Figure 6. Optimization problem output

@Service
public class ClinicServicelImpl implements ClinicService {
/ code ommitted for brevity
private VisitRepository visitRepository;
// code ommitted for brevity
@Override
@Transactional
public void saveVisit (Visit visit) throws
DataAccessException {
visitRepository.save (visit);
}
}

void upsert_visit (visit) {
if visit.id IS NULL then
INSERT INTO
visits
VALUES (visit.date,
visit.description,
visit.pet_id);
return;
end if;

SELECT id

FROM visits

INTO v_id

WHERE visit.id = id;

@Repository
public class JpaVisitRepositoryImpl implements
VisitRepository {

code ommitted for brevity

if v_id IS NULL then
abort;

@Override end if;

public void save (Visit visit) {
if (visit.getId() == null) {
this.em.persist (visit);
} else {
this.em.merge (visit);

UPDATE visits

SET date = visit.date,
description = visit.description,
pet_id = visit.pet_id

} WHERE visit.id = id;

}

Figure 7. Application logic (left) extracted to a reactor function (right)

6. Discussion and Limitations

This study proposes an exact optimal approach for allocating relational tables, REST
interfaces, and application logic to clusters, which could represent services or reactors. To
the best of our knowledge, there is no identical work in literature. Even though our system
formalization is based on the work of Levcovitz et al. [Levcovitz et al. 2016], it goes
much beyond in both presenting a MIP-solver-based automatic method for distribution
among clusters as well as considering heuristics to identify application logic in source
code to be extracted.

One of the limitations of our technique concerns the assumption that the system
adopts a three-tier layered REST-based architecture. However, it represents a widely
adopted architecture in industrial settings. Also, while our technique currently only con-
siders interfaces that enable GET and POST operations, we don’t see significant con-
straints to extend it with DELETE and PUT operations.

Regarding the evaluation, the prepared artificial workload may not provide suffi-
cient coverage for all cases in which the technique could be applied. Nevertheless, the
workload was defined based on reasoning about the application domain. It is noteworthy
to mention that the workload, its limits and the source code metrics were verified by three
independent researchers. Additionally, to test the sensitivity of our model, we have also
applied it to a different hypothetical workload, allowing to observe sensitivity of model
output due to changes in the input specifications.

Finally, we chose a specific Java software project for applying our technique.
However, we believe the technique is generic enough to be applied to other object-oriented
programming languages (e.g., C#) and frameworks (e.g., .NET Core).



