

Evolving R Corona Borealis Stars with the MESA code

Dr. Manos Chatzopoulos Louisiana State University

College of Science

Collaborators & Resources

Amber Lauer (Duke)

Dominic Marcello (CCT)

Geoff Clayton (LSU)

Juhan Frank (LSU)

LSU Center for Computation and Technology (CCT) QueenBee **Supercomputer**

Brad Munson (LSU)

R Corona Borealis (RCB) stars

*Hydrogen-deficient supergiant stars (Clayton 2012)

- *Very rare (~120 known in the galaxy!)
- *Sudden declines in brightness by up to ~8 mag due to clouds of carbon dust
- * log(L/L_O): 3.6 4.0 || log(T_{eff} [K]): 3.6 3.9
- *Uncharacteristic abundances: low ¹⁶O/¹⁸O, high ¹²C/¹³C ratios, sometimes enhanced Li
- *Uncharacteristic abundances: enhanced s-process elements
- * Consistent with partial He-burning (Clayton et al. 2017)

* Two models: Final Helium Flash (FF) and **double-degenerate (DD) merger**

A merger scenario for RCB stars

- 1. A less-massive He-WD and a a more massive CO-WD coalesce and merge.
- 2. He-WD disrupted. Forms He-rich hot envelope ("corona") around cold, compact CO-WD and a disk.
- 3. He-burning starts in hot "shell" at the base of the corona.
- 4. Mixing transports sprocess elements to surface; strong wind eject C-rich dustforming shells.

He/COWD post-merger structure

- * 3D AMR and SPH simulations show an elongated-shape that resembles the compact core hot corona - disk - envelope configuration.
- * Shape of the post-merger becomes spherical within a thermal time-scale of a few years.

LSU OctoTiger 3D Merger Simulation of $0.6M_{\odot}(CO-WD) + 0.3M_{\odot}(He-WD)$

<u>Face-on view</u>

Edge-on view

MESA post-merger structure relaxation

- A. We evolve a 1.5 M_{\odot} and a 6 M_{\odot} star to a He- and CO-WD phase accordingly with MESA and a large nuclear reaction network (76 isotopes from n to ⁶⁰Zn)
- B. We use numerical relaxation algorithms *with physics turned-off* to create a model with mass equal to the mass of the desired post-merger object.
- C. Mass interior to the mass of the CO-WD is relaxed to a degenerate state

D. The composition of the core is relaxed to the computed composition of a CO WD and the composition of the envelope to a mass-averaged (mixed) composition of a He WD (both WD mixtures computed in step "A").

E. A user-defined amount of entropy is injected in the He envelope so that it expands mimicking the desired final core/hot corona/envelope structure.

Lauer, Chatzopoulos et al. 2018

MESA post-merger evolution

- * Physics modules (nuclear burning, energy transport, rotational mixing etc) now turned-on.
- * Evolution followed for ~1 billion years.
- * Models of the Hertzsprung—Russell (HR) diagram tracks through the RCB phase and beyond!
- * Surface abundances during RCB phase computed
- * Relevant time-scales computed.
- * All for models spanning the relevant parameter space in terms of He/CO WD initial masses, initial
- rotation, initial hydrogen abundances etc.
- * Lauer, Chatzopoulos et al. 2019

Results: HR evolution

✓ Evolution to RCB "box" within a few hundred years for all models
✓ Consistent final BCB measure (0.8.1.2 ML) and surface rotational valuation

✓ Consistent final RCB masses (~0.8-1.2 M_{\odot}) and surface rotational velocities (~0.1 km/s)

Lauer, Chatzopoulos et al. 2018

Results: Nucleosynthesis

✓ Enhanced Li surface abundances (2.4 - 3.5; R Cor Bor = 2.8)
 ✓ Consistent ¹⁶O/¹⁸O ratios (1-13; R Cor Bor = 1)

Consistent C/O ratios (1-40; R Cor Bor = 1.6)

Lauer, Chatzopoulos et al. 2018

Results: RCB to EHe Star rates

✓ Good fit on the observed ratio of Extreme-He (EHe) stars and RCB stars in the Milky Way based on time-scales found in computed evolution.

						The state of the state	AND THE ACT AND THE	
Model	$t_{\rm B}$ (10 ⁵ yr)	$t_{\rm C} (10^5 {\rm yr})$	$\substack{t_{\rm C}-t_{\rm B}\\(10^5{\rm yr})}$	$\begin{array}{c} M_{\rm RCB} \ {\rm at} \ t_{\rm B} \\ (M_{\odot}) \end{array}$	${{ m M_{RCB}}^a} {{ m (M_{\odot})}}$	# RCB ^b	$\# \operatorname{EHe}^{b}$	
A1 A2 A3 A4 A5 A6 A7	$1.256 \\ 1.284 \\ 1.270 \\ 1.265 \\ 1.235 \\ 1.282 \\ 1.720$	$ \begin{array}{r} 1.366 \\ 1.395 \\ 1.382 \\ 1.377 \\ 1.339 \\ 1.400 \\ 1.846 \\ \end{array} $	0.11 0.11 0.11 0.11 0.10 0.12 0.13	0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80	0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.80	226 231 229 228 222 231 310	20 20 20 20 19 21 23	
A8 B C D E	2.759 1.706 2.038 0.742 0.163	2.922 1.845 2.137 0.862 0.187	0.16 0.14 0.10 0.12 0.02	0.80 0.85 0.90 0.95 0.99	0.70 0.64 0.66 0.61 0.61	497 307 367 134 29	29 25 18 22 4	
F	0.331	0.371	0.04	1.05	0.63	60	7	

Lauer, Chatzopoulos et al. 2018

A sneak peek to on-going work...

Summary & Future Work

- * Merger scenario good fit to RCB observations, improvement on past work.
- * Observed RCB to EHe star ratio in agreement with our predictions.
- * Observed RCB nucleosynthesis in agreement with observations.

* Future Work: Map spherically-averaged post-merger structure from 3D Adaptive Mesh Refinement (AMR) simulation done with the LSU *OctoTiger* code into MESA.
* Future Work: Better nucleosynthesis using the *NuGrid* code in postprocessing steps (hundreds of isotopes, including Y, Zr that are seen in RCB spectra).

THANK YOU!

