A recommendation for a complete open
source policy.

Authors

Steven D. Christe, Research Astrophysicist, NASA Goddard Space Flight Center, SunPy
Founder and Board member

Jack Ireland, Senior Scientist, ADNET Systems, Inc. / NASA Goddard Space Flight Center,
SunPy Board Member

Daniel Ryan, NASA Postdoctoral Fellow, NASA Goddard Space Flight Center, SunPy
Contributor

Supporters
SunPy Board

Monica G. Bobra, Research Scientist, W. W. Hansen Experimental Physics Laboratory,
Stanford University

Russell Hewett, Research Scientist, Unaffiliated

Stuart Mumford, Research Fellow, The University of Sheffield, SunPy Lead Developer
David Pérez-Suarez, Senior Research Software Developer, University College London
Kevin Reardon, Research Scientist, National Solar Observatory

Sabrina Savage, Research Astrophysicist, NASA Marshall Space Flight Center

Albert Shih, Research Astrophysicist, NASA Goddard Space Flight Center

Joel Allred, Research Astrophysicist, NASA Goddard Space Flight Center

Tiago M. D. Pereira, Researcher, Institute of Theoretical Astrophysics, University of Oslo
Hakan Onel, Postdoctoral researcher, Leibniz Institute for Astrophysics Potsdam, Germany
Michael S. F. Kirk, Research Scientist, Catholic University of America / NASA GSFC

The data that drives scientific advances continues to grow ever more complex and varied.
Improvements in sensor technology, combined with the availability of inexpensive storage, have
led to rapid increases in the amount of data available to scientists in almost every discipline.
Solar physics is no exception to this trend. For example, NASA’s Solar Dynamics Observatory
(SDO) spacecraft, launched in February 2010, produces over 1TB of data per day. However,
this data volume will soon be eclipsed by new instruments and telescopes such as the Daniel K.
Inouye Solar Telescope (DKIST) or the Large Synoptic Survey Telescope (LSST), which are
slated to begin taking data in 2020 and 2022, respectively. Each of these telescopes will
produce on average 15TB of data per day.

Managing and analyzing these data requires increasingly sophisticated software tools made
possible by the emergence of powerful and low-cost computational hardware. The numerical
simulations that allow us to effectively interpret these data are also growing in size and
complexity. Computing has therefore become the backbone of theory and experiment and is
essential in data analysis, interpretation, and inference (Vardi 2010).

Unfortunately, the culture surrounding computational work for scientific research has not kept
pace with these developments. Laboratory experimenters are expected to keep detailed and
careful records of their work, documenting materials and methods as well as positive and
negative results. Paradoxically, no such requirements are currently expected of computational
work though the same expectations of scientific rigor are required. This has several negative
effects including (1) limiting the ability of scientists to build on past results and (2) a general
inefficiency in the field as researchers are forced to redevelop existing software from scratch.
Finally and perhaps more importantly, a lack of transparency could potentially lead to a
diminished credibility of scientific research.

A number of workshops have already been held on the topic of “reproducible research” in other
disciplines (ICERM Workshop on Reproducibility in Computational and Experimental
Mathematics 2012, Roundtable at Yale Law School, a workshop at the Applied Mathematics
Perspectives 2011 conference, SIAM Conferences on Computational Science and Engineering
2011, ICIAM 2011). They have all come to the same conclusion that software developed for
scientific purposes must be made public (V. Stodden et al 2013).

As a funding agency, NASA is in a unique position to effectuate change by promoting policies to
encourage reproducibility. We therefore recommend that all NASA-funded science code be
required to be open source. We believe that such a policy without the support of additional
guidance or guidelines will be of limited usefulness. A number of additional recommendations
are described here. We believe the following should be part of a complete open source policy to
achieve maximum positive impact:

1. The use of open and free software platforms must be encouraged.

2. The development of core software libraries must be directly supported.

3. A culture of computational reproducibility must be promoted as part of the research

process.

4. The use of appropriate and modern tools must be taught to the research community.
Each recommendation is discussed in more detail below.

Open and free software platforms

In order for the full value of an open source policy to be realized the code should be accessible.
If code is written for a platform that is not accessible because it is proprietary, not financially
accessible or is written in an obscure language and therefore hard to decipher, then its release
is of significantly reduced value. The easiest way to enable open source code to be accessible
is to encourage the use of open and free platforms.

The benefits of accessibility have already been proven. Open and free platforms enable true
open collaboration maximizing the number of available participants. One example of this
success is the Python language, which is growing in popularity in scientific research. Python is a
free, general-purpose, powerful, and easy-to-learn high-level programming language. First
released in 1991, it began to thrive once Python 2.0 was released in 2000 and its development
became transparent and community-backed. By some measures, it is currently the most popular
programming language competing with languages that have been around for much longer such
as C, C++, and Java.

Many additional benefits follow from the lack of a financial barrier of entry. The developer
community is vast, diverse and enthusiastic. This has led to the development of an incredibly
wide array of Python extensions. The Python Package Index currently lists over 113,000
user-submitted packages, providing functionality in such diverse domains as web application
programming, numerical computing, artificial intelligence and the physical sciences.

Python is now used by many universities to teach basic computer science. It is now the case
that 8 of the top 10 CS departments (80%), and 27 of the top 39 (69%), teach Python in
introductory computer science courses (Guo 2014). For comparison, a proprietary and paid-for
Matlab is the next most popular language relevant to scientific computing. Similarly useful for
teaching basic computer science, it is used by less than 25% of the top 39 schools. Adopting a
language such as Python holds the promise of reducing the burden on students to learn a new
language for data analysis for their scientific research and therefore accelerate their ability to
produce results. Another important advantage of using an open platform is that other large
organizations (e.g. Wikipedia, Google, Yahoo!, CERN) make use of and contribute to the
language. This means that graduate students and post-docs have developed a skill that can
easily be transferred to industry.

The community-development ethos of open and free platforms have benefits for cross-discipline
engagement. An example of this is the ongoing collaboration between SunPy (Mumford et al.
2015), a solar physics Python package, and Astropy (Robitaille et al. 2013), a much broader
astronomy Python package. Crucially, both Astropy and SunPy have fully adopted the open
source worldview that code that solves scientific problems should be shared as widely as

http://blog.codeeval.com/codeevalblog/2016/2/2/most-popular-coding-languages-of-2016
https://www.washingtonpost.com/local/education/a-maryland-student-goes-out-of-this-world-to-find-the-roots-of-a-problem/2017/12/31/6224ed08-ec03-11e7-b698-91d4e35920a3_story.html?utm_term=.57dd8392dc10

possible. This leads to solution implementations in free, open languages using free and open
tools, thus lowering barriers to cooperation and collaboration. Thus, what started as a
solar-specific tool can be made more broadly useful and SunPy developers can be more
efficient and more productive by drawing on software already developed by Astropy. The
consequent cross-fertilization of ideas is to everyone’s benefit as members of different
communities learn from what has been done outside their field. Finally, open source platforms
are not dependent on the company or developer that originally created it. Even if the company
fails, the platform can continue to exist and be developed by its users, a useful guarantee for
scientific research which must consider longer time horizons than industry.

Core Software Libraries

Core libraries form the foundation upon which more complex analyses are built. They bring
together common practices and workflows allowing for increasingly efficient software
development and data analysis. Core libraries are where the primary benefits of an open source
policy can be focused. As the community develops and releases software tools, they can be
reviewed by the community, preferably through the standard peer review process. Code review
also helps the integrity of scientific results. By having a transparent process whereby multiple
people check code that is likely to be used by the community, it is more likely that mistakes will
be caught, reducing the chance of incorrect scientific conclusions being drawn from false data
analysis results. Widely used code can then be accepted as “standard practice” and
incorporated into a core library. Researchers can then rely on the already reviewed code from
the core libraries and build upon it. Core libraries can be seen a cyber-infrastructure on which
the science is built. As with other kinds of infrastructure, core libraries must be maintained and
managed. Unfortunately, current funding opportunities do not allow specific funding for this
purpose and do not provide the correct incentives (Howison 2013)

Two examples of emerging core libraries are Astropy and SunPy. Both of these projects aim to
provide a core library in their fields; Astropy for astronomy and SunPy for solar physics. They
have both been managed, written, and operated as a grassroots self-organized volunteer effort
and are currently being used by many members of the community. Yet both efforts are
effectively unfunded. This problem is well described by Muna et. al 2016.

To provide some context to the problem, the experience with SunPy is relevant to this
discussion. SunPy currently contains more than 33,000 lines of code from 126 contributors
which represents ~9 years of effort (COCOMO model). Assuming an average salary of
$100,000 (a rough salary for a highly skilled software developer in industry) along with a 1.5x
multiplier for overheads this represents a total value of $1.2M. Much of the development and
management has been performed by graduate students, undergraduates and researchers, with
some help by scientists with permanent positions. This value is currently being extracted from
the careers of young and capable scientists. These contributions are provided at the expense of
their research and publication output in order to support the community. Since this work is not
funded it is by definition not valued by NASA. Finally, it is difficult for university hiring

https://www.openhub.net/p/sunpy

committees to quantify the value of community code contributions since there is no funding
available to scientist-programmers. Despite this, the use of SunPy and other open source codes
in solar physics community demonstrates that it is valued. We therefore strongly recommend
that this work be appropriately funded. One important caveat should be attached to this
recommendation which is that the traditional funding mechanisms which promote competitive
bids should be modified so as to not lead to multiple core libraries being developed with
overlapping functionality. Open source software development should be for the benefit of the
community, that is to say it should prioritize collaboration over competition.

A Culture of Reproducibility

The key to the advancement of science is that it produces results which are reproducible. This
allows multiple scientists to test each others results and reach a consensus. Currently,
re-producing a computer-enabled result which is described in the literature can be exceedingly
difficult. At best, the steps of an algorithm are described in words and a challenge is presented
to a reviewer to implement the algorithm themselves. It is safe to say that most do not and
therefore must take other scientists at their word.. As a funding agency, NASA can set the
important standard of an open source policy which is the first step toward a robust culture of
reproducibility. The community can then develop the appropriate standards to enable this. In
order for this to happen we recommend that all proposals be required to provide the following
details

e Platforms and software to be used.

e Reasonable standards for dataset and software documentations.

e Reasonable standards for the persistence of resulting software, data preservation and

archiving.
e Reasonable standards for sharing resulting software among reviewers and the
community.

Many of these recommendations are now very easy to achieve. The use of version control
systems easily enables persistence of resulting software. With proper versioning when a result
is published, the version numbers or commit hashes of the software can be published along with
it. This would enable other scientists wanting to reproduce the result to ensure they use the
exact same software as was used in the original study. It also enables the result to be obtained
with newer, better software tools at a later stage to investigate whether the result has changed.
Many good, free version control systems are already open source and freely available, such as
Git (http://git-scm.com).

Software hosting and preservation can be achieved in a number of ways. Many university
libraries now allow scientists to deposit their code and data into repositories which are assigned
a permanent URL and DOI making it searchable in the library system (e.g.
https://sdr.stanford.edu/). A large registry of data repositories exist worldwide
(https://www.re3data.org/). Additionally, many free code hosting services are also available
such as GitHub, GitLab, BitBucket, and SourceForge. These services provide software
management tools that enable contributions and ease collaboration. It is also now possible to

http://git-scm.com/
https://www.re3data.org/

publish software packages such that they can be directly cited in the literature (e.g., J. of Open
Research Software, Zenodo). This enables all of the standard impact metrics to be applied to
software and would encourage and credit the development of open-source scientific software
development.

Educating the Community

A recent survey of software use in the astronomy community carried out between 2014 and
2015 with responses from 1142 astronomers found that 90% of responders across all
demographics write their own software. Even though software development is so wide-spread
only 8% responded that they received significant training in this area with 43% stating that they
received no training at all (Momcheva & Tollerud 2015). A similar informal survey of NASA
GSFC Heliophysics division scientists suggest similar results may apply across multiple fields.
This lack of formal education in an area so important for the success of a scientist’s career is a
fundamental problem. In order to support an open source policy we recommend that
significant steps be taken to educate the community on an ongoing basis. This will lead to
more efficient, robust, and transferable code. Basic software development practices such as
writing maintainable code, using version control, issue trackers, code reviews, and unit testing
should be taught and their use encouraged so that they become community standards.
Recommendations for those standards already exist (Wilson et al. 2017, Wilson et al. 2014).
There are a number of ways that NASA can support this.

e Funding for dedicated workshops at annual conferences

e Forming a working group to develop community standards

e Providing funding for STEM and computer science integration projects (e.g. NSF’s CS

for all initiative)

e Funding mentorship programs to pair researchers with research software developers.
The funding of core package development teams should be contingent on a community
educational mission. Such teams will be uniquely positioned to set community standards for
documentation and coding practices. Open source software lowers the barrier to entry to
scientific research for other audiences, such as schools, universities and the general public.

Summary

To support an NASA open source policy, we advocate for the wide adoption of the practices of
free and open source software development as the primary tool to optimize scientific return
within and across disciplines. Software development is now fundamental to a wide range of
scientific disciplines that are important to NASA, but is demonstrably undervalued. We propose
that steps be taken to educate the scientific community as to the benefits of the practices of free
and open source software development, that funding opportunities for community-led free and
open source libraries be developed, and that incentives be developed to encourage these
practice. Free and open source software lowers the barrier to entry for multiple audiences and
promotes the awareness of cross-disciplinary ideas and capabilities, thereby maximizing the
scientific return on investment for everyone.

https://nsf.gov/csforall
https://nsf.gov/csforall

References

Guo P, https://goo.qgl/zRgE9p, Jul. 2014
Howison J., “Incentives and Integration In Scientific Software Production,” Collaboration
and Sharing in Scientific Work, pp. 1-12, Aug. 2013.

e Momcheva I., Tollerud E. J. , “Software Use in Astronomy: An Informal Survey,” Arxiv,
pp. 1-20, Jul. 2015.

e Mumford, S. J., et. al, “SunPy—Python for solar physics,” Comput. Sci. Disc., vol. 8, no.
1, pp. 1-23, Jul. 2015.
Muna D., et al., “The Astropy Problem.”, Arxiv, 11-Oct-2016.
Stodden V. et al., ICERM Workshop, “Setting the Default to Reproducible,” pp. 1-19,
Feb. 2013.

e T. P. Robitaille, et al., “Astropy: A community Python package for astronomy,”
Astronomy and Astrophysics, vol. 558, Oct. 2013.

e Vardi M. Y., “Science has only two legs,” Commun. ACM, vol. 53, no. 9, pp. 5-5, Sep.
2010.

e Wilson G, Aruliah DA, Brown CT, Chue Hong NP, Davis M, et al. (2014) “Best Practices
for Scientific Computing.” PLoS Biol 12(1): e1001745. doi:10.1371/journal.pbio.1001745

e Wilson G, Bryan J, Cranston K, Kitzes J, Nederbragt L, Teal TK (2017), “Good enough
practices in scientific computing.”, PLoS Comput Biol 13(6): €1005510.
https://doi.org/10.1371/ journal.pcbi.1005510

https://goo.gl/zRgE9p

