

Improving the Quantum Time Dynamically in the
Round Robin Scheduling Algorithm

Dino S. Cajic
dinocajic@gmail.com

Abstract—The Preemptive Round Robin Scheduling
Algorithm is an important scheduling algorithm used in both
process scheduling and network scheduling. Processes are
executed for a predefined unit of time called a quantum. Once
the CPU executes the process for the specified time slice, the
process either terminates or returns to the back of the ready
queue if the process has any remaining burst time left.
Numerous proposals have been made to improve the static
quantum time of the Round Robin Scheduling Algorithm; most
research focuses on the optimization of the ready queue. In this
paper, I proposed having predefined optimized quantum times
for most process that can be retrieved whenever a new process
enters the ready queue.

Keywords—quantum time, scheduling algorithms, round
robin scheduling algorithm, round robin quantum time, dynamic
quantum, dynamic quantum time for round robin scheduling
algorithm, CPU scheduling, Operating System algorithm, OS
Scheduling Algorithm.

I. INTRODUCTION
Scheduling is one of the core functions of an Operating

System; it is the method that assigns processes to the CPU so
that they can be executed. When more than one process is
waiting to be executed, the scheduler utilizes a scheduling
algorithm to make the decision of which process to run next.
In an operating system, many different processes compete for
CPU time at any given moment. Numerous algorithms have
been developed to optimize the CPU time utilization, such as:

• First-Come, First-Served Scheduling Algorithm

• Shortest-Job-First Scheduling Algorithm

• Priority Scheduling Algorithm

• Round-Robin Scheduling Algorithm

• Multilevel Queue Scheduling Algorithm

• Multilevel Feedback Queue Scheduling Algorithm [3]

 The Round Robin Scheduling Algorithm is a type of
scheduling algorithm mainly used by the operating system and
“applications that serve multiple clients that request to use
resources [1].” Each process is “arranged in the ready queue
in a first-come first-served manner, and the processor executes
the task from the ready queue on the basis of a time slice [2].”
Even though the process might not have finished execution,
once the time slice ends, the process is pushed to the back of
the ready queue and the next process starts executing [3]. It
does this repeatedly until the jobs are finished.

Fig. 1. Shows the Round Robin Algorithm taking processes from the ready
queue and pushing them into the CPU for execution. When the quantum time
slice expires, and the process is not complete, the process is pushed to the
back of the ready queue [7]. If the remaining time burst is equal to zero, the
process terminates.

In environments like the Real Time Operating System
(RTOS), “the time slice should not be too small, since it could
result in frequent context switches, and should be slightly
greater than the average task computation time [2].” The
Round Robin Scheduling Algorithm is also “limited by high
waiting and turnaround times and low throughput” making it
unsuitable for a system like the RTOS [1].

II. CURRENT RESEARCH
Numerous proposals have been made to improve the static

quantum time of the Round Robin Scheduling Algorithm. One
such study proposes an algorithm called Priority Dynamic
Quantum Time Round Robin Scheduling Algorithm (PDQT)
[2]. The PDQT approach is performed by:

• prioritizing the process that enters the ready queue

• calculating a new quantum with a simple formula (q =
k + n – 1), where q is the new quantum time, k is the
old quantum time, and n is the priority of the processes
in the ready queue

• setting different quantum times for processes based on
their priority [2]

The researchers claim that the existing Round Robin
Scheduler is “improved by reducing the context switches, as
well as by reducing the waiting and turnaround times, thereby
increasing throughput [2].”

Another area where the Round Robin Algorithm is used in
is cloud computing. In cloud computing, load balancing is
extremely important. Load balancing is the “mechanism of
distribution of resources in a way that no overloading has
occurred at any resource and optimal utilization has been
performed [4].” The load balancer “uses the concept of time
slices in the basic round robin algorithm [4].”

Fig. 2. The load balancer will transfer each request using the load balancer.
Once the first request arrives, “the load balancer will forward that request to
the 1st server. When the 2nd request arrives (presumably from a different
client), that request will then be forwarded to the 2nd server [6].”

To increase the effectiveness of the load balancer,
researchers have proposed “an algorithm where the smaller
processes are considered first from the service queue and
given them more time quantum (TQ) so that the load balancer
can execute its task earlier [4].

III. OPTIMIZED ROUND ROBIN QUANTUM
The primary objective of this research is to generate an

optimized Round Robin time slice for each queue variation.
Each quantum is stored as a value in a three-dimensional
array. The first dimension represents the total process count
inside the ready queue. The second dimension portrays the
total remaining process burst time. The third dimension
depicts the longest process burst time inside the ready queue.
Once the data is available, it can then be retrieved by the
algorithm whenever the ready queue is updated.

Fig. 3. The three dimensional data structure holding the optimized time
slice for each ready queue scenario. The array is scalable to suit the needs of
the particular operating system and hardware configuration.

A. Algorithm for Generating the Dynamic Quantum Data
Structure
Depending on the number of desired options, a three-

dimensional array of any size can be generated as long as it is
within the hardware and operating system specifications. Note
that the size may have adverse effects on devices utilizing
smaller memory.

The initial three-dimensional array is generated by the
following algorithm:

1. Initialize the highest expected ready queue values for
each of the three dimensions.

i Set the highest process count that might be
expected inside the ready queue for the first
dimension.

ii Set the largest total process burst that might
be expected inside the ready queue for the
second dimension.

iii Set the largest expected single process burst
time for the third dimension.

2. Loop through each dimension. If a scenario is not
possible, set it equal to zero.

i The total time cannot be less than the
number of processes.

ii The longest process burst time cannot be
larger than the total time remaining.

iii Longest process time cannot be greater than
total time remaining – (number of processes
– 1).

3. Create a randomly generated array for the specified
three-dimensional option.

i Set the first array element as the longest
burst time of the ready queue.

ii If the total number of processes is equal to
one, return the process.

iii Take the longest burst time and subtract it
from the total time.

iv Divide the remaining time by the remaining
number of processes. The result will be
used in generating random burst times for
each other process.

v Generate a random burst time between 1
and the high value for n -1 processes, where
n is equal to the number of remaining
processes inside the ready queue.

vi Take the total burst time for n-1 and
subtract it from the total burst time for n
processes. This will generate a value for the
nth remaining process.

vii Return the newly generated random queue.

4. Generate the best time slice for the given sequence
consisting of values generated in step 3.

i Initialize the best average waiting time as a
high value.

ii Initialize the optimum quantum as 1.

iii Check for the best time slice by testing each
quantum value starting at 1 and ending at
the longest process burst time for that
particular ready queue.

iv Simulate CPU execution for each process.

v During each CPU cycle, decrement the
remaining quantum and the remaining burst
time for the process, and increment the total
time elapsed.

vi Once the process exits the CPU, check to
see if the process finished. If it did, set the
finishing time for that process to equal the
value stored in the total time elapsed
variable.

vii Keep moving the processes from the ready
queue into the CPU until the longest
process burst time is equal to zero.

viii Compute the waiting times for each
process. The arrival time is set to zero for
each process. The turnaround time is equal
to the time that the process was terminated.
The waiting time is computed by
subtracting the burst time for the process
from the turnaround time.

 turnaround = completion − arrival (1)

 waiting = turnaround − process burst (2)

ix Compute the average waiting time for the
particular quantum; if it’s less than the
current best average waiting time, update
the quantum value.

x Repeat the process until the quantum time
being tested is greater than the longest burst
time.

xi Return the best quantum value for the
particular ready queue.

B. Retrieving Dynamic Quantum
Once the data structure is generated, the optimum

quantum should be retrievable for most circumstances. The
algorithm should be provided with three arguments: number
of processes in the ready queue, the total remaining process
burst time, and the longest process time.

1. The algorithm starts by performing three checks to

verify that the data provided is accessible within the
array.

i If the process count exceeds the first-
dimensional array count, the number of
processes is set as the last index value of the
first dimension.

ii If the total time remaining exceeds the
second-dimensional array count, the total
time remaining is set as the last index value
of the second dimension.

iii If the longest process time exceeds the
third-dimensional array count, the longest
process time is set as the last index value of
the third dimension.

2. Return the stored optimum quantum value from the
array.

C. Updating the Dynamic Quantum Data Structure
The dynamic quantum data structure was designed so that

it can be updated with the data that each specific machine
produces, especially if similar processes in the ready queue
keep reoccurring. The current data structure’s optimum
quantum was created by first simulating the longest process
burst time inside a ready queue and then generating random
burst times for the remaining processes. The update feature
can be turned off after the learning phase completes and turned
on again after a specific segment of time.

IV. RESULTS
The dynamic quantum was retrieved for each randomly

generated ready queue and the waiting times were compared
with the waiting times that were obtained by having a static
quantum. Prior to running the simulation, the dynamic
quantum data structure was initialized. Each three-
dimensional array initialization parameter was set to 20,
meaning that the quantum array is good for retrieving the time
quantum for up to 20 processes inside the ready queue. The
total time of the processes inside the ready queue can be up
to 20 units and the longest process time can be set up to 20
units.

TABLE I. AVERAGE WAITING TIMES FOR DYNAMIC QUANTUM AND
STATIC QUANTUM SET TO 3

Process
Count

Average Waiting Time
Ready Queue

Process
Burst Times

Optimum
Quantum

Dynamic
Waiting

Static
Waiting

4 4,2,1,12 4 3.0000 5.0000

5 3,1,2,1,10 3 3.8000 3.8000

6 5,1,1,1,1,3 5 10.3333 10.8333

7 2,1,1,1,1,1,6 2 5.4286 5.5714

8 3,1,1,1,1,1,1,9 3 7.1250 7.1250

9 2,1,1,1,1,1,1,1,
7 2 7.4444 7.5556

16
3,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,2 3 18.0625 18.0625

16 4,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1 1 18.2500 20.0000

Fig. 4. The table displays the total number of processes in the ready queue,
the generated ready queues, the optimum quantum that was retrieved from
the dynamic quantum array, the average waiting time for the dynamically
obtained quantum, and the average waiting time produced by the static
quantum. The static quantum was set to 3 CPU bursts.

Looking at the results obtained in Table I, the dynamically
obtained quantum outperformed the statically generated
quantum in 5 out 8 tests, or 62.5% of the time. For the
remaining 37.5% of the time, the dynamic quantum was
equally as good as the static quantum.

Changing the static quantum from 3 to 5, and generating
a random ready queue with the same number of processes,
produces similar results. From the results displayed in Table
II, the dynamic quantum ouperforms the static quantum in 6
out of 8 tests, or 75% of the time. For the remaining 25% of
the time, the waiting times for both the dynamic and static
quantum were equal.

TABLE II. AVERAGE WAITING TIMES FOR DYNAMIC QUANTUM AND
STATIC QUANTUM SET TO 5

Process
Count

Average Waiting Time
Ready Queue

Process
Burst Times

Optimum
Quantum

Dynamic
Waiting

Static
Waiting

4 4,1,2,12 4 2.7500 3.0000

5 3,2,1,1,10 3 4.0000 4.4000

6 5,1,1,1,1,3 5 10.3333 10.3333

7 2,1,1,1,1,1,6 2 5.4286 5.8571

8 3,1,1,1,1,1,1,9 3 7.1250 7.3750

9 2,1,1,1,1,1,1,1,
7 2 7.4444 7.7778

16
3,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,2 3 18.0625 18.0625

16 4,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1 1 18.2500 19.0000

Fig. 5. The table displays the total number of processes in the ready queue,
the generated ready queues, the optimum quantum that was retrieved from
the dynamic quantum array, the average waiting time for the dynamically
obtained quantum, and the average waiting time produced by the static
quantum. The static quantum was set to 5 CPU bursts.

V. CONCLUSION
Unless the static quantum is already the optimum time

slice for the ready queue, retrieving the optimum time slice
from the dynamic quantum array produces lower average
process waiting times for the Round Robin Scheduling
Algorithm.

REFERENCES
[1] “What is Round Robin Scheduling (RRS)? - Definition from

Techopedia,” Techopedia.com. [Online]. Available:

https://www.techopedia.com/definition/9236/round-robin-scheduling-
rrs. [Accessed: 27-Jun-2019].

[2] M. A. Mohammed, M. AbdulMajid, B. A. Mustafa and R. F. Ghani,
"Queueing theory study of round robin versus priority dynamic
quantum time round robin scheduling algorithms," 2015 4th
International Conference on Software Engineering and Computer
Systems (ICSECS), Kuantan, 2015, pp. 189-194.
doi: 10.1109/ICSECS.2015.7333108.

[3] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System
Concepts. John Wiley & Sons, Inc, 2013.

[4] S. Ghosh and C. Banerjee, "Dynamic Time Quantum Priority Based
Round Robin for Load Balancing In Cloud Environment," 2018 Fourth
International Conference on Research in Computational Intelligence
and Communication Networks (ICRCICN), Kolkata, India, 2018, pp.
33-37. doi: 10.1109/ICRCICN.2018.8718694

[5] A. Yasin, A. Faraz and S. Rehman, "Prioritized Fair Round Robin
Algorithm with Variable Time Quantum," 2015 13th International
Conference on Frontiers of Information Technology (FIT), Islamabad,
2015, pp. 314-319. doi: 10.1109/FIT.2015.62

[6] J. C. Villanueva, “Comparing Load Balancing Algorithms,”
Comparing Load Balancing Algorithms. [Online]. Available:
https://www.jscape.com/blog/load-balancing-algorithms.
[Accessed: 27-Jun-2019].

[7] P. Krzyzanowski, “Process Scheduling,” Process Scheduling,
18-Feb-2015. [Online]. Available:
https://www.cs.rutgers.edu/~pxk/416/notes/07-scheduling.html.
[Accessed: 27-Jun-2019].

[8] A. Yasin, A. Faraz and S. Rehman, "Prioritized Fair Round Robin
Algorithm with Variable Time Quantum," 2015 13th International
Conference on Frontiers of Information Technology (FIT), Islamabad,
2015, pp. 314-319. doi: 10.1109/FIT.2015.62

[9] A. Alsheikhy, R. Ammar and R. Elfouly, "An improved dynamic
Round Robin scheduling algorithm based on a variant quantum time,"
2015 11th International Computer Engineering Conference (ICENCO),
Cairo, 2015, pp. 98-104. doi: 10.1109/ICENCO.2015.7416332

[10] M. U. Farooq, A. Shakoor and A. B. Siddique, "An Efficient Dynamic
Round Robin algorithm for CPU scheduling," 2017 International
Conference on Communication, Computing and Digital Systems (C-
CODE), Islamabad, 2017, pp. 244-248. doi: 10.1109/C-
CODE.2017.791893

	I. Introduction
	I. Introduction
	II. Current Research
	II. Current Research
	III. Optimized Round Robin Quantum
	III. Optimized Round Robin Quantum
	A. Algorithm for Generating the Dynamic Quantum Data Structure
	A. Algorithm for Generating the Dynamic Quantum Data Structure
	B. Retrieving Dynamic Quantum
	B. Retrieving Dynamic Quantum
	C. Updating the Dynamic Quantum Data Structure
	C. Updating the Dynamic Quantum Data Structure
	C. Updating the Dynamic Quantum Data Structure

	IV. Results
	IV. Results
	The dynamic quantum was retrieved for each randomly generated ready queue and the waiting times were compared with the waiting times that were obtained by having a static quantum. Prior to running the simulation, the dynamic quantum data structure was...
	The dynamic quantum was retrieved for each randomly generated ready queue and the waiting times were compared with the waiting times that were obtained by having a static quantum. Prior to running the simulation, the dynamic quantum data structure was...
	Changing the static quantum from 3 to 5, and generating a random ready queue with the same number of processes, produces similar results. From the results displayed in Table II, the dynamic quantum ouperforms the static quantum in 6 out of 8 tests, or...
	Changing the static quantum from 3 to 5, and generating a random ready queue with the same number of processes, produces similar results. From the results displayed in Table II, the dynamic quantum ouperforms the static quantum in 6 out of 8 tests, or...

	V. Conclusion
	V. Conclusion
	References
	References

