{F}})$ and $\boldsymbol{u}_{\mathrm{P}}^h \in \mathbf{RT}_h^1(\Omega_{\mathrm{P}})$, the numerical approximation for induced pressure fields: $p_{\mathrm{F}}^h \in \mathbf{DG}_h^0(\Omega_{\mathrm{F}})$ and $p_{\mathrm{P}}^h \in \mathbf{DG}_h^0(\Omega_{\mathrm{P}})$.

3D Directivity patterns are also computed by evaluating pressure fields at uniformly distributed points on a sphere, m_j , $j=1,\ldots,M$:

Directivity^h(
$$\boldsymbol{m}_j$$
) = $\frac{|p_{\mathrm{F}}^h(m_j)| - \min_{\boldsymbol{m}_j} |p_{\mathrm{F}}^h(\boldsymbol{m}_j)|}{||p_{\mathrm{F}}^h||_{\mathrm{L}^{\infty}(\Omega_{\mathrm{F}})} - \min_{\boldsymbol{m}_j} |p_{\mathrm{F}}^h(\boldsymbol{m}_j)|}$.

Benchmark case

Benchmark case: Monopole



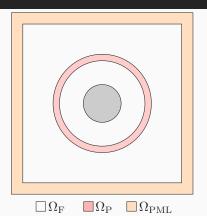
Schematic of the benchmark monopole case

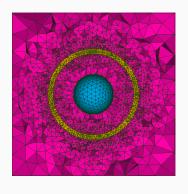
For a given $\omega > 0$, writing the problems in term of pressure fields we obtain the exact solution:

$$\begin{aligned} p_1(r) &= A_1 \frac{e^{-\mathrm{i}k_{\mathrm{F}}r}}{r} + B_1 \frac{e^{\mathrm{i}k_{\mathrm{F}}r}}{r}, \ r \in [R_0, R_1], \\ p_2(r) &= A_2 \frac{e^{-\mathrm{i}k_{\mathrm{F}}r}}{r} + B_2 \frac{e^{\mathrm{i}k_{\mathrm{F}}r}}{r}, \ r \in [R_1, R_2], \\ p_3(r) &= B_3 \frac{e^{\mathrm{i}k_{\mathrm{F}}r}}{r}, \ r \in [R_2, \infty), \end{aligned}$$

with boundary conditions
$$\begin{split} p'(R_0) &= \rho_{\rm F} \omega^2 g_0, \ g_0 = \text{constant}, \\ p_1(R_1) &= p_2(R_1), \quad \rho_{\rm P} \, p_1'(R_1) = \rho_{\rm F} \, p_2'(R_1), \\ p_2(R_2) &= p_3(R_2), \quad \rho_{\rm F} \, p_2'(R_2) = \rho_{\rm P} \, p_3'(R_2). \end{split}$$

Benchmark case: Implementation

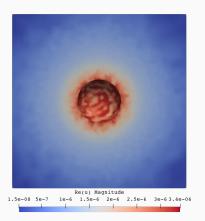


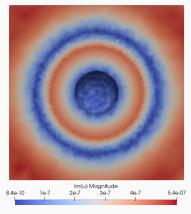


Schematic of Benchmark case (left) and snapshot of mesh(right). The PML layer is not shown in mesh.

- Conformal mesh in subdomains and coupling boundaries
- Local refinements around the porous layer and the rigid solid

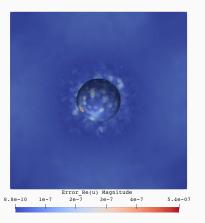
Benchmark case: Displacement Field

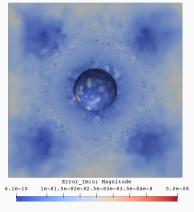




The computed real (*left*) and imaginary (*right*) parts of displacement field. The field is qualitatively uniform the radial directions with aberrations due to interpolations in a non-uniform mesh.

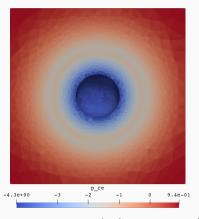
Benchmark case: Displacement Field

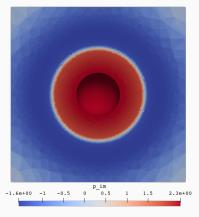




The computed real (*left*) and imaginary (*right*) parts of errors in displacement field. The errors are mostly minimal in orders of magnitude of the displacement field.

Benchmark case: Pressure Field

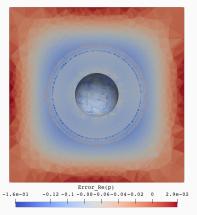


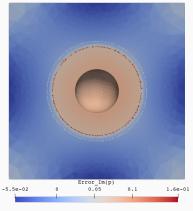


The computed real (left) and imaginary (right) parts of the pressure field.

The field is qualitatively uniform along the radial directions.

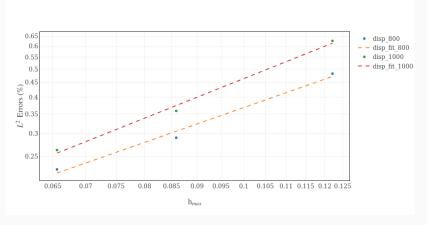
Benchmark case: Pressure field





The computed real (*left*) and imaginary (*right*) parts of the errors in the pressure field. The field is qualitatively agreeable with the errors smaller by an order of magnitude.

Benchmark case: Error Convergence



Slopes of fitted lines: 1.2370 (800Hz) and 1.41 (1000Hz)

$$\mathrm{L}^2$$
-rel. error (%) $=100rac{||m{u}-m{u}_{\mathrm{ex}}||_{\mathrm{L}^2(\Omega_{\mathrm{F}})}}{||m{u}_{\mathrm{ex}}||_{\mathrm{L}^2(\Omega_{\mathrm{F}})}}$

Numerical results

Scenario

Mesh Information

· # Elements: 902971

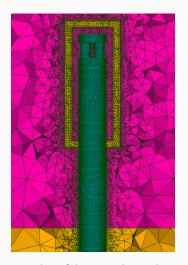
• # Vertices: 169633

Conformal with layers

· Local refinements

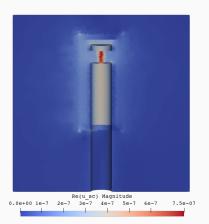
Frequency = 800Hz

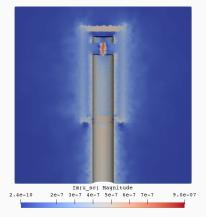
Incident Planewave in the +x direction.



Snapshot of the PU Probe Mesh cross-section. Only the bottom PML layer is partly visible.

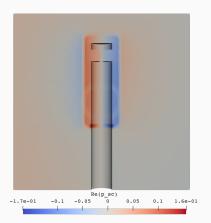
Results: Scattered Displacement Field

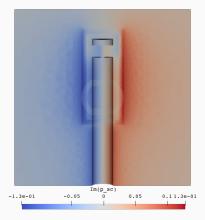




The real (*left*) and imaginary (*right*) parts of the scattered displacement field. The field clearly shows higher displacement amplitudes between the probe pillars. Also visible are acoustic dispersions at corners of the porous layers.

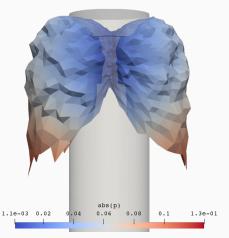
Results: Scattered Pressure Field





The computed real (*left*) and imaginary (*right*) parts of the scattered pressure field. The field clearly shows scatter behaviour of the plane wave along direction of propagation.

Directivity



The computed directivity of the scattered pressure field. The plot allows for highlighting directions of influence by the scattering object.

Conclusions

Conclusions

- A mathematical model has been developed for coupling porous layers and deal with radiating boundary conditions
- · The model has been validated
- A customizable tool has been developed which lets deeper insights in sensor design
 - Prototyping different porous-layer configurations
- Frequency response studies and other analysis is made available.

Thank You!

