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Abstract1—General Purpose Graphic Processing Units (GPGPUs) 
are effective solutions for high-demand data applications which 
involve multi-signal, image and video processing thanks to their 
powerful parallel architecture. In the last years, GPGPUs have been 
considered also for safety-critical applications, such as autonomous 
and semi-autonomous car driving systems. New GPGPU devices 
include an increasing number of parallel cores in order to increase 
throughput and performance. This increment in the number of 
cores and the requirements in terms of power consumption force 
designers to use aggressive semiconductor technologies. 
Nevertheless, those new devices can be seriously affected by 
radiation effects, modeled as Single Event Upsets (SEUs). SEUs 
could generate unexpected operation effects in the applications 
which could be unacceptable for the safety-critical ones. This work 
analyzes the SEU effects resorting to an open-source model of a 
GPGPU based on the Nvidia’s G80 architecture and aims at 
complementing previous analysis based on radiation experiments. 
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I. INTRODUCTION 
General Purpose Graphic Processing Units (GPGPUs) 

represent an effective solution in applications requiring high 
performance data-intensive operations, such as multi-signal 
analysis, image and video processing, thanks to their highly 
parallel architecture. Nowadays, these devices are also 
considered for embedded real-time safety-critical applications, 
such autonomous machines and autonomous car driving systems. 

Examples in the automotive domain include sensor fusion 
systems and Advanced Driver-Assistance Systems (ADAS)[1], 
which form specialized systems devoted to different applications, 
including Automatic Parking, Automatic Cruise Control, 
Pedestrian and Pattern Recognition and Forward Collision 
Warning. The use of ADAS systems is also considered as an 
intermediate step towards the development of semi-autonomous 
and fully-autonomous cars. These systems are based on a large 
number of sensors (stereo, 360 degree and long distance 
cameras, radars and Lidars) producing large amount of data 
which requires to be processed and decisions to be made under 
real time constraints. 

The new GPGPU devices include more parallel cores, called 
streaming multiprocessors (SM) in Nvidia’s terminology, in 
order to increase the throughput and operation performance. 
These increments, in the number of cores, and in requirements, 
in terms of performance and power consumption, force designers 
to use aggressive technology scaling approaches. However, it is 
known that latest semiconductor technologies can be particularly 
affected by radiation effects [2]. Radiation particles can affect 
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the system through transient faults, such as Single Event Upsets 
(SEUs) in sequential logic or memory cells by corrupting the 
content of the stored logic value. SEUs may generate unexpected 
misbehaviors and consequences that could be unacceptable in 
safety-critical applications. Hence, effective solutions are 
required to detect and mitigate those faults affecting GPGPU 
devices [3]. Possible solutions also include acting on the 
software coding style and on the adopted algorithm [4].  

In order to choose the most suitable countermeasures, a 
detailed analysis is first needed in order to identify the module 
criticality and the incidence of faults on the application failure 
rate. This analysis may also provide guidelines for effectively 
writing the application code, trading off performance and 
reliability. One solution to support the analysis is based on fault 
injection on models at various abstract levels. Nevertheless, 
some challenges exist in the GPGPU field. In fact, very few 
GPGPU models exist, and most of them are described at a high 
level of abstraction [5-8], thus preventing a detailed analysis of 
SEU effects on critical and complex units such as control-path 
modules. On the other hand, there are a few RTL behavioral 
GPGPU models which can be used to analyze the SEU effects in 
those special-purpose modules. 

In [9] the authors describe a SEU fault injection methodology 
using a behavioral/RTL GPGPU model. Moreover, this and other 
works [10] introduced an initial overview of the SEU effects on 
data-path units of a GPGPU, such as the register file and the 
pipeline registers. The results show that the error rate in these 
modules is quite variable according to the adopted benchmark 
and parallelization strategy (e.g., in terms of thread distribution). 
However, control-path units were not analyzed. 

A different approach to the analysis of SEU effects relies on 
radiation experiments. In [11, 12] the authors presented results 
from radiation experiments on GPGPUs showing that SEU 
effects, detected in application results, depend on the affected 
module in the GPGPU. Moreover, these effects are correlated 
with the module usage by the benchmarks. Nevertheless, in these 
approaches it is hard to provide convincing explanations about 
the observed behaviors of critical units, such as control-path 
modules, since details about the internal structure and behavior 
of the device are not available. 

One solution to clarify the issue is based on resorting to fault 
simulation of SEU effects on target modules using some GPGPU 
model. In this work, we started from an open-source GPGPU 
model (FlexGrip)[13], and improved it to remove some 
limitations and bugs. The new version of the model allows us to 
study in a much more detailed manner the effects of SEUs in 
different target modules. At the same time, representative 
applications were designed and selected as benchmarks for SEU 
fault injection campaigns. These program kernels are 
representative of those employed in real signal and image 
processing applications. 



 

This work presents the results of a detailed analysis about the 
SEU effects on data-path and control-path modules for different 
applications using different parallelism levels and under various 
GPGPU configuration modes. To the best of our knowledge, this 
is the first work that presents results of SEUs injection 
campaigns on control-path modules of an architectural RTL 
GPGPU model. It is also the first time that relatively complex 
applications comparable to real-world ones are considered. 

The paper is organized as follows. In Section II the key 
characteristics of the FlexGrip GPGPU model are introduced. 
Section III presents the proposed method and the setup employed 
in the SEU fault injection campaigns, the targeted modules and 
the selected benchmarks. Section IV reports the experimental 
results, and Section V finally draws some conclusions. 

II. FLEXGRIP 
FlexGrip is a RTL VHDL behavioral model of a GPGPU 

module developed by the University of Massachusetts and 
originally targeting a Xilinx FPGA [13]. The module is based on 
the Nvidia G80 Tesla architecture and is compatible with 
Nvidia’s CUDA Compilation Toolkit under SM_1.0 
compatibility level. The module uses a compiled CUDA-binary 
code (.SASS file) as kernel program. 27 instructions of either 32 
or 64 bits are supported by FlexGrip. 

In FlexGrip, the kernel parameters, such as Grid dimension, 
Block dimension and Blocks per core, should be manually 
configured before simulation. Additionally, memory values in 
constant memory and other GPGPU configuration parameters, 
such as the number of registers per thread and the number of 
blocks per SM core, must be configured for each application. 

The GPGPU architecture is based on the SIMT (Single 
Instruction Multiple Thread) paradigm and exploits a custom SM 
core with a five stages pipeline (Fetch, Decode, Read, 
Execution/Control-flow and Write-back), as shown in Fig. 1. 
Moreover, the SM employs a controller and a warp scheduler 
unit for instruction thread management. In the SIMT 
architecture, one instruction is fetched, decoded and distributed 
to be executed on an independent processing unit, or Scalar 
Processor (SP), in the SM. The Read and Write-back stages load 
and store data operands from and to Register Files (RFs), shared, 
global or constant memories. Only integer operations are 
supported by FlexGrip. For the purpose of this work, the GPGPU 
model has been improved giving support to 28 instructions in up 
to 74 instruction formats. Additionally, the technology 
dependence on Xilinx FPGA has been removed to target on the 
OpenCell library[14]. Moreover, some bugs and unsupported 
features related with module interconnections, instructions 
implementation and nesting thread divergence management have 
been fixed. Those additional changes allow the model to execute 
more complex applications. 

 

 
Fig. 1.  FlexGrip architecture: the SM. 

The GPGPU Thread-level parallelism (TLP) in Flexgrip is 
customizable and depends on the total number of SPs in the 
execution stage. The model supports the configuration of 32, 16 
and 8 SPs. 

The SP configuration number has direct impact on the warp 
scheduler distribution. In a 32-SPs configuration, the maximum 
TLP is achieved with 32 threads executed in parallel, one thread 
per SP. For a 16-SPs configuration, the warp threads are 
organized in two lanes per SP and every SP should execute 2 
threads per warp in sequence. Finally, in the 8-SP core 
configuration, a 32-threads warp requires four lines and every SP 
should execute 4 threads per warp.  

FlexGrip employs an additional module to support thread-
level branching at hardware level (branch unit). This module 
manages control-flow operations in order to generate or retake 
the flow from conditional branches with multiple paths. 

In the SIMT architecture, a conditional control-flow 
instruction causes divergence paths and a set of threads, whose 
size is lower than warp size, selects different execution paths 
(Taken and Not-Taken). On the other hand, a synchronization 
instruction creates a synchronization point defining an 
instruction location for the previous paths to converge. Once path 
divergence occurs, all the threads will continue the instruction 
execution until all of them reach the synchronization point. The 
organization of the branch unit includes a warp divergence stack 
memory able to store thread information such as thread mask, 
program counter and flow ID. 

III. PROPOSED APPROACH FOR FAULT INJECTION 
A custom fault injector was developed to identify and 

analyze the SEU effects on specific internal modules of the SM. 
Sub-section B introduces the targeted modules for fault injection. 
Finally, a description of the designed benchmarks is presented in 
sub-section C. 

A.  Custom Fault Injector 
 The instrument was designed to perform a set of SEU fault 

campaigns on the FlexGrip model and follows the fault injection 
methodology introduced in [9]. Moreover, it includes a multi-
thread approach [15, 16] and the utilization of a de-rating factor 
(UDR) [17] of the targeted modules. The UDR factor considers 
only the registers and memory locations employed by an 
application during the simulation, thus reducing the total amount 
of faults to be injected and the corresponding simulation time of 
a fault campaign. 

The custom fault injector was designed in a high-level 
language (Python) and it is able to link a set of configuration 
files with the execution of the behavioral/RTL simulator (in our 
case ModelSim by Mentor) of the GPGPU model. This tool is 
composed of a set of modules: a control manager, a fault 
decoder-generator, a fault injector and a checker and classifier 
module. The functions, in the fault simulator, can handle the 
execution of multiple fault campaigns of the model. 

The injector can introduce two types of faults: permanent 
faults, based on the Stuck-at fault model, and transient faults, 
based on the SEU model.  

It is worth noting that it is complex to represent and inject 
SEU faults in a behavioral/RTL model without timing 
information details. The fault simulator injects Single Bit Upsets 
(SBUs) in memory cells or register signals in order to generate 
the equivalent SEU effects. For the purpose of this work, we use 
the SEU injector capabilities in the fault campaigns. 

A fault simulation campaign starts loading and compiling the 
GPGPU model in the ModelSim simulator. In this process, the 



 

control manager loads the GPGPU configuration, the application 
instructions and the initial data memory values. The kernel 
instructions and the model configuration are provided by the user 
before the fault campaign starts. 

A golden simulation is performed in order to obtain the 
reference memory results and the performance parameters, which 
are later used in the classification stage. The fault control 
manager loads the fault list for the campaign. This fault list is 
composed of the signal locations where to inject each fault in the 
model. Depending on the fault model, additional parameters are 
required, such as the injection time and the injection period. The 
fault decoder-generator reads from the SEU fault list one fault at 
a time and generates an equivalent behavioral injection command 
for the ModelSim environment, using the force–deposit syntax. 

Then, the control manager starts the fault injection campaign. 
The execution time limit is defined as twice the golden execution 
time of the program kernel. This value is employed in order to 
check performance degradation by the fault effect. Once the 
simulation finishes, the memory results and performance 
parameters are stored. Finally, the checker and classifier verify 
the generation of memory results. This classifier catalogues the 
fault effects in four categories: Silent Data Corruption (SDC), 
Time-Out (Performance Degradation), Hang (Detected 
Unrecoverable Error (DUE)) and Masked (Silent). 

A SEU effect is classified as SDC if there is a memory 
mismatch between the golden and faulty results. A Time-Out 
happens when the fault simulation time is greater than the golden 
simulation time. The fault behavior is classified as DUE when 
the fault simulation is not correctly finished or the GPGPU 
model cannot correctly terminate its execution, additionally 
without results in the global memory. Lastly, a masked 
classification is used if there are not mismatches in memory 
results or execution time. It is worth noting that one fault 
simulation is performed for each considered fault. 

Once the fault campaign finished two report files are stored. 
Those files include the memory results, if generated, the final-
dictionary file (which is composed of the fault type, the signal 
location and the final fault classification), and the fault-results 
file, including a summary of the total number of faults classified 
grouped by type. 

The multi-threaded fault injection methodology was 
employed in the fault injector, mainly to handle the large number 
of faults to inject during the campaigns. The total number of 
SEU faults was divided in three to ten equal-size fault chunks 
composing a partial fault list. Each partial fault list is assigned to 
an independent fault simulator with a Flexgrip model to be 
processed as an independent simulation. Finally, the final 
injection results are grouped and analyzed. 

In order to evaluate the SEU effects on the FlexGrip model, 
four target modules were selected, commonly used by most of 
the kernel programs. It is worth noting that each module presents 
a different level of use and criticality in kernel execution. 

B. Target Modules 
Two control-path (SM scheduler and Divergence stack) and 

one data-path (Register Files) module of the FlexGrip were 
selected for SEU fault injection campaigns. The general 
description of each module is presented as following: 

 

SM Scheduler: This module manages and controls thread 
execution in the available SPs inside the SM. This unit also 
tracks the actual status and thread operation. Furthermore, this is 
a critical unit during the GPGPU operation and a fault can 
generate misbehaviors generating hang or SDC effects. This 
module is selected by its criticality in thread execution and the 

sensitivity to permanent faults observed in other works [18]. For 
the purpose of this work, we target the warp pool memory in the 
scheduler injecting SEU faults in it and classifying its sensitivity 
to them. This memory stores crucial information for the warp 
execution.  

 

Divergence Stack: This module stores the branching 
information related to convergence points (addressing points), 
generated by control-flow instructions during the execution of a 
program kernel.  Each one of the 32 entry lines in the memory is 
composed of a program counter field (convergence point), a 
mask of active threads and the active Warp ID. Misbehaviors in 
this module may corrupt the thread execution flow, generating 
performance, hang and SDC effects. In a program kernel, a 
synchronism convergence points, (SSY) instruction, generate the 
pull to store the instruction pointer and the threads index. Once 
the convergence point is reached by the program, the information 
is pushed and the entry line is released. 

 

Register Files: This data-path module is highly used by most 
kernel programs, since most instructions include operations with 
one or more registers. In Flexgrip, this unit is composed of 512 
32-bits registers in a 32 SP-core configuration. For 16-SP cores 
there are 1,024 registers per register file. Finally, 2,048 registers 
are available in the 8-SP core configuration. On the other hand, 
the total number of registers employed by an application directly 
depends on the kernel instructions. In a register file, the registers 
per thread are assigned through dividing the total number of 
registers by the number of threads per block to be executed. 

C. Benchmarks Description 
Three representative benchmarks were selected to evaluate 

the incidence of SEU effects in the model. Every benchmark 
generates different stimuli over each targeted module. One 
kernel (Vector_Add) presents high data-intensive operations, 
mainly employing data-path modules and with a low incidence 
on control-path modules. Additionally, we considered two 
applications (FFT, Edge-Detection-Sobel) based on different 
combinations of control-flow strategies, divergence generation, 
and data operations. Each kernel program was developed, 
compiled in CUDA-C with SM_1.0 and adapted to the supported 
FlexGrip instruction set. Table 1 introduces the major 
operational features of the selected applications. A general 
description of each benchmark is presented as following: 

 

FFT: The kernel description of the one-dimension FFT 
algorithm is based on the Cooley-Turkey algorithm [19] using 
the butterfly propagation algorithm. It was necessary to adapt the 
kernel description to the instructions supported in FlexGrip. The 
division instruction (not supported in hardware) was replaced by 
logarithmic division method based on shift and logical 
displacements. It is worth noting that the initial data set is 
ordered by the host to feed the FFT kernel. The same procedure 
is followed by the host to reorder the results. 

 

Edge Detection: This algorithm is based on the convolution 
of an input image matrix and a 3x3-size stencil element, 
representing a 2D filter. Initially, the data matrix is divided 
according to the total number of thread configurations in the 
kernel and then the convolution is processed sequentially. The 
kernel description is adapted to the supported instructions of 
FlexGrip. The division instruction is replaced by a logarithmic 
method mentioned above. This application includes multiple 
loop, thread dependency execution, and dense arithmetical 
operations, which require an intensive use of register resources 
and introduces thread divergence in the kernel. 

 



 

Vector_Add: This is a typical parallel and high data-intensive 
application based on the execution of concurrent additions over 
independent data sets from two input vectors. The result vector is 
stored in a free memory location. This application commonly 
uses data-path units and execution modules of the GPGPU. This 
benchmark is selected because most elaborated program kernels 
include parallel sections during their execution. Moreover, the 
lack of control-flow instructions can give clear information of 
the SEU effects on data-path units. 
TABLE 1 MAIN BENCHMARK FEATURES UNDER A THREAD DISTRIBUTION OF 32 
THREADS PER BLOCK AND 2 BLOCKS CONFIGURATION. 

Benchmark Code size 
(Words) 

.SASS 
Instructions 

Execution 
time (cycles) 

Configuration 
(SP cores) 

FFT 334 174 
584,265 32 
777,555 16 

1,153,845 8 

Edge 712 373 
688,305 32 
905,525 16 

1,374,265 8 

VectorAdd 18 12 
28,565 32 
33,385 16 
42,785 8 

IV. EXPERIMENTAL RESULTS 
 

The fault campaigns setup is described. Sub-sections B and C 
D introduce results and discussions of SEU effects on each 
targeted module. 

A. Experiment setup 
In the SEU fault injection campaigns, two main elements are 

considered: the SEU location and the SEU injection time. The 
SEU location defines the fault universe and it is composed of the 
registers and memory elements employed by a benchmark during 
its execution on each targeted module. The faults were carefully 
checked and selected during the golden execution. 

The SEU injection time considers the time intervals in the 
kernel execution on FlexGrip. Those time intervals are: 
configuration, execution, global-memory storage and kernel 
termination. The SEU injection range, by definition, does not 
consider kernel configuration times and memory storage times 
and must correspond to the execution interval only. One SEU 
injection time (i.e., one clock cycle) is selected randomly from 
the SEU injection range for each SEU location. 

Fault campaigns were performed on the targeted modules 
considering different TLP configurations (8, 16 and 32 SP-cores) 
and different thread distributions (A and B). These thread 
distributions are defined depending on the number of threads per 
block. A configuration distributes every benchmark with 32 
threads and two blocks per grid. In contrast, B configuration uses 
64 threads per block and one block per grid. 

The Architectural Vulnerability Factor (AVF) [20] is 
computed for each targeted module under all TLP and threads 
distributions and for the selected benchmarks. This metrics is 
calculated as the ratio between the total number of failures, 
affecting the simulation output, by the total number of SEU 
faults injected. The following sections present the results of the 
fault injection campaigns for every target module. The AVF 
results are presented in Table 2 for each targeted module. 
TABLE 2 AVF RESULTS FOR THE TARGETED MODULES UNDER VARIOUS TLP AND 
THREAD CONFIGURATIONS. 

Benchmark FFT EDGE VectorAdd SP-Cores 
Thread Config A B A B A B  

Register file  
AVF (%) 

37.03 29.49 35.80 26.61 17.0 25.0 32 
36.92 33.44 36.72 36.40 25.18 28.91 16 
36.89 18.87 36.87 19.81 27.19 29.98 8 

Warp scheduler memory 
AVF(%) 

0.10 0.27 0.15 0.15 0.12 0.20 32 
0.07 5.44 0.698 4.81 0.56 7.67 16 
0.10 16.21 2.51 19.21 2.27 15.63 8 

Divergence stack  
AVF(%) 

1.24 1.41 0.91 0.90 - - 32 
1.5 1.66 1.21 1.22 - - 16 

2.25 2.48 1.82 1.81 - - 8 

B. Register File Results 
For this module 27 fault injection campaigns were 

performed, injecting SEUs in the register files under all 
configurations described below. The total number of faults 
injected is determined by establishing the total number of 
registers used by each application under each TLP configuration. 
Then, the total number of bit fields is multiplied by a constant in 
order to define the faults per location. 34,816 faults were injected 
for the FFT and Edge Detection applications under all SP 
configurations. In VectorAdd, 10,240 faults were injected for 32-
SP cores and 8,192 faults for the 16 and 8-SP cores 
configurations. 

The employed multi-thread simulation approach reduced a 
fault campaign of more than 150 hour to less than 16 hours. 
Besides, it also reduced the total amount of faults to inject in the 
campaign by up to 95%. 

An initial analysis of the results shows that the FFT and Edge 
benchmarks present a similar behavior: by changing the TLP and 
increasing the number of threads per block (B configuration) 
reduces the total error rate (AVF). A different behavior is shown 
by the Vector_Add application. In this case, raising the number 
of threads per block (i.e., increasing the parallelism) generates a 
direct increase in the failure rate provoked by SEUs. Fig. 2 
presents in more details of the results given in Table 1. 
 

 

  

 
Fig. 2.  Register File (a, c and e) and warp schedule memory (b, d and f) results 
for FFT (a, b), VectorAdd (c, d) and Edge (e, f) benchmarks. 
 

The FFT results show a slight increment in the SDC error-
rate when increasing the number of threads per block in the 
benchmarks. This behavior has a direct relation with the kernel 
execution time for each configuration. In principle, the data 
stored in an active register for a long time are more exposed to 
SEU effects (case B) than registers with multiple write and read 
activity (case A). In the experiments, the A configuration models 
required a longer execution time. Nevertheless, the effective 
block execution time is lower than for B configuration. 

a) b) 

c) d) 

e) f) 



 

Moreover, FFT in the A configuration uses half of the registers 
of the B configuration and employs them to process threads, in 
different interval times, belonging to different blocks. 

In this scenario, an increment in the number of threads per 
block should increase the SDC error rate, as it happens for the 
results with 32 and 16-SP cores. However, a detailed analysis of 
FFT instructions shows that these include control-flow 
instructions, which also depend on predicate conditions (flags). 
These predicate conditions are generated evaluating register 
results; it means that, some registers are involved in control-flow 
operations. Those registers can be considered as control-flow 
critical registers (CFRs). 

If a SEU fault affects one of these CFRs, the effect on the 
application is DUE. According to results, a high number of CFRs 
is generated by decreasing the thread distribution or parallelism 
(A Configuration). This behavior can be explained considering 
the number of registers employed in A Configuration and the 
CFRs mapped among threads in the same register locations, 
which means that, during kernel execution, one register location 
will store, in different time intervals, data belonging to two 
CFRs, increasing the probability of DUE. 

A different behavior is observed for the Vector_Add 
benchmark. In fact, an increment in the number of threads per 
block corresponds to an increase in the SDC error rate. This 
trend is consistent on each TLP configuration and can be 
explained by the increased SEU sensitivity by the additional time 
required by the warp scheduler to dispatch other warps from the 
same block. Moreover, the execution time to process an 
instruction under a long thread distribution (B Configuration) is 
the double of a block with fewer warps (A Configuration). 

Additionally, the SEU effects slightly increase by reducing 
the TLP. In this case, the main factor is the additional time 
required by the scheduler to process an instruction of each thread 
with the limited number of SP cores. On the other hand, the 
number of faults producing DUE and Time-Out behaviors is zero 
because this kernel has no control-flow instructions. 

In Edge Detection application, for each TLP configuration, 
the total number of SDC errors decreases when the number of 
threads per block increases. This behavior partially contradicts 
the results of VectorAdd and FFT benchmarks. Nevertheless, an 
explanation to this behavior can be found in the fact that Edge 
Detection kernel includes more control-flow, divergence 
generation and arithmetic-intense instructions than FFT. In fact, 
it is a longer and more elaborated application. Regarding the 
DUE error rate, results show an inverse relation between threads 
per block, in the kernel, and the number of DUE errors. The 
explanation is the same as for the FFT benchmark for DUE 
errors, which decrease due to CFRs. Moreover, these results 
(Edge Detection and FFT) are consistent with those introduced 
in [9] for applications with control-flow instructions. 

C. Warp Scheduler memory results 
Fig. 2 presents the error rate results for the warp scheduler 

memory. An initial results overview could contradict the 
criticality of this module in GPGPU operation. However, an 
analysis of its architectural organization and the role employed, 
during kernel execution, helps to clarify the behavior. 

Comparing results and simulation execution, the low error 
rate is mainly caused by a closed loop between the scheduler and 
the pipelines stages, which contributes to mask and reduce the 
SEU effects in the memory. This is written each time a warp 
finished the execution of an instruction. Moreover, this memory 
allows the writing and reading process in a few clock cycles after 
the instruction finishes, thus reducing the error propagation. 

Regarding threads distribution and parallelism, results show 
that increasing threads per block generates a direct rise in SDC 
and DUE errors. The kernel (in B Configuration) uses more lines 
in the warp memory and requires the execution of multiple warps 
to process one instruction. Moreover, warp line exchange is 
required to process all threads. This exchange generates a 
temporary short in the closed loop and if a SEU effect is present, 
affecting a loaded entry line, can be propagated into the system. 

A reduction in TLP produces a direct increment in the error 
rate. This increment is due to the additional effort required by the 
scheduler to process the threads. In this case, the scheduler 
employs twice to four times writing and reading sequences on 
the warp memory to finish a warp instruction contributing to 
increase the error rate. 

D. Divergence Stack Results 
The fault injection campaigns on this module did not 

considered the Vector_Add application because this kernel does 
not employ the module. The FFT and Edge Detection 
benchmarks were evaluated employing 50,688 faults in each 
fault campaign. The results are presented in Fig. 3. 

The divergence stack memory does not represent a major 
contribution to the error rate by SEU effects. The main 
explanation for this low error rate is the restrained usage during 
kernel execution. Each entry-line is employed for the fraction of 
a divergence generation, meaning a different SEU sensitivity per 
line. This behavior is directly dependent on kernel description, 
nesting divergence, total number of divergence path instructions, 
and the number of convergence points. Results support the 
previous explanation. Moreover, considering that usage of this 
unit, for both kernels, is less than two thirds of the total 
simulation time and each additional pushed line presents less 
activities, the sensitivity to SEU effects reduces drastically. 

 

 
Fig.  3. Divergence stack result for FFT (left) and Edge (right) benchmarks.  
 

The difference in error rate between both benchmarks can be 
found analyzing the kernel instructions, its description and the 
divergence paths length. The total number of SSY instructions 
plays an important role in the usage of each entry-line. 

A detailed inspection to FFT instructions shows that it has 
two SSY operations and long divergence paths. On the other 
hand, the Edge Detection kernel employs seven SSY instructions 
with shorter path length than FFT. Besides, some paths are 
parameter dependent.  

According to results, the behavior presented in Edge 
Detection, with multiple independent consecutive 
synchronization points, it seems to be less affected by SEU 
effects than a low number of divergence paths, which means a 
low number of writings in the stack line. In this case, the long 
interval time between writing and reading seems to increase the 
SEU sensitivity. 

Regarding DUE and SDC error rate, it directly depends on 
the affected location. A SEU in the program counter may 
generate Timeout or DUE errors. Similarly, a SEU affecting the 
thread mask field may generate SDC, by inactive threads, or 



 

DUE effects, by threads missing the taken path. Finally, a SEU 
in the warp ID field can generate Timeout effects. The difference 
in DUE and SDC error rate, for both applications, is mainly 
caused by the sensitivity of program counter and mask fields to 
generate hang conditions. The applications are prone to skip or 
lose the execution path by changes in these two fields instead of 
generating a SDC error. 

Regarding the number of threads per block, coherent results 
were found across TLP configurations. Although, A 
Configuration employs the same number of entry lines in the 
divergence stack, these lines are employed in different time slots 
and the execution time per block is lower than required in B 
Configuration. The additional time presented in B Configuration 
seems to be the responsible for increasing the SEU sensitivity. A 
decrement in the number of threads per block could help to 
reduce, in more than twice, the SDC error rate generated by SEU 
effects. By comparison of the TLP configurations, it seems to 
follow the same SEU sensitivity to execution time as presented 
on the previous modules. 

V. CONCLUSIONS 
As a major contribution of this paper, we reported a detailed 

analysis of the effects of SEUs in a GPGPU resorting to an 
extended GPGPU model and to some realistic applications. 

Two signal and image processing applications, FFT and Edge 
Detection, were designed and employed as benchmarks to 
evaluate the effects of SEU faults on several sub-modules of a 
GPGPU. Additionally, an application (Vector_Add) was 
designed to observe the SEU effects on data-intensive 
applications, which are commonly used in the practice. 

The detailed GPGPU model description was crucial to 
explain the behavior observable in control unit modules under 
the considered low error rate. Despite the fact that the FlexGrip 
model does not exactly match the architecture of the most recent 
GPGPU devices, we still claim that the performed analysis 
remains valid for them as well considering that those modules 
are also employed and implemented in new GPGPU 
architectures. 

In the Register File, a kernel divided in blocks reduces the 
SEU effects and increases error masking, considering that the 
same register set is used by independent threads belonging to 
different blocks. This behavior can be observed if two 
independent blocks are dispatched to the same SM, as it happens 
in FlexGrip. 

Results suggest that the threads-per-block distribution may 
play a major role as a mitigation strategy for SEU effects for 
applications with a high usage of data-path units, such as the 
Registers Files. On the other side, this distribution seems not to 
impact in a significant manner on the targeted control units.  

Analyzing the results for all modules, an increment in the 
number of threads per block seems to generate a higher SEU 
sensitivity on all data-path modules. This can be explained by the 
additional time to process all threads. Nevertheless, the final 
effect depends on the kernel behavior and the instructions 
employed in its implementation. 

The SP-cores customization on FlexGrip is useful for energy 
and area optimization. Nevertheless, from the reliability point of 
view the SP reduction increases the SEU effects on each targeted 
module and hence reduces the reliability of the system. 

We are currently working to extend the analysis of the SEU 
effects to other modules within the GPGPU architecture. 
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