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Abstract—The Preemptive Round Robin Scheduling 
Algorithm is an important scheduling algorithm used in both 
process scheduling and network scheduling. Processes are 
executed for a predefined unit of time called a quantum. Once 
the CPU executes the process for the specified time slice, the 
process either terminates or returns to the back of the ready 
queue if the process has any remaining burst time left. 
Numerous proposals have been made to improve the static 
quantum time of the Round Robin Scheduling Algorithm; most 
research focuses on the optimization of the ready queue. In this 
paper, I proposed having predefined optimized quantum times 
for most process that can be retrieved whenever a new process 
enters the ready queue. 
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I. INTRODUCTION  
Scheduling is one of the core functions of an Operating 

System; it is the method that assigns processes to the CPU so 
that they can be executed. When more than one process is 
waiting to be executed, the scheduler utilizes a scheduling 
algorithm to make the decision of which process to run next. 
In an operating system, many different processes compete for 
CPU time at any given moment. Numerous algorithms have 
been developed to optimize the CPU time utilization, such as: 

• First-Come, First-Served Scheduling Algorithm 

• Shortest-Job-First Scheduling Algorithm 

• Priority Scheduling Algorithm 

• Round-Robin Scheduling Algorithm 

• Multilevel Queue Scheduling Algorithm 

• Multilevel Feedback Queue Scheduling Algorithm [3] 

 The Round Robin Scheduling Algorithm is a type of 
scheduling algorithm mainly used by the operating system and 
“applications that serve multiple clients that request to use 
resources [1].” Each process is “arranged in the ready queue 
in a first-come first-served manner, and the processor executes 
the task from the ready queue on the basis of a time slice [2].” 
Even though the process might not have finished execution, 
once the time slice ends, the process is pushed to the back of 
the ready queue and the next process starts executing [3]. It 
does this repeatedly until the jobs are finished. 
 
 
 
 
 
 

 
Fig. 1. Shows the Round Robin Algorithm taking processes from the ready 
queue and pushing them into the CPU for execution. When the quantum time 
slice expires, and the process is not complete, the process is pushed to the 
back of the ready queue [7]. If the remaining time burst is equal to zero, the 
process terminates. 

In environments like the Real Time Operating System 
(RTOS), “the time slice should not be too small, since it could 
result in frequent context switches, and should be slightly 
greater than the average task computation time [2].” The 
Round Robin Scheduling Algorithm is also “limited by high 
waiting and turnaround times and low throughput” making it 
unsuitable for a system like the RTOS [1]. 

II. CURRENT RESEARCH 
Numerous proposals have been made to improve the static 

quantum time of the Round Robin Scheduling Algorithm. One 
such study proposes an algorithm called Priority Dynamic 
Quantum Time Round Robin Scheduling Algorithm (PDQT) 
[2]. The PDQT approach is performed by: 

• prioritizing the process that enters the ready queue 

• calculating a new quantum with a simple formula (q = 
k + n – 1), where q is the new quantum time, k is the 
old quantum time, and n is the priority of the processes 
in the ready queue 

• setting different quantum times for processes based on 
their priority [2] 

The researchers claim that the existing Round Robin 
Scheduler is “improved by reducing the context switches, as 
well as by reducing the waiting and turnaround times, thereby 
increasing throughput [2].” 

Another area where the Round Robin Algorithm is used in 
is cloud computing. In cloud computing, load balancing is 
extremely important. Load balancing is the “mechanism of 
distribution of resources in a way that no overloading has 
occurred at any resource and optimal utilization has been 
performed [4].” The load balancer “uses the concept of time 
slices in the basic round robin algorithm [4].”  

 



 
Fig. 2. The load balancer will transfer each request using the load balancer. 
Once the first request arrives, “the load balancer will forward that request to 
the 1st server. When the 2nd request arrives (presumably from a different 
client), that request will then be forwarded to the 2nd server [6].” 

To increase the effectiveness of the load balancer, 
researchers have proposed “an algorithm where the smaller 
processes are considered first from the service queue and 
given them more time quantum (TQ) so that the load balancer 
can execute its task earlier [4].  

III. OPTIMIZED ROUND ROBIN QUANTUM 
The primary objective of this research is to generate an 

optimized Round Robin time slice for each queue variation.  
Each quantum is stored as a value in a three-dimensional 
array. The first dimension represents the total process count 
inside the ready queue. The second dimension portrays the 
total remaining process burst time. The third dimension 
depicts the longest process burst time inside the ready queue. 
Once the data is available, it can then be retrieved by the 
algorithm whenever the ready queue is updated. 

 
Fig. 3. The three dimensional data structure holding the optimized time 
slice for each ready queue scenario. The array is scalable to suit the needs of 
the particular operating system and hardware configuration.  

A. Algorithm for Generating the Dynamic Quantum Data 
Structure 
Depending on the number of desired options, a three-

dimensional array of any size can be generated as long as it is 
within the hardware and operating system specifications. Note 
that the size may have adverse effects on devices utilizing 
smaller memory.  

 

The initial three-dimensional array is generated by the 
following algorithm: 

1. Initialize the highest expected ready queue values for 
each of the three dimensions. 

i Set the highest process count that might be 
expected  inside the ready queue for the first 
dimension. 

ii Set the largest total process burst that might 
be expected inside the ready queue for the 
second dimension. 

iii Set the largest expected single process burst 
time for the third dimension. 

2. Loop through each dimension. If a scenario is not 
possible, set it equal to zero. 

i The total time cannot be less than the 
number of processes. 

ii The longest process burst time cannot be 
larger than the total time remaining. 

iii Longest process time cannot be greater than 
total time remaining – (number of processes 
– 1). 

3. Create a randomly generated array for the specified 
three-dimensional option. 

i Set the first array element as the longest 
burst time of the ready queue. 

ii If the total number of processes is equal to 
one, return the process. 

iii Take the longest burst time and subtract it 
from the total time. 

iv Divide the remaining time by the remaining 
number of processes. The result will be 
used in generating random burst times for 
each other process. 

v Generate a random burst time between 1 
and the high value for n -1 processes, where 
n is equal to the number of remaining 
processes inside the ready queue. 

vi Take the total burst time for n-1 and 
subtract it from the total burst time for n 
processes. This will generate a value for the 
nth remaining process. 

vii Return the newly generated random queue. 

4. Generate the best time slice for the given sequence 
consisting of values generated in step 3. 

i Initialize the best average waiting time as a 
high value. 

ii Initialize the optimum quantum as 1. 

iii Check for the best time slice by testing each 
quantum value starting at 1 and ending at 
the longest process burst time for that 
particular ready queue. 

iv Simulate CPU execution for each process. 



v During each CPU cycle, decrement the 
remaining quantum and the remaining burst 
time for the process, and increment the total 
time elapsed. 

vi Once the process exits the CPU, check to 
see if the process finished. If it did, set the 
finishing time for that process to equal the 
value stored in the total time elapsed 
variable. 

vii Keep moving the processes from the ready 
queue into the CPU until the longest 
process burst time is equal to zero. 

viii Compute the waiting times for each 
process. The arrival time is set to zero for 
each process. The turnaround time is equal 
to the time that the process was terminated. 
The waiting time is computed by 
subtracting the burst time for the process 
from the turnaround time. 

 turnaround = completion − arrival   (1) 

 waiting = turnaround − process burst (2) 

ix Compute the average waiting time for the 
particular quantum; if it’s less than the 
current best average waiting time, update 
the quantum value. 

x Repeat the process until the quantum time 
being tested is greater than the longest burst 
time. 

xi Return the best quantum value for the 
particular ready queue. 

B. Retrieving Dynamic Quantum 
Once the data structure is generated, the optimum 

quantum should be retrievable for most circumstances. The 
algorithm should be provided with three arguments: number 
of processes in the ready queue, the total remaining process 
burst time, and the longest process time. 

 
1. The algorithm starts by performing three checks to 

verify that the data provided is accessible within the 
array. 

i If the process count exceeds the first-
dimensional array count, the number of 
processes is set as the last index value of the 
first dimension. 

ii If the total time remaining exceeds the 
second-dimensional array count, the total 
time remaining is set as the last index value 
of the second dimension. 

iii If the longest process time exceeds the 
third-dimensional array count, the longest 
process time is set as the last index value of 
the third dimension. 

2. Return the stored optimum quantum value from the 
array. 

C. Updating the Dynamic Quantum Data Structure 
The dynamic quantum data structure was designed so that 

it can be updated with the data that each specific machine 
produces, especially if similar processes in the ready queue 
keep reoccurring. The current data structure’s optimum 
quantum was created by first simulating the longest process 
burst time inside a ready queue and then generating random 
burst times for the remaining processes. The update feature 
can be turned off after the learning phase completes and turned 
on again after a specific segment of time.  

IV. RESULTS 
The dynamic quantum was retrieved for each randomly 

generated ready queue and the waiting times were compared 
with the waiting times that were obtained by having a static 
quantum. Prior to running the simulation, the dynamic 
quantum data structure was initialized. Each three-
dimensional array initialization parameter was set to 20, 
meaning that the quantum array is good for retrieving the time 
quantum for up to 20 processes inside the ready queue. The 
total time of the processes inside the ready queue can be up 
to 20 units and the longest process time can be set up to 20 
units. 

TABLE I.  AVERAGE WAITING TIMES FOR DYNAMIC QUANTUM AND 
STATIC QUANTUM SET TO 3 

Process 
Count 

Average Waiting Time 
Ready Queue 

Process  
Burst Times 

Optimum 
Quantum 

Dynamic 
Waiting 

Static 
Waiting 

4 4,2,1,12 4 3.0000 5.0000 

5 3,1,2,1,10 3 3.8000 3.8000 

6 5,1,1,1,1,3 5 10.3333 10.8333 

7 2,1,1,1,1,1,6 2 5.4286 5.5714 

8 3,1,1,1,1,1,1,9 3 7.1250 7.1250 

9 2,1,1,1,1,1,1,1, 
7 2 7.4444 7.5556 

16 
3,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,2 3 18.0625 18.0625 

16 4,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,1 1 18.2500 20.0000 

 

Fig. 4. The table displays the total number of processes in the ready queue, 
the generated ready queues, the optimum quantum that was retrieved from 
the dynamic quantum array, the average waiting time for the dynamically 
obtained quantum, and the average waiting time produced by the static 
quantum. The static quantum was set to 3 CPU bursts. 

Looking at the results obtained in Table I, the dynamically 
obtained quantum outperformed the statically generated 
quantum in 5 out 8 tests, or 62.5% of the time. For the 
remaining 37.5% of the time, the dynamic quantum was 
equally as good as the static quantum.  

Changing the static quantum from 3 to 5, and generating 
a random ready queue with the same number of processes, 
produces similar results. From the results displayed in Table 
II, the dynamic quantum ouperforms the static quantum in 6 
out of 8 tests, or 75% of the time. For the remaining 25% of 
the time, the waiting times for both the dynamic and static 
quantum were equal.   

 
 



TABLE II.  AVERAGE WAITING TIMES FOR DYNAMIC QUANTUM AND 
STATIC QUANTUM SET TO 5 

Process 
Count 

Average Waiting Time 
Ready Queue 

Process  
Burst Times 

Optimum 
Quantum 

Dynamic 
Waiting 

Static 
Waiting 

4 4,1,2,12 4 2.7500 3.0000 

5 3,2,1,1,10 3 4.0000 4.4000 

6 5,1,1,1,1,3 5 10.3333 10.3333 

7 2,1,1,1,1,1,6 2 5.4286 5.8571 

8 3,1,1,1,1,1,1,9 3 7.1250 7.3750 

9 2,1,1,1,1,1,1,1, 
7 2 7.4444 7.7778 

16 
3,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,2 3 18.0625 18.0625 

16 4,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,1 1 18.2500 19.0000 

 

Fig. 5. The table displays the total number of processes in the ready queue, 
the generated ready queues, the optimum quantum that was retrieved from 
the dynamic quantum array, the average waiting time for the dynamically 
obtained quantum, and the average waiting time produced by the static 
quantum. The static quantum was set to 5 CPU bursts. 

V. CONCLUSION 
Unless the static quantum is already the optimum time 

slice for the ready queue, retrieving the optimum time slice 
from the dynamic quantum array produces lower average 
process waiting times for the Round Robin Scheduling 
Algorithm. 

REFERENCES 
[1] “What is Round Robin Scheduling (RRS)? - Definition from 

Techopedia,” Techopedia.com. [Online]. Available: 

https://www.techopedia.com/definition/9236/round-robin-scheduling-
rrs. [Accessed: 27-Jun-2019]. 

[2] M. A. Mohammed, M. AbdulMajid, B. A. Mustafa and R. F. Ghani, 
"Queueing theory study of round robin versus priority dynamic 
quantum time round robin scheduling algorithms," 2015 4th 
International Conference on Software Engineering and Computer 
Systems (ICSECS), Kuantan, 2015, pp. 189-194.  
doi: 10.1109/ICSECS.2015.7333108. 

[3] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System 
Concepts. John Wiley & Sons, Inc, 2013. 

[4] S. Ghosh and C. Banerjee, "Dynamic Time Quantum Priority Based 
Round Robin for Load Balancing In Cloud Environment," 2018 Fourth 
International Conference on Research in Computational Intelligence 
and Communication Networks (ICRCICN), Kolkata, India, 2018, pp. 
33-37. doi: 10.1109/ICRCICN.2018.8718694 

[5] A. Yasin, A. Faraz and S. Rehman, "Prioritized Fair Round Robin 
Algorithm with Variable Time Quantum," 2015 13th International 
Conference on Frontiers of Information Technology (FIT), Islamabad, 
2015, pp. 314-319. doi: 10.1109/FIT.2015.62 

[6] J. C. Villanueva, “Comparing Load Balancing Algorithms,” 
Comparing Load Balancing Algorithms. [Online]. Available: 
https://www.jscape.com/blog/load-balancing-algorithms.  
[Accessed: 27-Jun-2019]. 

[7] P. Krzyzanowski, “Process Scheduling,” Process Scheduling,  
18-Feb-2015. [Online]. Available: 
https://www.cs.rutgers.edu/~pxk/416/notes/07-scheduling.html. 
[Accessed: 27-Jun-2019]. 

[8] A. Yasin, A. Faraz and S. Rehman, "Prioritized Fair Round Robin 
Algorithm with Variable Time Quantum," 2015 13th International 
Conference on Frontiers of Information Technology (FIT), Islamabad, 
2015, pp. 314-319. doi: 10.1109/FIT.2015.62 

[9] A. Alsheikhy, R. Ammar and R. Elfouly, "An improved dynamic 
Round Robin scheduling algorithm based on a variant quantum time," 
2015 11th International Computer Engineering Conference (ICENCO), 
Cairo, 2015, pp. 98-104. doi: 10.1109/ICENCO.2015.7416332 

[10] M. U. Farooq, A. Shakoor and A. B. Siddique, "An Efficient Dynamic 
Round Robin algorithm for CPU scheduling," 2017 International 
Conference on Communication, Computing and Digital Systems (C-
CODE), Islamabad, 2017, pp. 244-248. doi: 10.1109/C-
CODE.2017.791893

 


	I. Introduction
	I. Introduction
	II. Current Research
	II. Current Research
	III. Optimized Round Robin Quantum
	III. Optimized Round Robin Quantum
	A. Algorithm for Generating the Dynamic Quantum Data Structure
	A. Algorithm for Generating the Dynamic Quantum Data Structure
	B. Retrieving Dynamic Quantum
	B. Retrieving Dynamic Quantum
	C. Updating the Dynamic Quantum Data Structure
	C. Updating the Dynamic Quantum Data Structure
	C. Updating the Dynamic Quantum Data Structure

	IV. Results
	IV. Results
	The dynamic quantum was retrieved for each randomly generated ready queue and the waiting times were compared with the waiting times that were obtained by having a static quantum. Prior to running the simulation, the dynamic quantum data structure was...
	The dynamic quantum was retrieved for each randomly generated ready queue and the waiting times were compared with the waiting times that were obtained by having a static quantum. Prior to running the simulation, the dynamic quantum data structure was...
	Changing the static quantum from 3 to 5, and generating a random ready queue with the same number of processes, produces similar results. From the results displayed in Table II, the dynamic quantum ouperforms the static quantum in 6 out of 8 tests, or...
	Changing the static quantum from 3 to 5, and generating a random ready queue with the same number of processes, produces similar results. From the results displayed in Table II, the dynamic quantum ouperforms the static quantum in 6 out of 8 tests, or...

	V. Conclusion
	V. Conclusion
	References
	References


