Algorithm 2: Algorithm to allocate reactor functions to a cluster

ALLOCATE_REACTOR_FUNCTION (RAF)
1 foreach f € RAF do

2 fu < tables accessed and manipulated by f;

3 if fy, contains only one table then

4 i < cluster that holds table € f;

5 allocate f to cluster i;

6 else

7 max_access_freq < 0;

8 alloc_cluster < &,

9 foreach tb € f;, do

10 accessy, <— access frequency of the respective interface of tb;
1 if accessy, > max_access_freq then

12 max_access_freq <— accessgy,

13 alloc_cluster < cluster that holds ¢b;
14 allocate f to cluster alloc_cluster;

VisitController
processNew VisitForm

|

ClinicServiceImpl
saveVisit

JpaVisitRepositoryImpl| | JpaVisitRepositoryImpl
persist merge

Visits Visits

Figure 4. Dependency graph of /visits/new interface POST operation in Petclinic

Petclinic, e.g., the insertion rate into the pets table cannot be lower than of owners (a pet
cannot exist without an owner) or table visits must incur the highest access frequency. It
is worthy to mention that access frequency in our model ranges from 1 to 100.

Table coupling identification. The entity-relationship (ER) diagram for the Pet-
clinic application is depicted in Figure 5. As can be seen, the relationships with coupling
equal to 1 are: types and pets, owners and pets, and visits and pets.

Reactor table identification. In order to execute the model, the parameter Q
was set to 200, corresponding to the sum for the resource with the highest access fre-
quencies (visits). We aim to distribute workload among reactors, avoiding two or more
data-intensive entry points to be allocated in the same reactor type. Figure 6 exhibits
the result of the optimization allocating tables to clusters. The result of the allocation of
interfaces to clusters can be accessed online *.

