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Abstract

Executing time critical applications within cloud environments while satisfying execution deadlines and response
time requirements is challenging due to the difficulty of securing guaranteed performance from the underlying virtual
infrastructure. Cost-effective solutions for hosting such applications in the Cloud require careful selection of cloud
resources and efficient scheduling of individual tasks. Existing solutions for provisioning infrastructures for time
constrained applications are typically based on a single global deadline. Many time critical applications however
have multiple internal time constraints when responding to new input. In this paper we propose a cloud infrastructure
planning algorithm that accounts for multiple overlapping internal deadlines on sets of tasks within an application
workflow. In order to better compare with existing work, we adapted the IC-PCP algorithm and then compared it
with our own algorithm using a large set of workflows generated at different scales with different execution profiles
and deadlines. Our results show that the proposed algorithm can satisfy all overlapping deadline constraints where
possible given the resources available, and do so with consistently lower host cost in comparison with IC-PCP.
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1. Introduction

Time critical applications are often complex systems with distributed components, dynamic behaviours and high
quality of service or experience (QoS/QoE) requirements. An application such as a disaster early warning system is
not only required to collect and analyse the influx of sensor data in real time, but it also has to be able to make rapid
decisions based on sudden events and adapt gracefully to increased activity. Meanwhile, a live event broadcasting
system may represent a more stable environment, but it also needs to process and switch between video feeds while
maintaining a constant low level of latency over a long period of time. Such applications are often distributed and
modelled as distributed workflows with multiple internal time constraints where, aside from the global deadline for
the entire workflow, certain sub-tasks have local deadlines for responding to input.

Strict requirements for runtime infrastructure often make the development and operation of time critical systems
difficult and expensive. Cloud computing delivers all the traditional software and physical infrastructure entities as
services, and provides a common interface for cloud users in a pay-as-you-go manner. The flexibility and elasticity of
cloud computing have enabled it to emerge as a major trend in computer science leading to its wide adoption in both
academic and industrial areas. These features also motivate the migration of time critical applications to the cloud;
however, there are still great challenges facing developers who wish to build cloud infrastructures that guarantee
systematically high performance for applications [1]. Most time critical applications are a composition of different
tasks with complex data dependencies. It has already been shown that deployment of the same task on different kinds
of resource offered by a cloud provider can lead to different results [2–4]; fundamentally, better virtual infrastructure
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can lead to better performance, but at greater cost. An infrastructure planner for the Cloud therefore should plan an
optimal infrastructure that not only meets the QoS requirements of the application, but that also achieves additional
objectives such as minimising monetary cost or power consumption. For this reason, cloud infrastructure planning for
time critical applications is often more challenging than scheduling application workflows onto fixed infrastructure.

Our concern here is first and foremost with the selection of virtual infrastructure that is capable of running a
distributed application workflow such that all internal response time deadlines will be met. We focus on persistent
workflows, where the constituent tasks are implemented as services that will continue to run for the entire application
lifespan, and thus must continue to respond to new input under the same deadline constraints throughout that lifespan.
We assume that the infrastructure resources selected exhibit a stable level of performance, with a stable price for
purchasing those resources that is maintained for the entire duration of an application’s execution.

In order to cope with the challenges of time critical applications in the Cloud, we propose a Multi-dEadline work-
flow Planning Algorithm (MEPA) to plan the most cost-effective virtual infrastructure for an application workflow
with multiple internal deadlines, aimed at guaranteeing all response time deadlines and minimising the required oper-
ating budget. To measure the performance of MEPA, we adapt the popular IC-PCP algorithm [3] in order to better fit
with the specific characteristics of our problem and use the adapted algorithm as our measurement baseline.

The rest of the paper is organised as follows: section 2 reviews related work, section 3 describes the workflow
planning problem, section 4 presents the details of MEPA, section 5 describes the workload used for experiments,
section 6 presents our experimental results, section 7 concludes the paper and section 8 presents possibilities for
future work.

2. Related Work

For the problem of planning a virtual infrastructure for distributed applications, we focus on the abstract applica-
tion workflow, the decomposition of an application into individual discrete tasks and communication dependencies,
and the assignment of individual tasks in the workflow to virtual resources (generally virtual machines or VMs) pro-
vided by a cloud environment. In formulating our problem and constructing a solution, we can draw upon prior work
in the domains of e-science (which has long been concerned with the deployment of scientific workflows on grid or
cloud computing environments), and the development of algorithms for producing optimal resource assignments on
virtual infrastructures.

Deelman et al. [5] provide a survey of the different kinds of workflow found in the e-science domain. Based
on their analysis, we can classify workflows deployed on virtual infrastructure into two basic categories: scientific
workflows and service workflows. Scientific workflows are workflows in which each task is executed once and the
virtual resource on which the task is deployed is released upon completion of the task and all following communication
between the task and its successors. Service workflows are those with tasks that can be regarded as persistent services,
where the tasks persist until the whole application is completed, and have to continue to respond to new inputs for
the entire duration of the application. Workflows in both categories may exhibit multiple deadlines, but our concern
in this paper is with the latter kind of workflow, which are often used for time critical applications in environmental
monitoring. UrbanFlood [6] is an example of an early warning system that tries to solve the problem of flood control,
while Kosukhin [7] presents an architecture for performing extreme metocean event forecasting on cloud platforms. In
the case of the UrbanFlood system, the workflow has multiple stages with separated modules for sensor monitoring, AI
anomaly detection, reliability analysis, breach simulation, virtual dikes, and decision support. Such a system can have
multiple internal deadlines in order to ensure timely responses, especially if individual modules must report to other
external systems; the quality of service is not addressed in [6] when planning the infrastructure for the application
however.

Allocating and scheduling cloud resources for application workflows has become increasingly important for both
the cloud provider and application developer, and so there are now many scheduling algorithms available to determine
the amount and type of virtual machines needed to execute such workflows at minimal cost. To the best of our
knowledge however, all this work addresses the problem of planning infrastructures for workflows that have a single
global single deadline, rather than multiple internal deadlines which is our main concern.

Yu et al. [8] propose a method to minimise the execution cost of a workflow to satisfy a global deadline. Their
method first clusters the sequential tasks that have only one parent and child together and assigns each task with a sub-
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deadline based on its minimum processing time and the sub-deadlines of its predecessors. Each task is then assigned
to the cheapest VM that can meet the deadline. However, the communication cost between tasks is not considered.

The IaaS Cloud Partial Critical Paths (IC-PCP) algorithm [3] calculates partial critical paths through the applica-
tion workflow in order to schedule tasks in the cloud in order to solve the same problem. One assumption IC-PCP
makes is that when two tasks are executed on the same VM, the data communication cost between those tasks is zero.
This assumption was widely used and discussed for scheduling in heterogenous computing systems with unbounded
numbers of processors [9, 10]. In cloud systems, this assumption is quite reasonable because the bandwidth of two
tasks communicating in the same VM is typically far higher than the bandwidth between two different VMs. This
assumption can be adjusted however by adding a ratio reduction on the communication time instead of setting it to
zero [4].

IaaS Cloud Partial Critical Paths with Deadline Distribution (IC-PCPD2) [3] combines IC-PCP with the approach
taken by [8]; after finding a partial critical path, each task in the path is assigned a sub-deadline with the execution
time in proportion to the whole partial critical path length. The tasks in the workflow are then assigned with the
cheapest VMs.

Meta-heuristic approaches for minimising the execution cost of workflows have also been proposed. Rodriguez et
al. [4] apply particle swarm optimisation (PSO), encoding the task-resource mapping as the particle’s position. They
designed a schedule generation algorithm to decode the encoded particle’s position into a schedule by calculating the
starting time based on data and resource dependencies (for example the sharing of a single VM by multiple tasks).
It is difficult to determine whether the two tasks are provisioned in the same VM only based on the resource type
information.

Instead of explicitly considering the deadline as a constraint, Convolbo and Chou [11] only minimise the execution
cost of the workflow and propose a heuristic approach which exploits the parallel properties of the workflow. They then
adopt a layering approach to determine the schedule of tasks and VM type in each layer. However, communication
cost is not discussed in [11], either.

Heterogeneous Earliest Finish Time (HEFT) has been proved to perform better than other heuristics in robustness
and schedule length [12]. In [13], Durillo and Prodan propose Multi-Objective HEFT to optimise the trade-off between
monetary cost and makespan of the workflow by extending HEFT; the communication cost is only used in the task
ranking phase and not addressed in the infrastructure planning phase. Wu et al. [14] propose a heuristic algorithm
minimal slack time and minimal distance to guarantee the global deadline of the workflow and then a VM instance
hour minimisation algorithm is applied to further reduce the cost; however they assume that the VM instances are
homogeneous which means that only one virtual machine type is considered.

The Critical Path-based Iterative (CPI) [15] and complete Critical Paths (CPIS) [16] algorithms are other algo-
rithms for solving the cloud infrastructure planning problem within the bounds of a single deadline. Based on the
calculated earliest finish time and latest finish time of individual tasks, CPI identifies a complete critical path through
the application workflow from start to finish and assigns the tasks in the critical path to VM services. In CPIS, a graph
labelling method is applied to construct complete critical paths of the kind generated by CPI. Similar to IC-PCP, CPIS
uses the VM service with best performance to find such critical paths.
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Table 1: Summary of the relevant algorithms for planning cloud resources and for scheduling workflows

Algorithm Objectives Deadline
Constraints

Workflow
type Limits

cluster and assign
sub-deadline for each task [8] cost single scientific Communication time is not considered

IC-PCPD2 [3] cost single scientific
Sub-deadline assignment

may reduce clustering

MOHEFT [13]
cost, makespan

trade-off - scientific
Communication time is only used in the task
ranking phase but not in the planning phase

Heuristic DAG
scheduling algorithm [11] cost - scientific Communication time is not considered

IC-PCP [3] cost single scientific
All the tasks in the critical path

assigned to the same VM

PSO [4] cost single scientific
Encoding makes schedule generation

process hard to determine
CPI [15] cost single service High time complexity in the path assignment

CPIS [16] cost single service High time complexity in the path assignment

Table 1 summarises the related work. Existing works about ‘multiple deadline’ workflow scheduling are mainly
about scheduling multiple workflows with each workflow having a single global deadline. For planning infrastructures
for workflows with multiple deadlines we can apply a single deadline scheduling algorithm adapted to the multiple
deadline case, or a new approach can be tried. In this paper we examine both approaches in order to permit us to
perform comparative analysis of our solution with existing work; the algorithm that can be most easily adapted to this
situation is IC-PCP.

3. Problem Formulation

The QoS requirements of cloud applications are diverse, being based on the type and requirements of the individual
application. According to the state of the art, the most widely discussed QoS requirements include deadline, budget,
power consumption, reliability, security and the aggregation of these requirements [17]. For time critical applications,
deadline is one of the most important QoS parameters. Even if the functional correctness of the application can be
guaranteed, the violation of deadlines can still lead to application failure. Cloud infrastructures should therefore be
carefully planned to maximise the likelihood of meeting the timing constraints of time critical applications. Given the
standard pay-as-you-go model used in clouds, monetary cost is also an important concern for developers deploying
their applications in the cloud. In this paper we confine the problem of workflow planning to that of planning a VM
infrastructure to host the workflow of a time critical application that will satisfy its (multiple) deadline requirements
while minimising monetary cost.

Deployment of tasks on different VM services leads to different levels of performance, resulting in different
impacts on the application QoS and cost. We assume that after one task transfers its results to all its successors, the
VM where the task is deployed is not released. Instead, the task will act as a persistent service waiting for more input;
thus the deadline for a given task must be satisfied every time the task receives new input. This notion of persistence
is common for service-oriented architectures, but is quite different from the assumptions made be many works in
scientific workflow scheduling [3, 4, 18, 19]. The tasks in such workflows usually have a longer duration, with some
tasks requiring days or even weeks to complete, even when deployed on a high performance infrastructure. When one
task finishes its processing, the resources upon which it is deployed can then be released or taken over by other tasks.
However, for most time critical applications, tasks are typically persistent, being required to remain operational until
the whole application is completed. Individual invocations of tasks require a response in the scale of minutes or even
(milli)seconds. Thus, it is almost impossible to respond to new input within time constraints if resources have been
released and need to be reclaimed. Another assumption we make is that all the tasks in the workflow will be deployed
on non-shareable VM services because it has been shown that sharing VMs impacts the performance of tasks [16].

The workflow of a cloud application can be represented as a Directed Acyclic Graph (DAG) that explicitly reveals
the data dependencies between tasks [17]. In this paper we useG = 〈V,E〉 to represent the workflow of an application.
V = {v1, v2, . . . , vn} is the set of nodes v that corresponds to tasks in workflow G. For each task v ∈ V , we define
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the parents of v as pred(v) = {v′ | v′ ∈ V ∧ (v′, v) ∈ E}. Correspondingly, we define the children of v as
succ(v) = {v′ | v′ ∈ V ∧ (v, v′) ∈ E}. We assume that the tasks in workflow G can be executed on different types
of VM service provided by the cloud provider and cannot be split into two or more sub-tasks.

We also assume, for convenience, that every workflow has a single initial task ventry such that pred(ventry) = ∅
but pred(v) 6= ∅ for all other tasks v ∈ V . Similarly, we assume that every workflow has a single terminal task
vexit such that succ(vexit) = ∅ but succ(v) 6= ∅ for all other tasks v ∈ V . For applications with multiple initial or
final tasks, it is possible to adapt their workflows by attaching dummy tasks to the start or end of the workflow with
zero communication cost to the actual initial or final tasks respectively, however some adaptation of the algorithms
presented in the next section will then be required.

A cloud provider often offers different types of VM service at different prices for customers to choose from; e.g.,
M (general purpose), I (I/O optimized), C (computing optimized) and R (memory optimized) VMs as offered by
Amazon EC2 [20]. In this paper we denote such VM services as basic service types. Each task in the workflow can
be deployed on a instance of one VM service type. When we refer to a VM service, we refer to a VM service type
offered by the cloud provider. We refer to a concrete VM to which a single task is assigned as a VM instance. Assume
the cloud provider provides m types of VM service s1, . . . , sm, and that the price per time unit of each service s is
p. Deployment of tasks on different VM services will result in different performance, which can be represented by a
performance matrix T :

T =


v1 v2 ··· vn

s1 t11 t12 · · · t1n
s2 t21 t22 · · · t2n
··· · · · · · · · · · · · ·
sm tm1 tm2 · · · tmn


Each element tij is the execution cost of task vj on service si, being the length of time between the arrival of a

request and the generation of the corresponding response. The response time of a task depends on the type of VM
where it is deployed and the input workload. The input workload for persistent tasks usually follows the same pat-
tern within a certain period, with the number of instances of input being retrieved over the course of the application
increasing with application complexity rather than the size of individual input instances themselves; we therefore as-
sume a static value for the performance based on the worst case observed performance. Performance observations can
be obtained from historical data [21] or using performance estimation methods [4]. Due to the dynamics introduced
by e.g. resource sharing, network delay and VM consolidation in clouds however, the performance can vary over time
even when the same task is executed with the same workload on the same VM [19].

For a workflow graph G = 〈V,E〉, the communication links between the tasks in V are represented by E such
that ∀e ∈ E, e is a tuple (v, v′) where v ∈ V denotes the source of the communication and v′ ∈ V denotes the
destination of the communication. We can add another entity W to represent the communication cost between tasks
in the workflow. The communication cost denotes the data transfer time between one task to another. We assume that
the bandwidth among VMs in the same data center is always the same. Thus data transfer time is mainly determined
by the size of the data being sent, which for each individual invocation of a task we assume to be mostly the same
irrelevant of input. Let W [v, v′] return the communication cost between a task v and a task v′, derived by equivalent
means to those used to derive the values of a performance matrix T as described above.

For time critical applications in the cloud, performance variation in different instances of the same task on same
type of VM should not be neglected, and so it may be worth in some cases injecting additional factors δ1 and δ2
representing performance fluctuation within VMs and between VMs respectively. If such factors are being included,
then for the purposes of planning, given a performance matrix T and a communication cost function W , task vj on
a service si should be treated as having an actual execution cost of tij × (1 + δ1) and each communication link
between two tasks v and v′ should be treated as having an actual communication latency of W [v, v′] × (1 + δ2).
Given a reasonably accurate description of the performance of tasks on different VM services and the communication
cost between tasks in a given data center, we can determine the suitability of certain services for particular tasks.
The execution of the tasks in the cloud should not violate the data dependencies of the tasks in the workflow, which
means that a task can start execution only when all its predecessors have completed their processing and the data
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communication between them is finished. We use Q to represent the set of deadline requirements q of the time critical
application workflow, where q = 〈v, d〉 denoting that task v should complete before time d, as measured from the
start of the workflow. We use D(v) = d to represent the deadline of v. A single global application deadline can
be seen as a special case: if a workflow has only a global deadline d1, then the QoS requirement of the workflow is
Q = {〈vexit, d1〉} where vexit is the final task in the workflow.

Fig. 1 shows a typical application workflow with successive overlapping deadlines, interpreted as a disaster early
warning system. The processing of the workflow starts from task v0 = ventry and ends with task v10 = vexit. Each
node in the workflow represents a task, which can be deployed using VM services offered by the cloud provider. The
arcs between nodes represent communication dependencies, annotated with their communication costs. The entry
node is a node of the workflow DAG which indicates the onset of the processing of the persistent services represented
by nodes v1, v2 and v3, which are three distributed data pre-processing tasks. Task v4 performs synchronisation and
selection of pre-processed sensor data, which is forwarded to v5 to be used in predictive simulation. The forecast
result is transferred to v6 which then passes it on to parallel disaster assessment modules v7, v8 and v9. Assessments
are aggregated by a final task v10.

Figure 1: Example of an abstract early warning system worflow with multiple deadlines.

Fig. 1 presents three deadlines d1, d2 and d3 constraining the processing time for events; a global deadline d1,
and two intermediate deadlines d2 and d3 imposed on simulation and disaster assessment respectively. We want to
select VMs for tasks in the workflow such that all three deadlines can be met and the cost of hosting the application is
minimised. Choosing VM services for tasks with better performance makes it easier to meet deadlines, but can lead
to unnecessary extra cost if more modestly performing VMs can suffice. The problem thus turns into a constrained
optimisation problem. Generic solutions like IC-PCP [3], CPIS [16] and CPI [15] can find solutions for meeting the
global deadline d1 by applying heuristic algorithms, but may not meet the other two deadlines depending on how they
influence one another—for example if d2 is a very loose deadline and d1 is comparatively tight, then if we plan VMs
for the workflow considering d2 using the IC-PCP approach, d1 might still be violated. Conversely, if d1 is a loose
deadline and d2 is tighter, the d2 can be violated if we use IC-PCP only considering d1.

In principle, IC-PCP can be adapted to plan the kind of service-based workflows discussed in this paper by using
the sum cost of VMs per time unit as the metric for measuring whether one assignment is cheaper than the other and
forbidding multiple tasks from being assigned to the same VM instance. By changing the calculation on the latest
finishing time to take into account internal deadlines, a ‘minimally modified’ variant of IC-PCP (which for brevity
we will refer to as IC-PCP*) can plan for workflows with multiple deadlines. What we found however was that this
approach still incurs unnecessary monetary cost—it is possible to drive the cost down further than such a minimal
adaptation of IC-PCP permits in many cases. To illustrate this, we propose a more substantive modification of the
approach provided by IC-PCP that we refer to as Multi-dEadline workflow Planning Algorithm (MEPA). In the next
section, we describe our algorithm asnd its characteristics in detail, and then proceed to compare it experimentally
against IC-PCP* against a wide range of randomly generated workflows.
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4. Multi-dEadline workflow Planning Algorithm (MEPA)

As described in the previous section, a time critical application with multiple internal deadlines can be modelled as
a set of inter-dependent tasks deployed on VM instances. We consider the assignment of sj |minj∈(0,m] tji× (1+ δ1)
to task vi to be the assignment of vi that allows vi to respond quickest to input. Conversely, the assignment of
sj |maxj∈(0,m] tji × (1 + δ1) for task vi is the worst assignment of vi. The ‘best’ assignment of all tasks in the
workflow does not necessarily equate to an optimal solution however, because while the makespan of the workflow
might be minimised, the monetary cost for hosting the application is not itself being optimised.

In this paper, we assume the service quality of virtual infrastructures will be guaranteed by their providers; the
possible failures of virtual machines and application components are thus not specifically considered in the planning
algorithm.

4.1. MEPA description
The pseudo code of MEPA is shown in Algorithm 1. MEPA uses a “compress-relax” method to solve the workflow

planning problem: we “compress” by initially assigning tasks to VM services with better performance so that the
makespan of the workflow is compressed within the deadline, and we “relax” to by re-assigning tasks to VMs with
worse performance but lower cost (while still satisfying all deadlines).

Algorithm 1: MULTI-DEADLINE WORKFLOW PLANNING ALGORITHM (MEPA)
Input: G,T,W,Q
Output: Planned VMs

1 for vi in G do
2 Initialise vi with sj |min j ∈ (0,m]tji × (1 + δ1)
3 Set task vi as unassigned

4 Calculate the EST of tasks in the workflow
5 LFTCalculation(G, vexit, T,W,Q) (Algorithm 2 below)
6 while there exist unassigned tasks vi do
7 ConstructPCP(G,TW,Q, vi) (Algorithm 3)
8 Assign tasks in PCP with GAPA (see Section 4.2)
9 Set the tasks in the PCP as assigned

10 Update the EST, EFT and LFT of the tasks in the workflow

11 return planned VMs.

Initially MEPA assigns each task in the workflow with the best performing VM to guarantee a solution if one
exists—if all deadlines cannot be met using the best VM services available, then the application developer has to
turn to the cloud provider to obtain VMs with even better performance or else amend their QoS requirements. Based
on the initial “compressed” assignment, we then calculate the Earliest Start Time (EST), Earliest Finish Time (EFT)
and Latest Finish Time (LFT) based on the data dependencies between tasks (and the corresponding communication
costs).

We use A(vi) to represent that the task vi is assigned with the A(vi) = sj type of VM. The Earliest Start Time
(EST) of task vi represents that during the processing of the workflow, vi can start processing an event at its EST.
When all the tasks in the workflow have been assigned, the Earliest Start Time of task vi is defined as follows[3]:

EST (ventry) = 0

EST (vi) = max
vp∈pred(vi)

{EST (vp) + T [A(vp), vp]× (1 + δ1) +W [vp, vi]× (1 + δ2)}

Accordingly, the Earliest Finish Time (EFT) of vi is defined as:

EFT (vi) = EST (vi) + T [A(vi), vi]× (1 + δ1)

We take the global deadline of the workflow and assign it to the LFT of the exit node, and then we iteratively assign
the internal deadlines of tasks; Algorithm 2 shows how the LFT of each task is calculated. The algorithm applies a
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recursive function which takes one task in the workflow as input and backtracks through all its parents to assign LFTs.
We use D(vp) to represent the deadline of task vp. If tasks have user-defined deadlines, then we compare whether
each deadline is earlier than the calculated LFT. If the deadline is earlier than the LFT, it means that the deadline has
stricter requirement, and so we simply assign that deadline as the task’s revised LFT. Otherwise, we take the calculated
LFT as the deadline of each task because if an assignment of a task violates that LFT, then it will be impossible to
meet later deadlines with the services available. Formally, the LFT is defined as:

LFT (vi) =

{
minvc∈succ(vi){LFT (vc)− T [A(vc), vc]× (1 + δ1)−W [vi, vc]× (1 + δ2)} 〈vi, ·〉 /∈ Q
max{D(vi),minvc∈succ(vi){LFT (vc)− T [A(vc), vc]× (1 + δ1)−W [vi, vc]× (1 + δ2)}} 〈vi, ·〉 ∈ Q

The LFT is calculated starting from the exit task, which is initially assigned with the global deadline of the entire
workflow. In the workflow, the user may or may not specify the global deadline. Therefore, encountering such
situation, we assign a ‘large’ deadline so that the assignment of the workflow even with cheapest VM can meet the
global deadline. The ‘large’ deadline is set as the sum of the worst case response time of each task plus all the
communication time. W (e) represents the communication time the source and destination of e. Formally, the exit
task’s LFT is calculated as:

LFT (vexit) =

{
D(vexit) 〈vexit, ·〉 ∈ Q∑n

i=1 T [m, i]× (1 + δ1) +
∑

e∈E W (e)× (1 + δ2) 〈vexit, ·〉 /∈ Q

Whenever the EFT of a task is greater than its LFT, the currently available services cannot satisfy the time con-
straints of the workflow because the task will always finish late.

Algorithm 2: LFTCALCULATION

Input: G, v, T,W,Q
Output: Updated LFT of all v’s predecessors

1 if pred(v) = ∅ then
2 return
3 else
4 for vp ∈ pred(v) do
5 lft = LFT (v)− T [A(v), v]× (1 + δ1)−W [vp, v]× (1 + δ2)
6 if lft < LFT (vp) then
7 LFT (vp) = lft if 〈vp, ·〉 ∈ Q ∧D(vp) < LFT (vp) then
8 LFT (vp) = D(vp)

9 if LFT (vp) < EFT (vp) then
10 Report that the current cloud provider cannot guarantee the deadline of the workflow

11 return LFTCalculation(G, vp, T,W,Q)

In this paper we construct the partial critical path using the same method as for IC-PCP. However, to enhance
performance, the IC-PCP will only allow each node be assigned once. Thus, the partial critical path means the longest
path between two unassigned nodes.

A critical parent of v is defined as the unassigned parent of vi with the latest arrival time at it [3]. Formally, the
critical parent is defined as:

CParent(v) = {v′ | v′ ∈ pred(v) ∧max{EFT (v′) +W [v′, v]× (1 + δ2)}}

A partial critical path of a task v can be formally defined as [3]:

PCP (v) =

{
empty CParent(v) = ∅
CParent(v) + PCP (CParent(v)) CParent(v) 6= ∅
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Pseudo-code of the partial critical path construction algorithm is show in Algorithm 3. After initialisation, the
partial critical path is constructed starting from a node vk, adding the parent of vk with the latest arrival time to the
partial critical path until an assigned node is reached.

The main difference between IC-PCP and solutions like CPI and CPIS is that IC-PCP defines partial critical paths
while CPI and CPIS apply a Graph Labelling Method (GLM) to construct the complete critical path. The concept of
GLM is quite similar to the concept of Critical Parent in IC-PCP which finds the parent that has the latest arrival time
on the current task. In IC-PCP, each task in the workflow is assigned once. However, in CPI and CPIS, the task can be
assigned more than one time because the complete critical paths constructed each iteration may have some intersecting
tasks. The constructed partial critical path is assigned with a Genetic Algorithm based Planning Algorithm (GAPA)
which will be discussed later in this chapter. After assignment, the tasks in the PCP are tagged as assigned and the
EST, EFT and LFT of the tasks in the workflow are updated. This process will continue until all the tasks in the
workflow are assigned.

Algorithm 3: PARTIAL CRITICAL PATH CONSTRUCTION ALGORITHM

Input: G,T,W,Q, vk
Output: A partial critical path

1 PCP = (vk)
2 while pred(vk) has unassigned members do
3 find vi that has maxvi∈pred(vk)EFT (vi) +W [vi, vk]× (1 + δ2)
4 append vi to PCP
5 vk = vi

6 return PCP

4.2. GAPA description

We now describe how we approach the partial critical path assignment problem. A partial critical path can be seen
as a sequential workflow where each task in the workflow has only one predecessor and one successor, except for the
entry and exit tasks. We assume that the tasks v1, v2, . . . , vk in the partial critical path PCP (vk) with length k are
ordered based on the data dependencies in the workflow, which means that vj will not execute before vi finishes if
1 ≤ i < j ≤ k. Now assume the cloud provider offers m different VM services. If each task in the critical path
can be assigned to any type of VM service, there are mk choices for assigning the path in total. When the length
of the partial critical path or the number VM service types increase, it becomes increasingly prohibitive to iterate
over all possible solutions. We can consider the calculation of the overall deadline of a partial critical path as the
capacity of a knapsack and the other deadlines within the critical path as constraints and formulate the problem as a
Multiple Level-constrained Multiple Choices Knapsack Problem (MLMCKP). Traditional Multiple Choice Knapsack
Problems (MCKPs) consider a set of item classes and try to select an item for each class to achieve objectives like
value maximisation within the capacity of the knapsack [22]. In MCKP, there is only one constraint, which is the size
of the bag. However in MLMCKP there are additional internal time constraints. If we consider the overall deadline of
the workflow as the size of the knapsack, the internal time constraints can be seen as the size constraint of additional
knapsacks inside the ‘global’ knapsack. MCKP differs quite a lot from the traditional Binary Knapsack Problem
(BKP), which only decides whether or not to put an item into the knapsack, having a much larger searching space
than BKP. Based on the description above, and given a workflow graph G = 〈V,E〉, a performance matrix T and a
communication cost function W , we formulate the MLMCKP problem as:
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minimize
x

k∑
i=1

m∑
j=1

pj × xji

subject to ∀k′ ∈ [1, k], EST (v1) +

k′∑
i=1

m∑
j=1

tji × (1 + δ1)× xji +
k′−1∑
i=1

W [vi, vi+1]× (1 + δ2) < LFT (vk′)

m∑
j=1

xji = 1

xji ∈ 0, 1

The objective of MLMCKP is to minimise the cost of the partial critical path within the constraints of the LFT
of each task. In this paper we use the sum of VM instance price per time unit to represent the cost because the
money users need to pay depends on it and the lifetime of the VM reservation which is specified by the user. We do
not consider the internal deadlines because these time constraints have already been subsumed in the LFTs already
calculated. We can use the summary price of all planned VMs because all the tasks in the workflow are persistent
services that last the duration of the workflow; therefore the total cost of executing the workflow is a constant factor
of the combined summary price of VMs. pj represents the price per time unit of service sj . This model can also be
applied to scientific workflows by changing the objective to be the aggregation of price per unit times the duration of
each instance. We take the same assumption as IC-PCP that after assignment each task in the critical path should not
violate its LFT. When IC-PCP assigns a VM to a path, it chooses “a new instance of the cheapest service which can
finish each task of the critical path before its LFT” [3]. Because IC-PCP initially assigns to each task in the partial
critical path the VM with the best performance, the LFT calculated after initialisation should not be violated because
if the VM service with the best performance cannot meet the LFT of a task, then the cloud resources cannot meet the
timing constraints of the workflow. EST (v1) represents the earliest start time of the first task in the partial critical
path. The LFT (vk′) represents the Latest Finish Time of task vk′ .

∑m
j=1 xji = 1 serves to assert that only one service

will be selected for each task.
As an example, we revisit the workflow shown in Fig. 1. Assume that the cloud provider offers three different

types of VM service, and that the response time of the tasks in the workflow of Fig. 1 for each of the three different
VM types is described by T below. The prices per time unit of the VM services s1, s2, s3 are 5, 2, 1 respectively. We
set the time constraints in the workflow d1 as 60, d2 as 26 and d3 as 40.

T =


v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

s1 1 2 4 5 3 7 6 5 5 7 2
s2 2 4 5 7 6 8 9 7 6 8 5
s3 3 5 8 8 8 10 12 10 8 10 7


In IC-PCP’s initialisation phase, the EST, EFT and LFT of all the tasks are calculated by assigning the VM

service with the best performance for each task. We therefore initially assign s1 to all the tasks in the workflow.
Using Algorithm 3, we obtain a critical path of the workflow consisting of seven tasks {v0, v3, v4, v5, v6, v9, v10}.
We calculate the LFT of these tasks all along the critical path based on Algorithm 2, equalling 4, 11, 16, 24, 32, 40
and 60 respectively. According to the path assignment algorithm in IC-PCP, relying solely on instances of service
s1 for all tasks in the partial critical path will meet the LFT of the tasks with a total cost of 35. However we can
find an alternative assignment of service types to tasks {s3, s2, s1, s2, s1, s1, s3} with a total cost of 21 that can still
meet all internal deadlines. For the path assignment algorithm, IC-PCP assigns all the tasks in the critical path to the
same VM type. Such assignment can lead to failure of some deadlines, or at the very least introduce unnecessary
extra cost as shown in the example above. We therefore formulate the problem of path assignment as a MLMCKP
problem and propose a genetic algorithm based approach to solve the problem of identifying good path assignments.
Evolutionary algorithms have been proven to perform well when dealing with problems that have complex objectives
and constraints [23]. We therefore use a genetic algorithm to select the best mapping of VM services to tasks, referring
to our specific implementation as GAPA (Genetic Algorithm based Planning Algorithm).
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In GAPA, we maintain a population in each generation. The population is a set of candidate solutions (namely
chromosomes). We encode each type of VM provided by the cloud provider as a value between 1 and m. When a
partial critical path of length k is identified, we encode the tasks in the path v1, v2, . . . , vk as an individual with a
chromosome y1, y2, . . . , yk where 1 ≤ yi ≤ m. Each element in the chromosome denotes that vi is planned with
a VM of type syi

. In the initialisation phase of the genetic algorithm, a population consisting of a certain number
of individuals is initialised for a critical path. The chromosomes of all the individuals in the initial population are
initialised randomly. We generate a random value ranging from 1 to m for each position of a chromosome and all
the individuals in the population have the same length as the partial critical path. Apart from the randomly generated
individuals, we also generate individuals with chromosomes that assign the whole partial critical path to the same type
of VM, resulting in m additional assignments.

The objective of our algorithm is to minimise monetary cost; thus cost is part of the fitness function. The cost is
calculated by summing up the prices per time unit of VM services

∑k
i=1 pyi

. The constraints on LFT still apply, so
the randomly generated individuals are not always acceptable solutions. When any violation of the critical path LFT
happens, a heavy penalty is added so that such unacceptable assignments are easily eliminated in later generations.
The fitness of a solution is thus the inverse of the sum of the monetary cost and any accumulated penalties:

1.0/(

k∑
i=1

pyi
+ c×

k∑
i=1

penaltyi)

penaltyi =

{
0 LFT and deadline of task i are not violated
1 LFT or deadline of task i is violated

In evolutionary algorithms, the genetic operators (crossover, mutation and selection) are key to the performance of
a genetic algorithm. The crossover operator of a genetic algorithm serves to generate the offsprings of the population
through the crossover of some parts of the parents’ chromosomes. In GAPA, any two individuals in the previous
population are mated with certain probability and the chromosomes are intersected by exchanging two randomly
chosen points. The mutation operator ensures population diversity and stops possible paths to solutions from being
prematurely discarded. After crossover, the chromosome of each individual is mutated with a certain probability.
When one or more places in a chromosome are chosen as the mutation position, the number in the position is randomly
regenerated with a different type of VM. We keep the same size of population for each generation. So the same
number of chromosomes are selected in each generation by choosing individuals from the combination of the previous
generation and a newly generated generation with higher fitness values, eliminating solutions with lower fitness value.
In this way, the unfeasible solutions can be eliminated in the new generation.

Usually the genetic algorithm stops once a specific number of generations have passed, or a feasible solution is
found that can meet the requirements of the user. For MLMCKP, a feasible solution is an assignment of VMs to each
task that can meet the LFT or deadline of all tasks. Assigning the VM service with the best performance for each
task is a simple solution, but can incur a high monetary cost. As MCKP has already been proven to be NP-hard, it is
difficult to determine when an optimal solution has been found, so we limit the number of generations produced based
on the length of the partial critical path and select the best solution in the final generation. In our experiments, we
set the generation limit to a × len(pcp), where a is a constant factor that can be tuned by the user; smaller for faster
processing, larger for better solution quality.

5. Experiments

Our implementation of MEPA is based on Python 2.7.10. We use NetworkX (version 1.10) [24] to manage the
workflow and PyDOT2 (version 1.0.33) [25] to parse the graphs generated by GGen [26]. NetworkX is a powerful
Python library for manipulating complex networks. GGen is an open source random graph generator integrating
several different random graph generating algorithms. The generated random DAGs are represented in DOT, which is a
plain text graph description language. DEAP (Distributed Evolutionary Algorithms in Python) [27] is a framework for
experimenting with evolutionary algorithms such as genetic algorithms and particle swarm optimisation. In this paper
we use DEAP as the underlying framework for implementing GAPA. We conduct our experiment on the Distributed
ASCI Supercomputer 5 (DAS-5) [28].
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5.1. Workload generation

To investigate the behavior of our algorithm, we use the graph generator GGen [26] to generate random workflow
typologies with different time constraints. Specifically, we apply ‘fan-in/fan-out’ methods to generate DAGs, which
are widely used in random graph generation. This graph generation method takes three parameters: the number
of vertices, the maximum in-degree of each node and the maximum out-degree of each node. This kind of graph
generation method will generate a graph topology with all tasks’ in-degrees and out-degrees within the chosen upper
bounds. If the in-degree and out-degree is set to be one, then the DAG becomes a sequential graph. In order to test
how our solutions perform on different scales of graph, we set the number of vertices in the workflows to range from
20 to 28. The in-degree and out-degree are used to generate DAGs with different shapes and we set the maximum
in-degree and out-degree to range from 1 to 5 and 1 to 4 respectively.

For each DAG we need to generate an execution profile. The execution profile includes the performance of tasks
on different VM services as well as the communication costs between tasks, which ranges from 1 to 200. In many time
critical applications, the performance of tasks on different services varies for each task. The response time of tasks
may be less than or greater than the communication cost depending on the nature of computation being performed
and the quality of the network. So in order to make the data more realistic, we should randomly generate response
times for tasks running on different VM services that can both exceed and be significantly less than communication
times. For each task we first generate the execution cost of the task on the ‘best’ VM service, randomly selecting a
response time between 1 and half of the communication cost upper bound. The execution costs of the task on the other
‘lesser’ services are generated iteratively by increasing the previously generated cost by a randomised proportion. In
order to simulate better different kinds of real world application, our performance generation method ensures that
the performance of each task on different VM types can be substantially larger than the communication cost or much
smaller, ensuring greater diversity in the workflows generated and removing any implicit assumption about the relative
cost of computation versus communication.

The time constraints attached to a workflow are also randomly generated. The number of time constraints are set
with a proportion to the scale of the workflow. Specifically, we set the number of time constraints per workflow to be
d0.1× |V |e, where |V | is the number of tasks in the workflow. We then randomly select d0.1 × |V |e tasks from the
workflow (with the exception of the last task, which is always the final task in the workflow), and for each task we
attach a random deadline based on the critical path calculation performed during workflow generation, limiting each
deadline’s range based on best and worst performing VM services so as to ensure no ‘impossible’ (or far too easy)
deadlines are set. The final task will always receive a deadline, which will serve as the global deadline for the entire
application. All datasets generated for the experiments in this paper are available online 1.

5.2. Comparison of path assignment with IC-PCP and GAPA

The partial critical path can be seen as a sequential workflow, each task of which has only one predecessor and
successor except for the entry and exit tasks. We therefore use a set of sequential workflows to test the performance
of GAPA. We set the scale of the sequential workflow ranging from 10 to 100 and the proportion of deadlines is set
to be 0.1. The performance matrix of the tasks in the critical path is generated randomly as described in Section
5. Considering the performance fluctuation, for the generated performance profile, we set the task performance
fluctuation rate to be 10 percent and communication fluctuation rate to be 15 percent. The multiple time constraints
of the workflow are generated as described in Section 5. We set the final generation in GAPA to be equal to the length
of the partial critical path, which means that a = 1.0. In GAPA, we set the mutation rate to be 0.05 and population
size to be 300. We assume the cloud offers three different types of VM services and set the price for each service as
5, 2 and 1, which is the same as used in [3].

In IC-PCP, the whole partial critical path is assigned with the same VM type. Thus, for each workflow, there
are three path assigning choices, assigning all the tasks to s1, s2 or s3. We compare the cost with GAPA and the
cost with IC-PCP by assigning all the tasks to the VM service with best performance. We do this because other VM
service selections usually violate one or more deadlines; based on our experiment involving 90 partial critical paths
of incrementally increasing length, assigning the second best type of VM leads to a valid solution only 4 times in 90.

1https://github.com/WorkflowPlanning/workload
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Figure 2: Cost comparison of path assignment in IC-PCP and GAPA

Experimental results are shown in Fig. 2. The cost of assigning the best performing VM service to all tasks follows
a linear incremental trend because the assigned VMs are of the same type. The result gotten from GAPA varies a lot
because the deadline is randomly generated and the solution obtained from GAPA may not assign all the tasks to the
same VM type at different path lengths. We can see that the assignment with GAPA appears to perform consistently
better than when simply assigning all tasks on the VM with the best performance. We also find that GAPA can save
up to almost two thirds of the IC-PCP cost in this experiment.

5.3. Comparison of IC-PCP, CPI and MEPA with a single deadline
MEPA can plan virtual infrastructures for applications with multiple deadlines, but to compare it with existing

planning approaches that only support a single global deadline, we have conducted experiments on the dataset de-
scribed in Section 5, applying a single deadline and comparing the results of MEPA with IC-PCP and CPI.

Fig. 3, Fig. 4 and Fig. 5 show the planned virtual infrastructure cost of solutions produced by MEPA, IC-PCP and
CPI with test workflows with 16, 32 and 64 tasks respectively, in each case varying both in-degree and out-degree
(identified along the x-axis with the in-degree above the out-degree) to ascertain how connectivity influences results.
From the figures we can see that MEPA generally leads to less expensive VM assignments than IC-PCP. MEPA can
even save around 66 percent of cost compared with IC-PCP in some cases. Although from the results we can see
that MEPA and CPI give solutions with similar costs, the time complexity of the CPI is O(N3D2M) due to the
assignment of the path with dynamic programming to find the Pareto assignment [15], making it hard to scale when
the deadline of the workflow is very large. N represents the number of nodes. M represents the number of services
and D represents the global deadline. In our solution, there is no such bottleneck with the scale of the deadline.

Moreover, we can see that for a workflow with the same number of nodes, the cost of MEPA and IC-PCP, CPI are
quite close. The reason for this is that when the in/out degree increase, the DAG will become “wider”, making the
length of the critical path become shorter. For a “loose” deadline, the path assignment of MEPA and IC-PCP can lead
to similar solutions, leading to similar total cost. Moreover, it is not hard to see that when the scale of the workflow
increases, the differentiation between MEPA and IC-PCP will become more significant.

Figure 3: Results of 16 nodes with IC-PCP, CPI and MEPA of single deadline
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Figure 4: Results of 32 nodes with IC-PCP, CPI and MEPA of single deadline

Figure 5: Results of 64 nodes with IC-PCP, CPI and MEPA of single deadline

5.4. Comparison of IC-PCP* and MEPA with multiple deadlines

In this part we take the workload described in Section 5 and feed the workload into both IC-PCP* (the minimal
modification of IC-PCP for multiple deadline workflows described in section 3) and MEPA. Fig. 6, Fig. 7 and Fig. 8
compare the results of IC-PCP* and MEPA with workflows of size of 16, 32 and 64 with different in-degrees and
out-degrees (identified along the x-axis with the in-degree above the out-degree in all figures). We can see from the
results that MEPA is able to give cheaper solutions than IC-PCP*. When the scale of the workflow increases, the
differentiation between the results of MEPA and IC-PCP* will become more significant. With the increase of in/out
degree, the result of MEPA and IC-PCP* tend to become similar, but the similarity is reached for larger in/out degree
ratios when the number of tasks in the workflow increases. This is because the length of the partial critical path will
become shorter when the in/out degree increases. So the internal deadlines in each partial critical path can be less,
making the planned results more similar.
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Figure 6: Results of 16 nodes with IC-PCP* and MEPA of multiple deadlines

Figure 7: Results of 32 nodes with IC-PCP* and MEPA of multiple deadlines

Figure 8: Results of 64 nodes with IC-PCP* and MEPA of multiple deadlines

6. Conclusion and Future works

In this paper we investigated the problem of planning cloud virtual infrastructure for time critical applications that
focused on guaranteeing multiple overlapping deadlines imposed on tasks in the application workflow while minimis-
ing monetary cost. Based on the comparison with existing work, we proposed a workflow planning approach called
MultiDeadline workflow Planning Algorithm (MEPA). Our algorithm works by first “compressing” the workflow by
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assigning the best VM for all the tasks and then “relaxing” it by constructing partial critical paths based on IC-PCP in
order to identify where cheaper VMs can be used without violating time constraints. We formulate the path assign-
ment problem as a kind of multiple choice knapsack problem and apply a genetic algorithm to find possible solutions.
To test the effectiveness of MEPA, we randomly generated a wide range of application workflow topologies with
different characteristics, assigned deadlines, and generated a range of performance profiles to match those topologies.
We then compared the performance of our solution with a version of IC-PCP adapted for the particular assumptions
of our problem, and also compared performance in single deadline scenarios with the original IC-PCP algorithm.
The experimental results show that our algorithm can provide better solutions (in terms of minimising unnecessary
monetary costs) for the planning of workflows with multiple deadlines for provisioning in cloud environments.

In our future work, we will investigate the dynamic aspects of time critical applications—considering how virtual
infrastructures can be planned for re-configurable and otherwise dynamic workflows, including possible failures of
virtual infrastructures and application components during workflow execution. Moreover, the infrastructure planning
problem has not been widely discussed from the networking perspective, so we intend to study Software-Defined
Networking technologies to better enable network-aware workflow planning.
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