Towards a Technique for Extracting Relational Actors from
Monolithic Applications

Authors omitted

L Address omitted

Abstract. Relational actors, or reactors for short, integrate the actor model with
the relational data model, providing an abstraction for enabling actor-relational
database systems. However, as a novel model of computation for databases,
there is no extensive work on reasoning about reactor modeling. To close this
gap, this paper aims to review methods for systems decomposition in order to
analyze their completeness and propose as well as evaluate a technique for re-
actor modeling. Concretely, we put forward a technique to extract reactors from
a monolithic system. For evaluation, we selected a REST-based open-source
OLTP system in which a decomposition to microservices was conducted and
applied our technique on its predecessor monolithic version. Our technique led
to the same set of decisions, regarding table and behavior selection, taken by
experts when decomposing the same system into microservices. The proposed
technique can be seen as a first step towards supporting practitioners in decom-
posing OLTP systems into reactors.

1. Evaluation Extended Version

An evaluation was was performed in order to assess the feasibility of the approach. This
section describes the evaluation context, the application of the technique, and the results.

1.1. Evaluation context

Our technique is applied to the monolithic version of Petclinic!, an OLTP open-source
demonstration project of the Spring Framework.? The system adopts a three-tier layered
architecture and has been in development since 2016. Petclinic allows the configuration
of different types of relational DBMS, such as HSQLDB, MySQL and PostgreSQL.

1.2. Technique application
1.2.1. Dependency graph

In order to build the dependency graph of each interface of Petclinic application, it is
important to assess the domain model, as shown on figure 1.

Based on source code, classes Owner, Pet, Vet, PetType, and Visit are annotated
with Hibernate * framework annotations, a JPA implementation in Java platform. From
annotation, we are able to retrieve how hibernate map classes to database tables.

Interfaces are identified as resources in Petclinic web application by the annotation
@RequestMapping. Again, a request is an intent of a client, a communication being

Thttps://github.com/spring-petclinic/spring-framework-petclinic
Zhttps://spring.io
3https://hibernate.org

Owner

address String < Person e

i
b city String | (0 firstName String 4————— -
! specialties Set<Specialty>
! telephone String I lastName String r
i) pets Set<Pet> l 1
] Visit
) date Date €/ BaseEntity
>
1) description String Did Integer
1) pet Pet A
Y
/

/
‘4 ,
c Pet |

birthDate Date W

. | NamedEntity
* type PetType | > 44— ¢ Specialty
D canis s ! name String
4
1) visits Set<Visit> | k
L]
1
1
PetType
Figure 1. Petclinic domain model
VisitController:: ClinicService:: VisitRepository:: visits
processNew VisitForm saveVisit save
Presentation Business Repository Database

Figure 2. Petclinic dependency graph for interface /owners, GET operation

established to the system. This way, interfaces are the responsible for receiving a client
request and handling the request to appropriate classes of the application (usually business
classes).

Once the domain, interfaces and model classes are known, business functions and
repository functions related to the set of interfaces must be identified. The dependency
graph for each available resource in Petclinic is provided below.

1.2.2. Profile data collection

Once Petclinic is a demonstration project, this study relies on an artificial workload that
aims at reproducing a real-world scenario for the Petclinic domain. The workload deci-
sions were taken based on characteristics of Petclinic, e.g., the insertion rate into the pets
table cannot be lower than of owners (a pet cannot exist without an owner) or table visits
must incur the highest access frequency. Moreover, it is worthy to mention that the access
frequency value of 100 was chosen to represent the maximum frequency the application
can sustain for a given interface (minimum is 1).

Two different workloads were created and they consists of a typical transactional
scenario for a web application such as Petclinic. Tables 1 and 2 represent the workload
scenarios, also providing the respective HT'TP operation, interface and the table where the

] Operation \ Interface Table | Access frequency ‘
GET /owners/ownerld owners 10
GET /owners/ownerld/edit owners 10
PUT /owners/ownerld/edit owners 10
GET /owners owners 60
POST /owners/new owners 20
GET /owners/ownerld/pets/new pets 25
POST /owners/ownerld/pets/new pets 25
GET /owners/ownerld/pets/petld/edit pets 10
PUT /owners/ownerld/pets/petld/edit pets 10
GET /vets vets 10
GET /owners/ownerld/pets/petld/visits/new | visits 100
POST | /owners/ownerld/pets/petld/visits/new | visits 100

Table 1. Workload 1

] Operation \ Interface Table \ Access frequency ‘
GET /owners/ownerld owners 10
GET /owners/ownerld/edit owners 60
PUT /owners/ownerld/edit owners 60
GET /owners owners 80
POST /owners/new owners 20
GET /owners/ownerld/pets/new pets 25
POST /owners/ownerld/pets/new pets 25
GET /owners/ownerld/pets/petld/edit pets 10
PUT /owners/ownerld/pets/petld/edit pets 10
GET /vets vets 10
GET /owners/ownerld/pets/petld/visits/new | visits 100
POST | /owners/ownerld/pets/petld/visits/new | visits 100

Table 2. Workload 2

operation is accomplished.

1.2.3. Table coupling identification

The entity-relationship (ER) diagram for the Petclinic application is depicted in Figure 3.
As can be seen in Table 3, the relationships with coupling equal to 1 are: types and pets,
owners and pets, and visits and pets. Table 3 exhibits the degree of coupling between
tables:

1.2.4. Reactor types identification

We aim to distribute workload among reactors, avoiding two data-intensive entry points
to be allocated in the same reactor type. The objective is to take advantage of the trans-

types

vets

N

N N ..
owners 1 pets 7 — VISitS

Figure 3. Petclinic ER diagram

| Tables | Coupling |

types and pets 1
owners and pets
types and owners
vets and pets
vets and owners
vets and types
vets and visits
visits and pets
visits and owners
visits and types

(el Rl B el Nl Ne) Ne) Neo) B

Table 3. Coupling between Petclinic tables

actional guarantees and serializability provided in order to distribute workload among
reactors in a deployment.

Thus, in order to execute the model for the first workload, the parameter Q was
set to 200, corresponding to the sum for the resource with the highest access frequencies
(visits). On the other side, the parameter Q is set to 270 for the second workload. Figures
4 and 5 exhibit the result of the optimization allocating tables to clusters for workload 1
and 2, respectively.

The execution of the optimization problem for the two mentioned scenarios have
provided two different distributed database design. In addition, it is important to depict
the interfaces allocated to each cluster. The aggregation of interfaces and tables allow the
definition of reactor types, as shown in tables 4, 5, and 6.

On the other side, the workload 2 provided the following reactor types, as shown
in tables 7, 8, and 9:

Figure 4. Optimization problem output for workload 1

Figure 5. Optimization problem output for workload 2

| Operation | Interface | Table |
GET /owners/ownerld owners
GET /owners/ownerld/edit owners
PUT /owners/ownerld/edit owners
GET /owners owners
POST /owners/new owners
GET /owners/ownerld/pets/new pets
POST /owners/ownerld/pets/new pets
GET /owners/ownerld/pets/petld/edit | pets
PUT /owners/ownerld/pets/petld/edit | pets
types
Table 4. Reactor type 1 for workload 1
| Operation | Interface | Table |
GET /owners/ownerld/pets/petld/visits/new | visits
POST | /owners/ownerld/pets/petld/visits/new | visits

Table 5. Reactor type 2 for workload 1

’ Operation \ Interface \ Table ‘
| GET |

Ivets | vets |

Table 6. Reactor type 3 for workload 1

Operation \ Interface \ Table
GET /owners/ownerld owners
GET fowners/ownerld/edit | owners
PUT /owners/ownerld/edit | owners
GET /owners owners

POST /owners/new owners

Table 7. Reactor type 1 for workload 2

] Operation \ Interface \ Table ‘

GET /owners/ownerld/pets/petld/visits/new | visits
POST | /owners/ownerld/pets/petld/visits/new | visits
GET /owners/ownerld/pets/new pets
POST /owners/ownerld/pets/new pets
GET /owners/ownerld/pets/petld/edit pets
PUT /owners/ownerld/pets/petld/edit pets

types

Table 8. Reactor type 2 for workload 2

| Operation | Interface | Table |
] GET \ /vets \ vets ‘

Table 9. Reactor type 3 for workload 2

1.2.5. Reactor methods identification

For this step, a manual verification was performed in Petclinic source code. Based on the
strategy discussed in subsection 4, the metrics used for Petclinic were: CYCLE(M) <
12 A NOAV(M) < 5 A DDLOC(M) > 2. Then, it was possible to identify a set of nine
methods. The extracted methods are follows.

Based on the procedure defined in section ??, the table below shows on which
reactor type each method identified is allocated.

2. Evaluation results

The results suggest that the approach can be successfully applied to real world monolithic
applications.

Based on workload 1, it is possible to correlate the distribution of relational actors
and its respective tables and interfaces to the project Petclinic microservices [21], which
provides the decomposition shown in figure 16.

reactor Vet {

void upsert_owner (owner) {
\ SELECT DISTINCT
vet.firstName, vet.lastName, vet.name
INTO v_vets
FROM vets;

return v_vets;

Figure 6. Function that retrieve all tuples from vets table

reactor Owner {

void upsert_owner (owner) {

if owner.id IS NULL then
INSERT INTO owners VALUES

(owner.address, owner.city, owner.telephone,

owner.firstName, owner.lastName);
return;
end if;

SELECT i1id FROM owners INTO o_id WHERE owner.id
if o_id IS NULL then abort; end if;

UPDATE owners

SET address = owner.address,
city = owner.city,
telephone = owner.telephone,
firstName = owner.firstName,
lastName = owner.lastName

WHERE owner.id = id;

= 1id;

Figure 7. Function that insert or update a tuple to owners table

Method | Reactor Type

1 3
2 1
3 1
4 1
5 1
6 1
7 1
8 2
9 2

Table 10. Method mapping to reactor types for workload 1

reactor Owner {

void find_owner by id(owner_id) {

SELECT DISTINCT
owners.id, owners.address, owners.city,
owners.telephone, owners.firstName,
owners.lastName, owners.name

INTO owner

FROM owners

WHERE owners.id = owner_id;

res := find_pet_by_ owner_id(owner_id)
on reactor pet;
list<tuple> pets = res_pet.get();

SELECT
owners.id, owners.address, owners.city,
owners.telephone, owners.firstName,
owners.lastName, owners.name
pets.birthDate, pets.name, pets.type_name

INTO owner_info

FROM owner

LEFT JOIN pets ON pets.owner_id = owner.id;

return owner_info;

Figure 8. Function that retrieves all owner that matches the owner_id provided
(in case both vets and owners are in different reactors)

| Method | Reactor Type |
1 3

O| 0| | O\ | | W
DD D DI = =] = —

Table 11. Method mapping to reactor types for workload 2

reactor Visit {

tuple find_owner_by_id(owner_id) {

SELECT DISTINCT
owners.address, owners.city, owners.telephone,
owners.firstName, owners.lastName, owners.name,
pets.birthDate, pets.name, types.name

INTO owner_info

FROM owners

LEFT JOIN pets ON pets.owner_id = owners.id

LEFT JOIN types ON pets.type_id = types.id

WHERE owners.id = owner_id;

return owner_ info;

list<tuple> find_owner_by_last_name (last_name) {
if last_name IS NOT NULL then {
SELECT DISTINCT
owners.address, owners.city, owners.telephone,
owners.firstName, owners.lastName, owners.name,
pets.birthDate, pets.name, types.name
INTO v_owners
FROM owners
LEFT JOIN pets ON pets.owner_id = owners.id
LEFT JOIN types ON pets.type_id = types.id
WHERE owners.lastName LIKE lastName
return v_owners;
}
SELECT DISTINCT
owners.address, owners.city, owners.telephone,
owners.firstName, owners.lastName, owners.name,
pets.birthDate, pets.name, types.name
INTO v_owners
FROM owners
LEFT JOIN pets ON pets.owner_id = owners.id
LEFT JOIN types ON pets.type_id types.id
return v_owners;

Figure 9. Function that retrieves all owner that matches the owner_id provided
(in case both vets and owners are in the same reactor)

reactor Pets {

void upsert_pet (pet) {
if pet.id IS NULL then
INSERT INTO pets VALUES
(pet .name, pet.birthDate,
pet.type_id, pet.owner_id);
return;
end if;

SELECT id FROM pets INTO p_id WHERE pet.id = id;
if p_id IS NULL then abort; end if;

UPDATE pets
SET date = pet.name,

birthDate = pet.birthDate,
type_id = pet.type_id,
owner_id = pet.owner_id

WHERE pet.id = id;

Figure 10. Function that insert or update a tuple to pets table

reactor Pets {

void find_pet_types() {
SELECT DISTINCT types.name FROM types INTO pet_types;

return pet_types;

Figure 11. Function that insert or update a tuple to pets table

reactor Pets {

void find_pet_by_ id(pet_id) {
SELECT DISTINCT
pet.id, pets.birthDate,
pets.name, types.name as type_name
INTO v_pet
FROM pets
LEFT JOIN types ON types.id = pets.type_id
WHERE pets.id = pet_id;

return v_pet;

Figure 12. Function that retrieve a tuple of pet based on id

reactor Visit {

void find_visits_by_pet_id(pet_id) {
res_pet := find_pet_by_id(pet_id) on reactor pet;
list<tuple> pets = res_pet.get();

SELECT DISTINCT
visits.date, visits.description, visits.pet_id,

pets.birthDate, pets.name, pets.type_name
INTO pet_visits
FROM visits
LEFT JOIN pets ON pets.id = visits.pet_id

WHERE visits.pet_id = pet_id;

return pet_visits;

Figure 13. Function that retrieves all visits that matches the pet_id provided (in
case vets, types, and visits are in different reactors)

reactor Visit {

void find visits_by_pet_id(pet_id) {

SELECT DISTINCT
visits.date, visits.description, visits.pet_id,
pets.birthDate, pets.name, types.name

INTO pet_visits

FROM visits

LEFT JOIN pets ON pets.id = visits.pet_id

LEFT JOIN types ON pets.type_id = types.id

WHERE visits.pet_id = pet_id;

return pet_visits;

Figure 14. Function that retrieves all visits that matches the pet_id provided (in
case both vets and visits are in the same reactor)

reactor Visit {

void upsert_visit (visit) {
if visit.id IS NULL then
INSERT INTO visits VALUES
(visit.date, visit.description, visit.pet_id);
return;
end if;

SELECT id FROM visits INTO v_id WHERE visit.id = id;
if v_id IS NULL then abort; end if;

UPDATE visits

SET date = visit.date,
description = visit.description,
pet_id = visit.pet_id

WHERE visit.id = 1id;

Figure 15. Function that insert or update a tuple to visits table

Figure 16. Architecture diagram of the Spring Petclinic Microservices (extracted
from [21]

versioned YAML Git
configuration Repo
file/

Spring Cloud
Config Spring Boot
Server static resources REST requests Admin Server

fetch configuration

fetch configuratio
Ul + APl Gateway

e <port 8080> Ll
Eureka 4 Fretrieve microservices IP LGN Distributed
Service "
Discovery Pt
load-balanced Server
egister HTTP requests

} distributed

. logs
customers-service vets-service visits-service
REST API REST APl REST AP

<random port> <random port>

<random port>

Microservice

Tables

customers-service

owners, types, and pets

vets-service

vets

visits-service

visits

Table 12. Example of resources definition

Petclinic microservices provides the following microservices: customers-service,
vets-service, and visits-service. Table 12 depicts the tables presented in each microservice

in Petclinic microservices application.

It is possible to observe that the decomposition provided by Petclinic microser-
vices is exact the same as the decomposition provided by the optimization problem on

workload 1, in terms of the tables selected for each service.

It means that the formulation for defining reactor types proposed in this work is
able to employ a correlated set of decisions that architects from Petclinic application have
made in order to decompose Petclinic into microservices archictecture style.

References

