Consistency and Collaboration for Fine-Grained
Scientific Workflow Development:
The dispeldpy Information Registry*

Iraklis A. Klampanos! Paul Martin and Malcolm P. Atkinson
August 6, 2019

Abstract

This paper reports experience designing technology to support large-
scale distributed computations that arise in scientific research as well as
in other modern contexts. The challenge is to support data-intensive
work across multiple autonomous sites, where experimentation and col-
laborative development are simultaneously encouraged across the same
computing infrastructure. Focusing on fine-grained streaming workflows
for data-intensive tasks, and in particular on requirements arising through
the use of dispel4py within the eScience context, we specify appropriate
registry modules and their interactions with other core components, de-
signed to achieve the aforementioned goals. We then discuss the design
and usage of a prototype information registry designed to support Dispel
and dispeldpy workflows. Finally, we demonstrate our method’s suitabil-
ity through a seismic ambient-noise cross-correlation example, drawn from
the field of seismology.

*This report was completed as part of the FP7 project VERCE (http://www.verce.eu),
project no.: 283543, when all authors were working at the School of Informatics of the Uni-
versity of Edinburgh, in 2015.

fCorresponding author. Email: iaklampanos@gmail.com

http://www.verce.eu

Contents

1__Introductionl 3
2__Rationale and Related Work: |
| Distributed, Data-Intensive Workflows| 4
RT Workfowsl o o oo 4
2.2 Scientific Experimental Procedurel 6

3 Registry Requirements| 7
BI Distribution] 8
3.2 Registrable Programming and Scientific Components| 8
321 Workflow Components| 9

13.2.2 Scientific and Domain-Specific Objects| 10

3.3 Identification and Versioning| 11
3.4 Dynamic, Flexible Enactment and Optimisation|. 11

4 Registry Design and Structure| 12
4 P OeS| . . . e e e e e 13
4.2 Workspaces| oL 13
[43 Togical Schema] 16
A4 Current Tmplementation and Usage]. 18

[Application Scenario: Seismic Ambient Noise Cross-Correlation| 18

6 Conclusions and Future Workl 20

1 Introduction

Data-intensive computation in increasingly useful in a number of contexts, such
as in science, engineering, medicine, government, etc. [I]. We use the term
“data-intensive” to characterise computation that either requires or generates
large volumes of data, or has complex data access patterns due to algorithmic or
infrastructural reasons. In most of these types of computation, research proceeds
by bringing all of the required data into one administrative context before they
can be further analysed and explored by teams that included domain scientists,
data-analysis specialists as well as computer scientists. Similar arrangements
are typical in many other contexts, such as those reported in [2, [3] [4].

We argue that there are cases where this collection of data and software,
under a single administrative regime, is not the optimum solution. First, the
owners of the data are spread across organisations and they may wish to restrict
access to certain data sets while also collaborating on methods with colleagues
elsewhere. Second, the data or software is rapidly changing at some sites, so
that co-location reduces timeliness. Last, the cost or time involved in extracting,
transforming, moving and organising the data into a single location can be too
great.

We posit that scientific workflow platforms provide the necessary functional-
ity for orchestrating the actions pertaining to the above data-intensive activities,
while providing researchers with an abstraction that makes the inherent growth
of, especially distributed, software libraries and data more manageable. Such
platforms should enable researchers to browse, extend and create new computa-
tional components, organise remote data resources and stores in a way relevant
to the work at hand and allow them to compose or edit workflows deployable to
the distributed infrastructure. Given sufficient support mechanisms, the plat-
form should be able to facilitate different degrees of supervision during the
execution of a workflow, as well as test and production enactment.

In this paper we study the workflow information registry, as a logical com-
ponent of such a platform, and in particular dispe|4pyE| [5], on the basis of a
functional reference implementation’} We focus on eScience, due to its inherent
resource and administration heterogeneity, as well as due to its, often, collabo-
rative nature. The registry stores and is able to produce information regarding
workflow and other research components. It is typically interrogated by user
interfaces (Uls) to aid the researcher, and it may provide computational com-
ponent specifications and metadata to the execution or enactment engine for
optimisation. Furthermore, such registry should be aware of execution modes
(test, development, etc.) and states (incomplete, failed, complete, etc.), being
in communication with the provenance system and logs. It follows that consis-
tency is achieved by the registry behaving as a source of reference when code is
deployed. Efficiency is achieved by fragmenting the workflow to run elements at
the locations near their data, by mapping to specialised implementations, and
by inserting transformations when necessary into the data streams coupling the

Thttp://dispeldpy.org
%https://github.com/iaklampanos/dj-vercereg

http://dispel4py.org
https://github.com/iaklampanos/dj-vercereg

distributed elements, all of which require consultation with the registry. An ear-
lier implementation of this model can be found in [6] and the use of the registry
for optimisation is reported in [7].

This paper is organised as follows. The next section introduces related work
and scientific research procedures. Section [3] presents requirements that would
need to be met by the information registry for use within a scientific setting.
Section [introduces the design and logical structure of the information registry
component as well as its interactions with related components of the eScience
platform. Section [5] provides a use-case drawn from seismology and how the
registry can be used to aid optimisation and orchestration. Last, in Section [6]
we provide concluding remarks and pointers for future work.

2 Rationale and Related Work:
Distributed, Data-Intensive Workflows

Experiments conducted by researchers can no longer be considered as isolated
operations performed at one locale within a modest time frame. Instead, exper-
iments may require the orchestration of resources over a prolonged period, with
a gradual accumulation of results data throughout. In addition, researchers
work in collaborative environments, where they are increasingly expected to ex-
change methods (formalised as software), results and analyses, often implicitly
or explicitly requiring the movement of large volumes of data.

This scenario calls for the flexible deployment of persistent computational
services across many contexts, and the establishment of high-throughput data
channels between them. These services must command substantial local re-
sources and be able to re-configure themselves on demand. Where necessary,
services have to be wound down to release scarce resources and re-deployed
closer to active data sources. This is not a scenario which permits manual coor-
dination on large scales; certainly not on the part of a user constituency which is
ostensibly concerned with science over software engineering and resource man-
agement.

2.1 Workflows

In the context of persistent services, a workflow can be seen as a, possibly in-
definite, configuration of data-intensive machinery towards a specific purpose.
Connections are established between service instances which re-gear themselves
towards providing the processing elements prescribed by the workflow. Data
flows into processing elements via such channels and flows out to elements fur-
ther down the workflow. Flow control is handled by the enactment services
themselves, in accordance with agreed protocols.

Architectural overview There must exist a common interface and behavioural
specification for data-intensive machinery (persistent services) which can be

deployed on distributed resources, forming a distributed enactment platform.
There must also exist a choreography service to broker the choreography of
persistent services; control over the workflow must be distributed between the
choreography service and the enactment services in such a manner as to allow
easy monitoring of progress while conferring onto the enactment services the
autonomy they need to conduct their part of the workflow in the most indepen-
dent and flexible way possible. It is also clear that there must be a standard way
to specify workflows to be imposed on the enactment platform. This suggests
the need for a language in which to describe the processing elements used in a
workflow and the connections between them, specifying the data-types involved
and any desired characteristics of the overall workflow, which might affect how
it should be deployed and choreographed onto available resources.

The Dispel Workflow Specification Language The role of a workflow lan-
guage is to provide a standard lingua franca for describing the choreography of
logical components collectively composing a workflow.

Since we view the enactment system as a collection of concurrent persistent
computational services acting in concert, our view of workflows is data-oriented
rather than control-oriented, as defined in [8]. The deployment of processing
elements onto enactment resources is taken as given, the task being delegated to
the choreography service. Data elements are streamed as and when ready from
one processing element to another, allowing components of a given workflow to
operate in parallel as long as all inputs can be provided. The buffering and
replication of data is delegated to the individual enactment services, allowing
connections to be established directly between co-dependent elements without
the need for buffers and filters to be defined explicitly.

Dispel is a workflow language introduced by the ADMIRE projeciﬂ A Dispel
script essentially describes a high-level process to construct a workflow rather
than a specific workflow instance. This allows the use of imperative constructs,
such as iteration, selection and sub-procedures to be employed in order to de-
scribe arbitrarily complex, parametrisable workflows. Dispel’s imperative nature
also allows the construction of composite processing elements from the compo-
sition of existing workflow elements without resort to external configuration or
registration.

Upon interpretation (generally by submission to a gateway) a workflow is
produced. A Dispel workflow is an abstract network of processing elements
between which data can be streamed. More specifically, a processing element
(PE) is an operator with a number of connection interfaces through which data
is either consumed or output, while a connection streams data from one output
interface to at least one input interface.

Dispel relies on the concept that a standard library of abstract processing
elements can be mapped into a variety of different execution contexts (e.g.
OGSA-DAI[9]), provided that there exists a single logical specification of the

3 Advanced Data Mining and Integration Research for Europe:
http://www.admire-project.eu.

behaviour of each element for which there may exist many compliant implemen-
tations. This separation of workflow language from specific execution contexts
distinguishes Dispel from many similar languages such as SCUFL[I0], MoML[IT]
or ZigZag[12].

A Dispel script is typically used to either describe a logical workflow for
submission, or to define and make available new workflow components. It can,
therefore, be seen as providing a means of interaction between users and the
platform, through the platform’s registry, the required properties and design of
which are presented in this paper. Its purpose is therefore diverse, as it can
be used for deployment/enactment of a workflow or for, implicit or explicit,
registration of workflow entities, with both actions requiring appropriate entity
resolution at the registry level.

The dispeldpy Python Library and Enactment Engine There have been
application contexts where the Dispel language and its associated components,
described above, such as required gateways and its dependency on OGSA-DAI,
could not be used due to practical reasons. Some of these reasons included the
difficulty to provide and maintain additional hardware resources to host the
gateways, security considerations due to the operation of gateways and OGSA-
DALI in scientific supercomputing centres, as well as a steeper learning curve
than scientists and end-users would often be willing to overcome in order to put
it to production use. In order to address these points, and to provide a more
accessible ramp for scientists and researchers to adopt streaming data-intensive
workflows, we designed dispe|4pyE|[5].

dispeldpy is a new library and enactment engine which allows users, primarily
scientists, to specify their data-intensive workflows in Python, therefore allowing
for the use of existing and efficient scientific libraries, such as scipy, while their
workflow specifications adhere to most Dispel rules. dispel4py allows for local
execution of workflows for testing and debugging purposes, before users can
execute them on large-scale distributed resources. The dispeld4py engine also
provides a number of mappings to different kinds of resources, currently: Apache
Stornﬂ clusters, shared-memory multi-CPU machines as well as to MPI clusters,
therefore enabling the use of fine-grained, data-intensive, streaming workflows
on production clusters effortlessly and with the possibility to execute the same
workflow on a different target platforms with minimum, if at all, change.

This paper focuses on the design of a workflow component information reg-
istry designed for dispel4py.

2.2 Scientific Experimental Procedure

Replicability is essential for verifying and validating experiments, as well as
to ensure trust in shared processes. Given the potentially disparate nature of

4http://dispeldpy.org
5https ://storm.apache.org

http://dispel4py.org
https://storm.apache.org

resources conscripted into the enactment platform, it may be that processes exe-
cutable on different resources may require different underlying implementations.
Even if this is the case however, there should be a standard logical description
of any given processing element which accurately describes its behaviour in all
valid contexts. This entails an external registry service dedicated to the main-
tenance and publication of those descriptions which can then be referred to in
workflow specifications dispatched to the coordination service. A consequence
of this is that if the logical operation of a component does change over time,
then the conduct of experiments using that component will change; it must be
possible therefore to both conduct a previous experiment under the new specifi-
cations (benefiting from any improvements made) and conduct the experiment
as it was before (so as to verify prior results).

Approaches such as myExperimenﬁ[li%] and wf4eve7ﬂ[14] are instrumental in
catering for workflow preservation and experiment replicability, providing users
with rich Uls and social networking functionality to connect and collaborate.
However, to our experience, the level of abstraction of such solutions is higher
than many scientists would like to use on a day-to-day basis. While these
solutions store metadata about the properties and lifecycle of workflows and
associated research objects, they often also treat them as black boxes, leaving
the execution details to the users.

Another approach targeted at coarse-grained scientific workflows is taken by
gUSEﬂ[lE)]. gUse provides tools for managing generic workflows and associated
metadata, as well as executing them on user-specified target contexts. Similar to
myExperiment and wfdever, gUSE views workflow components as blackboxes,
with each component being a complete program to execute on a specific resource.
Clearly, approaches such as the above aim to provide a different service to the
scientific community than Dispel and dispel4py, and they therefore have different
registration needs. dispel4py and its associated registry, discussed below, allow
for the specification and sharing of workflows and workflow components on a
finer-grain level and are complementary to approaches such as myExperiment
and gUSE.

3 Registry Requirements

In order to address the requirements of global consistency, local agility and sim-
plicity, posed by the distributed and large-scale nature of modern science, we
build our architecture around three logical elements: a data-intensive workflow
language — in the case of dispel4py, a Python library adhering to the semantics
of the Dispel language, an enactment/execution layer and a registry of compu-
tational components. Together these elements form the core of our distributed
architecture, with their combined semantics dictating patterns of control and
data passing, orchestration as well as user-interaction. In this section we dis-

Shttp://www.myexperiment.org
7http ://www.wf4ever-project.org
Shttp://guse.hu

http://www.myexperiment.org
http://www.wf4ever-project.org
http://guse.hu

'
VERCE
Boundary
'

i
| External catalogues

/ and archives
1
i
i
i
i
\
;
National resources
)

Optimiser Interational research
Fragmentation services
Data orchestration

Registry.
Workflow components.
Resources
Users/Institutes.
Provenance links

1
1

End-users w‘\‘
)

| User Interface
Web Gateway

Command-iine tools

Execution Engines
dispeldpy,
Apache Storm,
MPI

Workflow Gateways
Dispel,
dispel4py

Local resources

i
i

leaL Job-oriented
! external resources

Figure 1: Components interacting with the workflow registry.

cuss the main requirements of the information registry, mainly in relation to
the other two components, as a service that enables collaboration while ensur-
ing consistency across the distributed infrastructure.

3.1 Distribution

The environment we study is inherently distributed, both in terms of computing
as well as of human resources. The modern scientist will typically make use of
a number of disparate computing resources, such as grids, high-performance
(HPC) facilities, private institutional resources, Web or desktop applications,
depending on the task at hand. Inevitably, the same applies to the location
of relevant data, be it initial, intermediate or resulting data. The scientist is
typically required to explicitly arrange data movement and processing as well
as archiving and analysis of results. Furthermore, an increasingly important
requirement in modern science is to support scientific collaboration. Through
common projects or other means, scientists need to collaborate with colleagues
working in different countries as productively as with their officemates. To
collaborate means being able to share methods, datasets and results, replicate
and extend other experiments, provoke discussions and generally be able to
feedback newly acquired knowledge into the experimental process.

In order to automate part of this process, we need a solution, incorporating
a registration framework, able to take into account the inherent heterogeneity
and be consistently accessible from remote locations. Further, to support sci-
entific collaboration, it would need to store some information about research
organisations, people and scientific networks. Based on this information, such
an eScience framework would be able to automate certain sections of the exper-
imental process and facilitate collaboration.

3.2 Registrable Programming and Scientific Components

In a distributed scientific setting, the information registry will need to hold in-
formation useful and relevant to a number of entities, internal or external to the
platform (Figure. As a facilitator for information and meta-data, the registry
is interrogated by services, such as the enactment service and the user interface,
in oder to optimise workflow creation, execution effectiveness, parallelisation,

data movement and presentation based on contextual and domain-specific in-
formation. Furthermore, it is conceivable that designers and engineers may not
have complete knowledge of the extent or the form/specification of the infor-
mation that would eventually be required to be maintained within the registry.
Therefore, the integration with and reuse of external scientific catalogues and re-
lated resources is required. In this work, apart from the core registrable entities,
we assume that the registry allows for integration with arbitrary external data
sources through some extensible mechanism (e.g. through the use of PID&ED,
so as to provide continuity of objects of interest over time and location. How-
ever, such mechanisms, their provision and integration is not the focus of this
study. Instead we concentrate on the core entities, which would be relevant
to any eScience platform that aims to deliver a distributed and collaborative
programming environment: (a) processing elements and other language (for the
purposes of this work, Dispel or dispel4py@ components and (b) scientific (or
research) objects:

3.2.1 Workflow Components

The language components that should be registered are those that would be
required by the platform’s local or remote enactment engines to realise and
execute a workflow graph. The registry can also be seen as hosting and managing
the consistent, distributed programming library, it should contain definitions
and specifications of components that the domain experts and the data-intensive
engineers should have at their disposal when creating a new workflow or when
they are customising or modifying an existing one. In the case of dispel4py,
such components include all nameable entities that may appear in a dispel4py
workflow. These components are the following;:

Type the core Dispel modelling unit. Types are most frequently used to de-
fine PEs and can be broadly divided into abstract and concrete. Abstract PE
types only define available connection interfaces, while concrete types specify
an internal topology of PEs and other components, realising the intended func-
tionality. Even though PE types do not typically coincide with their enactable
or executable counterparts, this difference is not crucial to the discussion of the
information registry, hence we refer to both entities interchangeably.

Function (or constructor) a Dispel structure used for defining arbitrary
Dispel topologies, wrapping them into PE types. Functions are evaluated and
expanded into enactable workflow segments during run-time.

Literal is a named Dispel literal. Such literals may be scientific constants,
data-store references, etc.

9¢.g. via EPIC: http://www.pidconsortium.eu
10As the semantics of Dispel and dispel4py are by design as close as possible, the two terms
will be used interchangeably for the remainder of this study.

http://www.pidconsortium.eu

Implementation an arbitrary block of programming code, usually imple-
menting the functionality of a PE. Such implementations could range from sci-
entific code written in Python to code performing job submission to HPCs, etc.
In the case of dispeldpy, implementations specify workflows, PEs, or reusable
functions in Python.

Connection a typed data inlet or outlet, part of the definition of PEs.

Data Type a language-specific entity used for specifying the data types of
connections of PEs. Connections may be designated as being input or output
and are typically named per PE definition. Each connection may carry two
types: a structural type, or s-type and a domain type, or d-type. S-types are
language-dependent and in the case of dispel4py they can be ‘str’, ‘int’, or a user-
defined class, etc. D-types depend on the application domain and can be of an
arbitrary structure (e.g. semantic, graph-based descriptions, etc.). Potentially,
the use of d-types can be used to extend the functionality of the registry by
enriching the descriptions of the stored elements by, for instance, linking to
externally defined metadata schemas.

Workflow a partial or complete workflow, expressed using combinations of the
elements above, able to carry out a well-specified task when deployed. Aside
from other language components, workflows may also be associated with arbi-
trary domain-specific objects (see Section below).

3.2.2 Scientific and Domain-Specific Objects

The workflow-based platform should be able to register and keep track of rel-
evant scientific objects in a form usable by components as diverse as the user
interface and the enactment layer. Domain-specific objects of interest may sig-
nificantly vary in form, function and size. However, with respect to their rela-
tionship to the scientific workflow, such objects can be broadly categorised as
being:

External to the workflow are domain-specific objects which play no part
in the enactment or execution of a workflow, but which have some significance
to the experiment, user or other entity supported by the platform. Examples of
such objects may include a relevant results data-set to be used for comparison or
replication purposes, a copy of or reference to a published article to complement
an experiment, etc.

Internal to the workflow are domain-specific objects and references to
datasets, which are results of specific stages of a workflow. Such objects can
be expressed in terms of language components, versions of which would also
be present in the registry (Section [3.2.1)), in combination with user-specified
parameters and previous outcomes. The registry should keep track of scientific

10

objects of interest by associating language components with provenance trace
information, obtained through the provenance component of the platform.

3.3 Identification and Versioning

Essential to the operation of any registry or object store is a robust identifica-
tion and versioning model. A registry component suitable for such distributed,
collaborative workflow platform should provide for dynamic assignment of iden-
tifiers to stored digital entities. It should also provide for automatic versioning,
where appropriate — i.e. when a user adds a new processing element to the
distributed Dispel library, the registry should assign an ID to it, while it should
also be able to keep track of future versions automatically. The automated ap-
proach to object identification and versioning is essential due to the complexity
and potential scale of such a system.

As the registry of such system provides information to a number of other
components, to keep IDs and versions consistent leads to two further require-
ments, namely that object IDs need to be consistent across remote and het-
erogeneous sites and computing resources as well as between past and future
versions of the same container object. To illustrate this last point, consider the
situation where a workflow has been registered, making use of some PE a, and
that a is then modified by some researcher into a’. Whether a = a’ should de-
pend on the context of use of the workflow, and by implication, on the context
of reference of the object. For provenance purposes, a should always signify a
different object than a’, however from an enactment perspective, if the same
workflow were to be deployed again after the refinement of a into a’, the latter
version should probably be used by default.

To add collaboration into versioning would require that the overall identi-
fication and versioning model is able to cater for individual users and groups
and that its default behaviour during object resolution takes into account cur-
rent common practices. At the same time, traceability of the resolution process
of individual objects and divergence from the default behaviour would also be
desirable.

3.4 Dynamic, Flexible Enactment and Optimisation

Optimising the enactment and execution of scientific workflows is a non-trivial
research task, which requires information and meta-data regarding the avail-
able execution contexts. The role of the registry in this regard can be of
central importance. The workflow platform, through an appropriate registry
sub-component, should be able to query metadata regarding associated com-
puting resources. Such metadata may include descriptions of resources in terms
of processing power, disk capacity, location, average workload, front-ends or
access points, supported authentication mechanisms, subscription information
of relevant research groups, etc. This metadata would be of a mostly static (or
infrequently-changing) nature, with dynamic, real-time data being handled by
a suitable provenance component. Some of this metadata could be stored and

11

managed internally, while there should be interfacing to external metadata re-
sources where appropriate. Irrespective of the location of these metadata or of
the internal management mechanisms, the registry should provide the workflow
platform with a comprehensive and consistent API, mapping the underlying
information to project-specific requirements.

4 Registry Design and Structure

In order to address the diverse set of requirements of our system, we build
on and extend the package metaphor, which is already present in the Dispel
workflow specification language [6] as well as it is present in the Python language
(and therefore in dispel4py). This metaphor defines a hierarchical system for
organising and naming digital objects of interest. In traditional programming,
packages are used as containers of source code units, which are somehow related.
From the perspective of the registry, packages may contain either programs
(written in Dispel or other languages) or other kinds of digital objects. The
registry, therefore, associates each registrable entity with a package, denoted by
a de facto dot-separated path.

Using packages to complement the Registry’s identification system has a
number of advantages: it is a human-readable system, which users are able to
reference directly from either source code or GUIs, its hierarchical structure
leads to intuitively unique fully-qualified names for the contained objects, and
it is a system many users are familiar with, as it exists in other programming
environments too (e.g. in Python, Java, C#, etc.).

Introducing Workspaces While the use of packages is a feature we wish to
retain, for the reasons outlined above, it also has disadvantages when used for
object identification in a large, heterogeneous programming environment. As
briefly discussed in Section the main drawback arises when users are al-
lowed to modify registered entities, as such modifications would potentially lead
to ambiguity when enacting a previously registered workflow (or an enactable
subgraph of one).

Consider a concrete version of the example of Section A workflow F
makes use of the seismology-related PE|eu.verce.seismo.InstrumentCorrection,
which modifies a waveform to compensate for characteristics of the observing
station. Suppose then that a scientist who makes use of F' wishes to modify
the implementation of this processing element so that uses instrument correc-
tion information available to her, locally. As we are dealing with a distributed
programming platform, introducing this change under the specific PE, would
cause the execution of F' to behave differently before and after the modification,
universally within the workflow platform. While this would be acceptable to the
user who introduced the modification, it would be surprising to other users. The
modified version of the PE, say |eu.verce.seismo.InstrumentCorrection/,
would now contain the locally desired functionality, while corresponding to the
same PE signature as before.

12

eu.verce.seismo.InstrumentCorrection
eu.verce.seismo.InstrumentCorrection

From an execution perspective, when the platform is requested to enact
and deploy F, during PE resolutiorﬂ and unless a priority mechanisms has
been introduced, the registry would not be able to resolve the PE in question
deterministically, as there would be two versions under the same fully-qualified
name (id) for same entity.

Based only on a traditional packaging system, this problem could be ad-
dressed by a combination of explicit version requests, alongside suitable default
behaviours (e.g. “if a version has not been explicitly provided, resolve to the
most recent version”). While this approach would take care of this problem
from an enactment perspective, it would nonetheless make interacting with the
platform a tedious task at the same time it would impede repeatability. Assum-
ing that such platform would be used by a potentially large number of scientists
with individual and research-group agendas, default behaviours within a global
scope would be of little value. On the other hand, if we were to implement
local-scope default behaviours, exchanging information and collaborating with
other scientists, outside of one’s immediate research environment, would not
be encouraged. To disallow ad hoc modifications completely would also be an
option — it would be a direct equivalent to the standard library of a traditional
programming language, i.e. the open public cannot modify the library, unless
the modifications are fed back to the developing community or company through
official channels. This is an approach, however, that would be of little value to
collaborating researchers with different, and frequently changing, requirements
and it would incur a higher cost of maintenance to the platform. In order to
avoid such problems, we choose to design for collaboration inside the registry
itself, by providing native support for workspaces.

In the following two sections, we provide further discussion of the platform’s
building blocks which appear both in the registry as well as the workflow spec-
ification language, namely of packages, workspaces and their relationship.

4.1 Packages

Dispel and dispel4py use package mechanisms similar to those in the Java pro-
gramming language. As Dispel provides a means to specify types, processing
elements and other workflow components, i.e. the core elements of any workflow-
based system, it is clear that the registry should also be able to reflect the lan-
guage’s structures, including packages. As the use of packages in programming
is well understood, we don’t expand further on Dispel packages in this paper.

4.2 Workspaces

A workspace represents a snapshot of the whole ecosystem of library and other
(e.g. external, domain-specific, etc.) components, as these are created, refined
or being put to use within a specific, user-defined context. Workspaces are

H1n this work, we consider the resolution mechanism as being part of the registry component
due to its central role within the architecture and the coupling of its function with entities
described in the registry.

13

Readable by all

Readable by
Owns

Legend

Defined types

() nerteoypes

Workspace2

Figure 2: An example workspace hierarchy and its relationship with users. In-
stead of types we could have any named, and therefore registrable, Dispel ele-
ment.

organised as a hierarchy, with each workspace being potentially an extension
of another one. Each workspace contains new, modified or implicit pointers
to packages of parent workspaces and, consequently, digital objects of interest
defined within its parent workspace.

A workspace is typically associated with a user or a user group or with
applications or experiments sharing similar goals. The exact use of a package
is left to the user and to the characteristics and constraints of the application
at hand. Each workspace represents a certain Dispel-based environment, which
can be invoked by users and utilised for look up, resolution and execution of
workflows by the enactment component.

Workspaces, as an abstraction, are orthogonal to packages, i.e. a workspace
spans the packages of the types and other objects it contains.

On a conceptual level, each workflow component can be seen as bearing
some semantic significance to the purpose or intention of the library. Often
such semantics are encoded in package- and class-names, for instance, while in
other cases additional information may also be employed, such as semantics-
specific types (e.g. Dispel’s d-types), relationships between components, text
or other descriptions, etc. Let us denote a conceptual workflow component as
T « T, where T is the set of all conceptual components defined in the distributed
workflow environment.

Users of the registry should be able to reference and introduce conceptual
components, and also modify and specify/implement them. Let us denote a
specification of a component as ¢, and its association to a conceptual/abstract
component T, as ¢t : T. In our model, each workflow component specification,
t, can only be associated with a single abstract component, T', within each
workspace. Components associated with the same conceptua}l/ﬁbstract entity

T
are said to be siblings, denoted by ¢;,t; , where T is, optionally'?| the “parent”

12T specify the conceptual type of the siblings is sometimes optional, as each component can

14

abstract type. For the purposes of this work, no assumption is asserted on the
structure siblings may be organised in — i.e. all siblings may be on the same
level, or arranged hierarchically, or otherwise, under a parent type.

Workspace Definition A workspace then can be defined as a set of logi-
cal workflow components, such that no two components can share the same
conceptual type in the same workspace:

W= {t|it' e W . t,¢'}

In other words, conceptual types can be used as an in-workspace identifiers for
logical workflow components. This modelling decision was taken to enforce a
semantic relationship between components and IDs, therefore making the use of
types easier. This decision does not incur any loss of generality, since new types
and workspaces can be created as needed. Given that the scope of conceptual
types is the whole of the distributed workflow system, it follows (and is indeed
desirable) that there will exist siblings of the same conceptual types in different
workspaces, and therefore, that |Ty N Ty/| > 0, where T; denotes the set of
conceptual types for which there exist specifications in workspace i, for any two
arbitrary workspaces W and W'.

Cascading Workspaces FEach workspace is designed to be an independent,
yet parent-complete representation of the run-time ecosystem available to the
scientist or the developer at any given time, derived either from a “standard
library” of workflow components on offer, or by another user-defined workspace.
This model of workspace definition leads to hierarchies of workspaces, much like
package hierarchies, only orthogonal to them.

In terms of component inheritance, each new workspace will inherit all the
components of its parent workspace by-reference (changes to the components
in the parent workspace will be reflected on the children), while modifications
to components will take place in a by-value fashion (i.e. modifications to com-
ponents in the child will not be propagated up to the parent), as depicted in
Figure This, effectively, creates cascading hierarchies of workspaces, where
member components get inherited, until modified.

Single Vs. Multiple Inheritance The cascading workspace model pre-
sented above can be materialised either by single or my multiple inheritance,
with the latter being a more general case. In the case of multiple inheritance, as
in traditional programming languages, there is the need for a precedence oper-
ator, denoted as t; > to, for two workflow component specifications, ¢; and ts.
Choosing between single and multiple inheritance would depend on the applica-
tion at hand and on the way workspaces would be employed during the lifetime
of a system. If multiple inheritance were to be adopted, the precedence operator,

have exactly one “parent”, and so there can only be one parent under which two components
can be siblings.

15

Figure 3: An Entities-Relationships (ER) conceptual model for the eScience reg-
istry, depicting the most important entities and attributes. Entities are colour-
and pattern-coded according to the logical group relevant to their function, e.g.
Connection and DispelType are part of the core Dispel registry, while Workspace
is related to functionality pertaining to the organisation chosen within a spe-
cific application. The attributes presented are a subset of the actual attributes
implemented, and many of them are instead realised as additional entities. Rela-
tionships depicted in bold are interfacing relationships between different logical
parts of the registry.

and therefore type resolution, where not defined explicitly in Dispel, could take
place over (1) the type placement in the Dispel script, (2) provenance informa-
tion, such as recency of the specification of the clashing workflow component,
(3) user-specified preference, etc. For the purposes of this study, we assume
a single-inheritance model, leaving the exploration of alternative strategies for
type resolution under multiple inheritance as future work.

Relationship to Packages Workflow components are rarely conceived in
isolation, instead being grouped with similar components or with dependencies.
Related components can therefore be expected to be packaged together when
accessed or modified inside or moved between workspaces. In the case of multiple
inheritance, briefly discussed above, precedence could be expressed at package
rather than at component level.

4.3 Logical Schema

In order for an information registry component to be usable within a complex
distributed system, it needs to be able to store data and interpret queries outside
its core, workflow specification function. Figure [3| shows the conceptual model
for such registry, focusing on Dispel-specific components. Here, four distinct
registry areas are shown and colour-coded: the core language-related represented

16

Dispel ! :
—>[" interpret(script) |

Science Dispel High-level Resources User Execution Data ci.Results
Gatewa " Regist Optimiser Registr Regist Engine Mgmt. Regist
T | i i i T i
' ' '
| | |

,Li ‘
‘] ") (optional) J

resource)

workspace,

User

FQN,impl,
response codB. getResource(PE

L resource)

' ' '
: : :
' ' '
' ' |
|
reqisteflresults G‘
] "

Figure 4: A sequence diagram depicting a hypothetical interaction between
a number of components of a Dispel-powered eScience solution. Components
which logically belong to the information registry appear with bold outline.
Calls and responses are indicative of the intended functionality, and they should
be implementable according to the registry schema of Figure @

by the entities AbstractTypeSignature, DispelType, Function, Connection and
Literal; the implementation area, which pertains to specific implementations
which are enactable at computing facilities with certain characteristics, and
with example entities being Location and Implementation; the organisational
area, which might implement different policies depending on the application at
hand, and with representative entities Package and Workspace; and the user-
management area, with representative entities User and Group.

For reasons of interoperability and sustainability, certain logical areas of the
registry need to be made compatible with known and well-accepted standards, so
as to take advantage of useful third-party catalogues and registries. For instance,
the implementation logical area of the registry, which is designed to interact with
the enactment and optimisation services of the workflow platform, could retain
compatibility with schemas such as EGI GLUEjEL primarily in the European
context, or with constituent Dublin Cord™] schemas for resource description.
Similarly, the user-management area could be made compatible with relevant
Dublin Core schemas, such as FOA In maintaining interoperability and
consistency between such workflow information registry and external catalogues,
the registration of appropriate prefixes through initiatives such as the European
Persistent Identifier Consortium — EPI(E would be very important. In terms
of implementation, presented in the following section, the dispel4py information
registry could be extended so that it facilitates the integration of dispel4py
workflows in larger heterogeneous infrastructures.

13http://go.egi.eu/glue2-standard
http://dublincore.org
Shttp://xmlns.com/foaf/spec/
16http://www.pidconsortium. eu

17

 http://go.egi.eu/glue2-standard
http://dublincore.org
http://xmlns.com/foaf/spec/
http://www.pidconsortium.eu

4.4 Current Implementation and Usage

A prototype version of the Information Registry has been developed for use
with dispeldpy, and has been released as an open-source project at https:
//github.com/iaklampanos/dj-vercereg. The current prototype is imple-
mented in Djangﬂ, a popular Python-based Web framework, and takes the
form of a RESTful API. The registry backend is provided by a relational MySQL
database server. The adoption of Django and MySQL, allows for fast prototyp-
ing — due to the level of integration of MySQL in Django, while achieving a per-
formant solution, deployable on thoroughly tested and reliable software, such as
the Apache Web Server. While the use of a relational database fulfils the basic
registration requirements of dispeld4py, we envisage extensions that make bet-
ter use of the intrinsic semantic relations between workflow components, types,
provenance information, etc., either as part of the core implementations or as
extensions that interrogate external resources.

The current implementation allows for basic user and group management,
which in turn allows for the creation and modification of workspaces. It also
covers all core Dispel-specific entities, such as PEs, functions (in the case of
dispel4py functions refer to python functions that may define a new workflow),
literals and implementations. It does not yet contain resource descriptions for
middleware and hardware, nor does it contain descriptions of data resources
and products. Based on the requirements of our current work, we intend to
look into these two extensions in the future, also taking into account provenance
and optimisation considerations. Making a case for the potential usefulness of
registries in the context of fine-grained, streaming workflows, the example of
the next section assumes these two components exist.

Once the registry has been deployed, users can navigate dynamic, browsable
documentation, under the path /docs, built on Django Swaggeﬂ After de-
ployment, and once the location of the registry and the default workspace have
been specified, dispeldpy users can invoke PEs and other Dispel entities inside
their workflows. This is achieved by overriding the Python import keyword so
that it queries the registry unless a local package with the same name has been
found. We believe this last detail is of great importance, as it makes the use
of the registry transparent to users when coding, allowing them to focus on the
task at hand. More information on how to make use of the registry in dispel4py
workflows can be found at http://dispeldpy.org.

5 Application Scenario: Seismic Ambient Noise
Cross-Correlation

The Green’s function of the medium between two seismographic stations can be
deduced from the inter-correlation of the seismic noise recorded at these stations

https://www.djangoproject.com
18https://github.com/marcgibbons/django-rest-swagger

18

https://github.com/iaklampanos/dj-vercereg
https://github.com/iaklampanos/dj-vercereg
http://dispel4py.org
https://www.djangoproject.com
https://github.com/marcgibbons/django-rest-swagger

[16] During recent years, rapid practical implementation of these innovative sta-
tistical methods, both in seismology and acoustics, have lead to breakthroughs
in high-resolution imaging — in seismology and exploration geophysics — and
acoustic communications [I7].

The calculation of cross-correlation is performed on waveforms retrieved from
arbitrary numbers of stations, on regional or global levels and over varying time
periods. This entails gathering, managing and processing large volumes of data
from a number of arbitrary sources, potentially annotating and storing byprod-
ucts, before cross-correlating the traces; therefore making this a data-intensive
scientific task. Cross-correlation is a parallelisable procedure, which can be
executed either on a local cluster or at an external facility. Post-processing,
visualisation and interactive steering typically follow the cross-correlation cal-
culation.

Data Data
Gathering Be Cou; Bost Storage

In: 3 stations In: waveform In: [waveform] In: waveform In: waveform
time period Out:waveform ~ Out: waveform Out: waveform Out: /A
Out: [waveform]

(a) Abstract workflow for ambient noise cross-
correlation.

1 Data
™| storage

i In:wavelorm
H Out: N/A

In: 3 stations
time period
Out: [waveform]

(b) Workflow for ambient noise cross-correlation
after high-level optimisation.

Figure 5: Workflow stages for ambient noise cross-correlation before and after
initial, high-level optimisation.

Focusing on the interactions of the Information Registry and the user as
well as the other components, and without loss of generality, a cross-correlation
experiment can be seen as having three broad phases: (1) pre-processing of
multiple waveforms; (2) cross-correlation and (3) post-processing (which may
include visualisation components). Before processing can commence, data needs
to be gathered from relevant sources, while at the end of the workflows result
data will typically need to be stored by some appropriate data-management
service. In typical cases, intermediate results could correspond to hundreds of
thousands of files. Let us assume that the abstract workflow consists of one
pre-processing, one cross-correlation and one post-processing component, as in
Figure [5{a).

The dispel4py registry contains information to enable the optimiser of the en-
acting component to extract appropriate PE implementations. Such information
includes user-specified workspaces (explicit or derived), e.g. W;, W;, Wy, of Fig-
ure[5|(b). The parallelisation strategy may be derived by information such as the

19

types of the input and output streams of PEs (e.g. whether they expect single
or multiple input streams), by observable indicators such as output/input ratio
as well as by other properties. In the future, by consulting the registry about
resources, the optimiser would also be able to make informed decisions about
which resource (e.g. z,y of Figure b)) should be responsible for each workflow
segment. Furthermore, the presence of such a registry component ensures that
references to PEs and workflows, such as the ambient noise cross-correlation
presented here, can be exchanged between users and still be resolvable and ex-
ecutable consistently throughout the eScience platform. By storing provenance
and other metadata, such as workspace names of PEs involved, the choice of
resources and the workflow segmentation, the system through the shared infor-
mation registry, can support the controlled re-enactment of scientific workflows
and the consistent replication of past experiments.

At this stage, the dispeldpy library and engine does not include an optimiser
to make such decisions; rather the users are required to specify which part of the
workflow gets executed on which resource. As such, the information registry is
currently used primarily for preserving consistency and encouraging sharing and
collaboration between researchers. Furthermore, accessing intermediate results
is semi-automatic, since, if the above is executed as a single workflow, PEs are
aware of files previously created and can stream them into subsequent parts of
the workflow with minimal user intervention. More details of the implementa-
tion of the above workflow in dispel4py can be found in [5] as well as in published
material of the EU VERCE project{™}

The example above is provided in order to highlight the importance of fine-
grained registries within the eScience context as well as their potential for in-
telligent workflow management and enactment. Furthermore, we believe that
such registries are suited to aiding researchers not only in sharing their research
methods, but also in collaborating on a more manageable and detailed level,
which is closer to their everyday working needs.

6 Conclusions and Future Work

In this paper we presented the role of an information registry within the Dispel-
powered eScience framework. Further, we provided a suitable design for such
a registry component taking into account the distributed nature of the target
system and of the way scientists conduct research as well as their collaboration
needs. We demonstrated how a mechanism of workspaces can help retain con-
sistency across what is essentially a distributed programming platform, while
being meaningful to users. Our choice of using Python-based technologies both
for the information registry and for dispeldpy increases their sustainability as
well as their prospects of adoption by relevant research communities. Further-
more, the tight and mostly transparent integration between the two technologies
allow users to control additions and changes to their workflows with minimal
deviation from their usual way of working.

Yhttp://verce.eu

20

http://verce.eu

At the same time, the design of such a wide-ranging eScience workflow plat-
form is far from complete. Pointers for future work include researching and spec-
ifying appropriate APIs which would allow interoperability with other eScience
platforms and registries, the integration of external stores and catalogues in an
extensible and domain-unaware fashion as well as, crucially, to kick-off an iter-
ative design process with increasing numbers of members of multiple interested
scientific communities.

References

[1] A. J. G. Hey, S. Tansley, and K. Tolle, The Fourth Paradigm: Data-
Intensive Scientific Discovery. Microsoft Research, 2009.

[2] T. Segaran and J. Hammerbacher, Beautiful Data: The Stories Behind
Elegant Data Solutions. O’Reilly, 2009.

[3] A.Shoshani and D. Rotem, Scientific Data Management: Challenges, Tech-
nology and Deployment, ser. Computational Science Series. Chapman and
Hall/CRC, 2010.

[4] W. H. Dutton and P. W. Jeffreys, World Wide Research: Reshaping the
Sciences and Humanities. MIT Press, 2010.

[5] R. Filguiera, I. Klampanos, A. Krause, M. David, A. Moreno, and
M. Atkinson, “Dispeldpy: A python framework for data-intensive
scientific computing,” in Proceedings of the 2014 International Workshop
on Data Intensive Scalable Computing Systems, ser. DISCS ’14.
Piscataway, NJ, USA: IEEE Press, 2014, pp. 9-16. [Online]. Available:
http://dx.doi.org/10.1109/DISCS.2014.12

[6] M. Atkinson, R. Baxter, P. Brezany, O. Corcho, M. Galea, J. van Hemert,
M. Parsons, and D. Snelling, THE DATA BONANZA: Improving Knowl-
edge Discovery for Science, Engineering and Business, A. Y. Z. (series),
Ed. John Wiley & Sons Ltd., April 2013.

[7] C.S.Liew, “Optimisation of the enactment of fine-grained distributed data-
intensive workflows,” Ph.D. dissertation, School of Informatics, University
of Edinburgh, 2012.

[8] E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Workflows and e-
Science: An overview of workflow system features and capabilities,” Future
Generation Computer Systems, vol. 25, no. 5, pp. 528-540, 2009.

[9] B. Dobrzelecki, A. Krause, A. Hume, A. Grant, M. Antonioletti, T. Alemu,
M. P. Atkinson, M. Jackson, and E. Theocharopoulos, “Integrating Dis-
tributed Data Sources with OGSA-DAI DQP and Views,” Philisophical
Transactions of the Royal Society A, vol. 368, no. 1926, pp. 4133-4145,
2010.

21

http://dx.doi.org/10.1109/DISCS.2014.12

[10]

[15]

D. Hull, K. Wolstencroft, R. Stevens, C. A. Goble, M. R. Pocock, P. Li, and
T. Oinn, “Taverna: a tool for building and running workflows of services.”
Nucleic Acids Research, vol. 34, pp. 729-732, 2006.

E. A. Lee and S. Neuendorffer, “MoML — A Modeling Markup Language
in XML — Version 0.4,” University of California at Berkeley, Tech. Rep.,
March 2000.

X. Llora, B. Acs, L. S. Auvil, B. Capitanu, M. E. Welge, and D. E. Gold-
berg, “Meandre: Semantic-Driven Data-Intensive Flows in the Clouds,” in
IEEE Fourth International Conference on eScience. IEEE Press, 2008,
pp. 238-245.

D. De Roure, C. Goble, and R. Stevens, “The Design and Realisation of
the myExperiment Virtual Research Environment for Social Sharing of
Workflows,” Future Generation Computer Systems, vol. 25, pp. 561-567,
2009. [Online]. Available: doi:10.1016/j.future.2008.06.010

K. Belhajjame, J. Zhao, D. Garijo, K. M. Hettne, R. Palma, 0. Corcho,
J. M. Go6mez-Pérez, S. Bechhofer, G. Klyne, and C. A. Goble, “The
research object suite of ontologies: Sharing and exchanging research data
and methods on the open web,” CoRR, vol. abs/1401.4307, 2014. [Online].
Available: http://arxiv.org/abs/1401.4307

A. Balasko, Z. Farkas, and P. Kacsuk, “Building science gateway
by utilizing the generic ws-pgrade/guse workflow system,” Computer
Science, wvol. 14, p. 307, Jan-01-2013 2013. [Online]. Available:
http://journals.agh.edu.pl/csci/article/view /284

M. Campillo and A. Paul, “Long-range correlations in the diffuse seismic
coda,” Science, vol. 299, no. 5606, 2003.

E. Galetti and A. Curtis, “Generalised receiver functions and seismic
interferometry,” Tectonophysics, vol. 532-535, no. 0, pp. 1 — 26,
2012. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0040195111005026

22

doi:10.1016/j.future.2008.06.010
http://arxiv.org/abs/1401.4307
http://journals.agh.edu.pl/csci/article/view/284
http://www.sciencedirect.com/science/article/pii/S0040195111005026
http://www.sciencedirect.com/science/article/pii/S0040195111005026

	Introduction
	Rationale and Related Work: Distributed, Data-Intensive Workflows
	Workflows
	Scientific Experimental Procedure

	Registry Requirements
	Distribution
	Registrable Programming and Scientific Components
	Workflow Components
	Scientific and Domain-Specific Objects

	Identification and Versioning
	Dynamic, Flexible Enactment and Optimisation

	Registry Design and Structure
	Packages
	Workspaces
	Logical Schema
	Current Implementation and Usage

	Application Scenario: Seismic Ambient Noise Cross-Correlation
	Conclusions and Future Work

