A water budget dichotomy of rocky protoplanets from ²⁶Alheating

Nature Astronomy 3, 307–313 (2019) arXiv:1902.04026

Tim Lichtenberg (U Oxford) Gregor J. Golabek (BGI Bayreuth) Remo Burn (U Bern)

Michael R. Meyer (U Michigan) Yann Alibert (CSH/U Bern) Taras V. Gerya (ETH Zurich) Christoph Mordasini (CSH/U Bern)

INTRO

²⁶Al powered internal heating and chemical differentiation of rocky bodies during planet formation in the early Solar System, but is likely inhomogeneously distributed across forming planetary systems.

METHODS

We coupled models of ²⁶Al-driven planetesimal dehydration and a planet population synthesis code to investigate its effects on exoplanet population statistics and potential observability.

RESULTS & CONCLUSIONS

In the planetesimal-based accretion framework, ²⁶Al displays first-order control on the distribution of planet water abundance, and thus exoplanet radii, possibly traceable with TESS or PLATO.

Varying ²⁶Al abundances across planetary systems induce systemic changes in rocky exoplanet water content

 $\geq {}^{26}Al_{\odot}$ during planet formation: ~ 10–100× water depletion Up to 10% smaller Rtransit Intra-system size correlation

Paper PDF Related publications Author Website Author PhD Thesis

timlichtenberg.net

No/few ²⁶Al present:

- Water worlds dominant type of rocky exoplanets
- Stable against hydrodynamic escape

Planet population

Final bulk planet water mass fraction f_{HoO} [wt%]

Mean transit radius shift

