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Abstract

West Nile virus (WNV) is a neurovirulent mosquito-borne flavivirus, which main natural hosts are birds but it also infects
equines and humans, among other mammals. As in the case of other plus-stranded RNA viruses, WNV replication is
associated to intracellular membrane rearrangements. Based on results obtained with a variety of viruses, different cellular
processes have been shown to play important roles on these membrane rearrangements for efficient viral replication.
As these processes are related to lipid metabolism, fatty acid synthesis, as well as generation of a specific lipid
microenvironment enriched in phosphatidylinositol-4-phosphate (PI4P), has been associated to it in other viral models. In
this study, intracellular membrane rearrangements following infection with a highly neurovirulent strain of WNV were
addressed by means of electron and confocal microscopy. Infection of WNV, and specifically viral RNA replication, were
dependent on fatty acid synthesis, as revealed by the inhibitory effect of cerulenin and C75, two pharmacological inhibitors
of fatty acid synthase, a key enzyme of this process. However, WNV infection did not induce redistribution of PI4P lipids, and
PI4P did not localize at viral replication complex. Even more, WNV multiplication was not inhibited by the use of the
phosphatidylinositol-4-kinase inhibitor PIK93, while infection by the enterovirus Coxsackievirus B5 was reduced. Similar
features were found when infection by other flavivirus, the Usutu virus (USUV), was analyzed. These features of WNV
replication could help to design specific antiviral approaches against WNV and other related flaviviruses.
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Introduction

West Nile virus (WNV) is a mosquito-borne pathogen

responsible for outbreaks of febrile illness, meningitis, encephalitis,

and flaccid paralysis. Its main natural hosts are birds, although

equines and humans, among other mammals, can also be infected

[1]. WNV has been associated with sporadic outbreaks of

meningoencephalitis in Africa, Europe, and the Middle East [2].

Since 1999, when the virus emerged for the first time in the USA

[3,4], WNV has spread across the American continent, being

responsible of over 30,000 diagnosed infections, more than 12,000

cases of meningitis/encephalitis, and over 1,100 human fatalities

[1,2]. Likewise, since then, over 25,000 accumulated cases in

horses have been reported only in the USA [1]. Lately, an increase

in the frequency and severity of WNV outbreaks involving equines

and humans in Europe and the Mediterranean basin has also been

observed [5].

WNV is a plus-strand RNA virus classified within the Flaviviridae

family inside the genus Flavivirus together with other important

human pathogens as Dengue virus (DENV), St. Louis encepha-

litis virus, Yellow Fever virus, or tick-borne encephalitis virus.

The Flaviviridae family also includes another important human

pathogen, the hepatitis C virus, HCV, (Hepacivirus genus). As a

general feature, cells infected by plus-strand RNA viruses undergo

notable intracellular membrane remodelling [6,7,8,9]. For Kunjin

virus (KUNV), the Australian variant of WNV, major membrane

reorganizations leading to different well defined structures aimed

to establish the viral replication complex have been described

[6,10,11,12]. The primary membrane source for these structures is

provided by the endoplasmic reticulum (ER), although the

presence of markers from organelles involved in the endocytic

pathway (endosomes/lysosomes) or from the Golgi complex

remains unclear [10,11,13].

Membrane rearrangements driven by viral infections promote

efficient viral replication by achieving the optimal lipid and protein

conditions for anchoring viral replication machinery [7]. These

phenomena lead to the formation of organelle-like structures

specific for virus replication [9,14]. Regarding lipid composition of

these organelle-like structures, a requirement of fatty acid synthesis

and the involvement of the key enzyme of this pathway, the fatty

acid synthase (FASN), has been documented for enteroviruses

(such as poliovirus, PV, and Coxsackievirus B3, CVB3) and

members of the Flavivridae family [15,16,17,18,19], thus making of

FASN a promising antiviral target. Based on results obtained with

CVB3, PV and HCV, it has been also recently proposed that a

common specific lipid microenvironment enriched in phosphati-
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dylinositol-4-phosphate (PI4P) is crucial for the replication of RNA

viruses [14]. In the case of HCV, this microenvironment was

shown to be produced by specific recruitment of the phosphati-

dylinositol-4-kinase IIIa (PI4KIIIa) and also PI4KIIIb to the viral

replication complex [20,21,22,23,24]. According to these findings,

a number of studies have shown that replication of enteroviruses

and HCV is inhibited by the drug PIK93 [14,24,25], which

specifically blocks the PI4KIIIb [26] and also interferes with

PI4KIIIa [24]. In addition, apart from providing an adequate

platform for viral replication, intracellular membrane rearrange-

ments can also favour viral infection by contributing to evade the

cellular immune response [27]. In the case of WNV, these

membrane rearrangements could play a role for the evasion of

innate immune response by interfering with the interferon

signalling machinery [28,29].

Understanding the mechanisms involved in replication complex

organization is of crucial interest for the design of novel antiviral

approaches. Thus, in the present report we have analyzed the

implication of cellular cofactors in membrane rearrangements

induced by the highly neurovirulent strain of WNV responsible for

the encephalitis outbreak that took place in NY in 1999. These

cellular requirements were also investigated for the Usutu virus

(USUV), an emerging flavivirus in Europe responsible for recent

cases of neuroinvasive disease in humans [30,31].

Methods

Cells, viruses, infections, and virus titration
All manipulations of infectious virus were carried out in

Biosafety level 3 (BSL-3) containment facilities. WNV strain

NY99 [4], USUV strain SAAR 1776 [32] and CVB5 strain

Faulkner [33] were propagated in Vero cells [34]. Vero cells were

used in all experiments, except those involving FASN detection,

which were performed in Huh-7 cells [35] because commercial

antibody tested worked better on this cell line. Procedures for

infections have been previously described [34,36]. Viral titer was

determined 24 h postinfection (p.i.) for WNV or USUV and 8 h

p.i. for CVB5 by plaque assay. Ten-fold serial dilutions of viral

samples were carried out in duplicate and adsorbed to Vero cells

grown on six-well tissue culture dishes. After removal of the

inoculum, infection was allowed to continue in semi-solid medium

containing 1% low-melting-point agarose (Pronadisa, Madrid,

Spain) and 2% fetal bovine serum. Infected plates were fixed with

4% formaldehyde at 3 days p.i. Semisolid medium was removed

and plaques were visualized by staining with 0.3% crystal violet in

2% formaldehyde plus 10% ethanol.

Antibodies, stainings and reagents
Double-stranded RNA (dsRNA) and WNV envelope (E) protein

were detected using mouse monoclonal antibodies J2 (English &

Scientific Consulting Bt., Hungary) and 3.67G (Millipore,

Temecula, CA), respectively. Calreticulin and LAMP-1 were

detected using Rabbit polyclonal antibodies from Abcam (Cam-

bridge, UK). Rabbit polyclonal antibodies against calnexin and

mouse monoclonal antibody against GM130 were from ECM

Biosciences (Versailles, KY). Rabbit polyclonal antibody against

FASN, and mouse monoclonal anti-a-tubulin B512 were from

Sigma (St. Louis, MO). Wheat germ agglutinin (WGA) coupled to

Alexa Fluor (AF)-594, To-Pro-3 and secondary antibodies against

mouse or Rabbit IgGs coupled to AF-488, -594 or -647 were

purchased from Invitrogen (Molecular Probes, Eugene, O). Anti-

rabbit and anti-mouse secondary antibodies coupled to horserad-

ish peroxidase were from Dako (Stockholm, Sweden) and Sigma,

respectively. PIK93 was from Symansis (Washdyke, New Zeland)

and cerulenin and C75 from Sigma. Drugs were dissolved in

DMSO before use. Cell viability upon drugs treatments was

determined by ATP measurement with CellTiter-GloH lumines-

cent cell viability assay (Promega, Madison, WI).

Plasmids and transfections
The following plasmids were used in this study: plasmid

IgLdR1kdel encoding an ER targeted mRFP1 [37], plasmids

encoding wt forms of Rab4, 5, 7 or 11 fused to GFP [38,39] and a

plasmid encoding GFP-tagged FAPP1-PH [40]. All plasmids were

amplified in Escherichia coli DH5a, purified using PureLinkTM

HiPure FP Maxiprep Kit (Invitrogen, Carlsbad, CA) and

transfected using FuGENEH HD (Roche, Manheim, Germany)

as described by the manufacturer. Cells were infected 24 h post-

transfection.

Electron microscopy
Vero cells grown on 75 cm2 tissue culture flasks were infected

with WNV or USUV (MOI of 5 PFU/cell) and 24 h p.i. were

washed and fixed 30 min at 37uC in 4% paraformaldehyde-2%

glutaraldehyde in 0.1 M phosphate buffer pH 7.4 plus 5 mM

CaCl2. Cells were scrapped and postfixed in 1% osmium

tetroxide-1% potassium ferricyanide for 1 h at 4uC, washed three

times with bidistilled water and treated with 0.15% tanic acid

(1 min). Cells were washed with the buffer and with bidistilled

water prior to the staining with 2% uranyl acetate (1 h). After

three washes with bidistilled water samples were dehydrated in

ethanol and embedded in the resin. Samples were examined using

a Jeol JEM-1010 electron microscope (Jeol, Japan) operated at

80 kV and images were acquired using a digital camera 4 K64 K

TemCam-F416 (Tietz Video and Image Processing Systems

GmbH, Gauting, Germany).

Immunofluorescence and confocal microscopy
Following 24 h of infection, cells grown on glass coverslips

(Menzel-Glaser, Braunschweig, Germany) were washed twice with

phosphate buffer saline (PBS) and fixed in 4% paraformaldehyde

in PBS for 15 min at room temperature (RT). Samples were

washed twice in PBS and blocked, and permeabilized in BPTG

(1% bovine serum albumin [BSA], 0.1% Triton-X 100, 1 M

glycine in PBS) for 15 min at room temperature (RT). Then, cells

were incubated (1 h at RT) with primary antibodies diluted in 1%

BSA in PBS. After two additional washes with PBS, cells were

incubated (30 min at RT) with fluorescently labelled secondary

antibodies or WGA coupled to AF594. Nuclei were stained using

To-Pro-3 as described by the manufacturer. Samples were washed

again with PBS and mounted in Fluoromount-GTM (Southern

Biotech, Birmingham, AL). Cells were observed using a Leica

TCS SPE confocal laser scanning microscope using an HCX PL

APO 636/1.4 oil immersion objective. Images were acquired

using Leica Advanced Fluorescence Software and processed with

ImageJ (http://rsbweb.nih.gov/ij/) and Adobe Photoshop CS2

(Adobe Inc, San Jose, CA). Optical slice thickness for all confocal

images displayed was of 1 airy unit.

Quantitative RT-PCR
Infected cultures were subjected to two freeze and thaw cycles

and viral RNA was extracted with NucleoSpin viral RNA isolation

kit (Macherey-Nagel, Düren, Germany) at 24 h p.i. from samples

treated with the drugs from 3 h p.i.. The amount of viral RNA

copies was determined by quantitative RT-PCR [41] as genomic

equivalents to PFU/ml by comparison with RNA extracted from

previously titrated samples [42,43].

Cellular Lipid Requirements for WNV Replication
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Western blot
Cells were lysed on ice in RIPA buffer (150 mM NaCl, 5 mM b-

mercaptoethanol, 1% NP-40, 0.1% sodium dodecyl sulfate [SDS],

50 mM Tris-HCl pH 8) supplemented with cOmplete protease

inhibitor cocktail tablets (Roche) and protein concentration was

determined by Bradford assay. Equal amounts of proteins were

mixed with Laemmli sample buffer, subjected to SDS-PAGE and

proteins were electrotransferred onto a nitrocellulose membrane.

Membrane was blocked with 5% skimmed milk in PBS 0.05%

Tween-20, incubated with primary antibodies (over night at 4uC),

washed three times with the same buffer, and subsequently incubated

with secondary antibodies coupled to horseradish peroxidase (1 h at

RT) diluted in 1% skimmed milk in PBS-Tween. Membrane was

washed three times and proteins were detected by chemiluminiscence

using a ChemiDocTM XRS+ System (Bio-Rad, Hercules, CA).

Data analysis
Analysis of the variance (ANOVA) was performed with the

statistical package SPSS 15 (SPSS Inc., Chicago, IL) applying

Bonferroni’s correction for multiple comparisons. Data are

presented as means 6 standard deviations. Asterisks (*) in the

figures denote statistically significant differences (P,0.05).

Results

Intracellular membrane rearrangements involved in WNV
replication complex assembly

When intracellular membrane rearrangements in WNV-NY99

infected cells (24 h p.i.) were analyzed by transmission electron

microscopy, convoluted membranes (CM) and vesicle packets (VP)

were observed (Figure 1A panels a and b). These VPs contained

electron dense virions (Vi) and spherical vesicles (Ve), some of which

presented electron dense fibrous material inside (Figure 1A, panel b

asterisks). In some cases, association of these vesicles to the external

membrane of VP was observed (Figure 1A, panel b arrows).

Electron dense virions located at the tip of the cisternae inside Golgi-

like structures were also observed (Figure 1A, panel c). The

localization of viral particles at the Golgi complex was supported by

colocalization of the structural envelope (E) protein of the virions

with this organelle (Figure S1). In addition to these membrane

rearrangements, whorls of stacked ribosome free membranes were

also observed in infected cells (Figure 1A, panel d).

By means of immunofluorescence and confocal microscopy, cell

structures were visualized using either specific antibodies against

cellular markers (calnexin and calreticulin for ER, and LAMP-1

Figure 1. Analysis of cellular components involved in WNV replication complex. (A) Ultrastructure of WNV-induced membrane alterations.
Cells infected with WNV (MOI of 5 PFU/cell) were fixed and processed for electron microscopy at 24 h p.i. (a) Electron micrograph showing membrane
alteration on WNV infected cells: convoluted membranes (CM), WNV induced-vesicles (Ve), vesicle packets (VP), and electron dense virions (Vi). (b)
Higher magnification images of VP induced by WNV infection. Black arrows indicate the point of contact between a vesicle and the outer membrane
of the VP. Asterisks denote Ve with electron dense fibrous material. (c) WNV virions trafficking through the Golgi complex. (d) Whorls of stacked
membranes. Scale bars: 200 nm. (B) Cells infected or not (mock) as in (A) were fixed and processed for immunofluorescence and confocal microscopy.
WNV dsRNA was detected using a monoclonal antibody and cellular structures were labelled by using specific antibodies, or by transfection with
plasmids encoding fluorescent fusion proteins (see text for details). Suitable secondary antibodies coupled to AF488 or 594 were used. Scale bar:
10 mm.
doi:10.1371/journal.pone.0024970.g001

Cellular Lipid Requirements for WNV Replication
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for lysosomes), and wheat germ agglutinin (WGA) as a marker of

the Golgi complex, or by performing transfections with plasmids

encoding fluorescent proteins markers for different cellular

compartments (IgLdR1kdel for ER, and Rab 4, 5, 7, and 11 for

endosomes) (Figure 1B). Signal from double-stranded RNA

(dsRNA), a marker of the viral replication complex, was observed

as cytoplasmic foci in infected cells, but not in mock-infected cells.

However, WNV dsRNA only colocalized with markers from the

ER (calnexin, calreticulin and IgLdR1kdel), and excluded the

WGA marker from Golgi complex, as well as markers from early,

recycling and late endosomes (Rab 4, 5, 7 and 11) or lysosomes

(LAMP-1).

WNV replication requires fatty acid synthesis
As WNV replication induced notable intracellular membrane

rearrangements, the involvement of different cellular lipids on

WNV replication was analyzed. The role of fatty acid synthesis in

WNV replication was analyzed by using two pharmacological

inhibitors of FASN: cerulenin and C75 [44]. Both cerulenin and

C75 reduced WNV production when added to the culture medium

either at 0 h or 3 h p.i. (Figure 2A), thus showing that these drugs

affected viral replication stages rather than entry steps. Working

concentrations of these inhibitors had no major effects on cell

viability (Figure S2), indicating that the inhibition of viral

production could be attributed to the inhibition of the targeted

cellular process. Viral replication in the presence of FASN inhibitors

was further investigated analyzing viral RNA synthesis by means of

quantitative RT-PCR (Figure 2B). These experiments confirmed

that inhibition of WNV production by cerulenin and C75 when

added 3 h p.i. was derived from a reduction in the synthesis of viral

RNA. Then, the location of FASN in WNV-infected cells was

analyzed by inmunofluorescence microscopy (Figure 2C). Mock-

infected cells displayed a diffuse cytoplasmic staining of FASN,

whereas localization of FASN close to WNV replication complexes

was observed in infected cells at 12 or 24 h p.i. Analysis by western

blot revealed that no significant changes in the relative levels of

FASN were observed during WNV infection (Figure 2D).

WNV replication is independent of PI4P
The role of PI4P lipids, which have been shown to play an

important role in RNA virus replication (see Introduction), was

analyzed on WNV replication. As shown in Figure 3A, in mock-

infected cells transfected with a plasmid encoding a GFP-tagged

FAPP1-PH protein, which binds to PI4P lipids, PI4P localized at

discrete structures surrounding cell nuclei, colocalizing with Golgi

markers WGA and GM130, and thus indicating a primary

distribution of this lipid at the Golgi complex. Likewise, confocal

laser scanning microscopy of cells transfected with PI4P reporter

plasmid and later infected with WNV did not show redistribution

of PI4P, and colocalization of PI4P with WGA close to the nucleus

was observed, thus indicating that PI4P was also located at the

Golgi complex in WNV infected cells (Figure 3B). Even more, no

colocalization of PI4P with dsRNA was observed (Figure 3B upper

panels), since when calreticulin was used as a marker for the ER it

was noted that dsRNA was located at the ER and excluded PI4P

lipids (Figure 3B lower panels). On the other hand, enterovirus

CVB5-infected cells showed a redistribution of PI4P lipids that

could be also found outside Golgi complex (Figure 3C upper

panels) and not excluding the ER (Figure 3C lower panels). In

addition to these, PI4P lipids colocalized with dsRNA, showing

that they were located to CVB5 replication complexes (Figure 3C).

Next, the effect of the inhibition of PI4P synthesis by PIK93 was

Figure 2. Replication of WNV is dependent on fatty acid synthesis. (A) WNV infection requires active fatty acid synthesis. Cells infected with
WNV (MOI of 0.5 PFU/cell) were treated with 15 mM cerulenin or 15 mM C75 from 0 or 3 h p.i. throughout the rest of the assay and total virus yield
was determined at 24 h p.i. (B) Genome replication of WNV is dependent on fatty acid synthesis. Cells were infected and treated with FASN inhibitors
from 3 h p.i. as in (A). RNA was extracted at 24 h p.i. and the number of WNV RNA copies was determined by quantitative RT-PCR. (C) Localization of
FASN in mock and WNV-infected Huh-7 cells. Infected cells (MOI of 5 PFU/cell) were fixed and processed for immunofluorescence (12 or 24 h p.i.)
using a rabbit anti-FASN antibody in combination with a monoclonal antibody against dsRNA. Primary antibodies were detected using suitable AF-
488 or 594 labelled secondary antibodies. Scale bar: 10 mm. (D) Analysis of FASN levels during WNV infection. Huh-7 cells were infected with WNV as
in (A) and lysed at different times p.i. Western blot analysis was performed to determine the relative levels of FASN protein. Membrane was retested
against a tubulin antibody as a control for protein loading.
doi:10.1371/journal.pone.0024970.g002

Cellular Lipid Requirements for WNV Replication
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analyzed. To this end, when WNV replication was monitored by

quantitative RT-PCR and virus titration (24 h p.i.), no statistically

significant differences on WNV RNA synthesis (Figure 3D) and no

reduction on viral production were observed upon PIK93

treatment (Figure 3E) when the drug was added at 0 or 3 h p.i.

The capability of PIK93 to interfere on viral replication was

confirmed by the effect that it exerted on CVB5 infected cells, in

which a dose-dependent inhibition was observed when PIK93 was

added either at 0 or 3 h p.i.

Replication of USUV shares common requirements with
WNV

The findings observed for WNV replication were also

investigated using another Flavivirus of the Japanese encephalitis

serocomplex. Infection with USUV in Vero cells cursed with

cythopathic effect, and shared comparable growth kinetics to that

of WNV although USUV titers were one order of magnitude

lower (Figure 4A). Infection by both viruses induced apoptosis in

cultured cells at late infection stages, since cell nuclei displaying

Figure 3. Replication of WNV is independent of PI4P. (A) Localization of PI4P at the Golgi complex in mock-infected cells. Cells transfected with
a plasmid encoding a GFP-tagged FAPP1-PH protein to detect PI4P were fixed and processed for immunofluorescence (24 h p.i.) using WGA-AF594
and a mouse monoclonal antibody against GM130 (revealed with a secondary antibody coupled to AF647). (B) Localization of PI4P in WNV infected
cells. Cells transfected as in (A) and later infected with WNV (MOI of 5 PFU/cell) were fixed and processed for immunofluorescence (24 h p.i.). WGA
labelled with AF594 or a rabbit anti-calreticulin antibody was used in combination with a monoclonal antibody against dsRNA. Primary antibodies
were detected using suitable AF594 or 647 labelled secondary antibodies. (C) Cells transfected as in (A) and later infected with CVB5 (MOI of 5 PFU/
cell) were fixed and processed for immunofluorescence (8 h p.i.) as described in (B). (D) WNV RNA replication is independent of PI4KIIIb function. Cells
infected with WNV (MOI of 0.5 PFU/cell) were treated with different concentrations of PIK93 from 0 or 3 h p.i. throughout the rest of the assay. RNA
from infected plates was extracted at 24 h p.i. and the number of WNV RNA copies was determined by quantitative RT-PCR. (E) Cells were infected
with WNV or CVB5 and treated with PIK93 as in (D). Total virus yield (24 h p.i. for WNV and 8 h p.i. for CVB5) was determined by plaque assay. Scale
bars: 10 mm.
doi:10.1371/journal.pone.0024970.g003

Cellular Lipid Requirements for WNV Replication
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apoptotic characteristics, as chromatin condensation and margin-

alization, were observed (Figure 4B, arrows). Cells infected with

USUV (24 h p.i.) were analyzed by transmission electron

microscopy (Figure 5A). Vesicle packets (VP) were observed

(Figure 1A panels a and b). As commented for WNV, these VPs

contained electron dense virions (Vi) and spherical vesicles (Ve),

some of which presented electron dense fibrous material inside

(Figure 1A, panels a and b asterisks). Association of these vesicles

to the external membrane of VP was also noted (Figure 1A, panels

a and b arrows). Whorls of stacked ribosome free membranes were

also observed (Figure 1A, panel c). Next, cells infected with USUV

were immunostained and analyzed by confocal microscopy. As

described for WNV, in USUV-infected cells dsRNA colocalized

with calnexin (an ER marker), but excluded WGA signal, a Golgi

marker (Figure 5B). Association of USUV dsRNA with ER was

also observed in infected cells that had been previously transfected

with IgLdR1kdel plasmid, an ER reporter (Figure 5C), confirming

that USUV replication also took place associated to ER. When

lipid requirements for USUV replication were analyzed, cells

transfected with PI4P reporter plasmid and infected with USUV

did not show association of PI4P to viral replication complex

(Figure 5D), although association of FASN to viral replication

complex was observed (Figure 5E). In addition to this, infection by

USUV was not inhibited by PIK93, whereas virus yield was

reduced when cerulenin or C75 were added to the cultures 3 h

p.i., thus confirming fatty acid requirements instead of PI4P for

USUV replication (Figure 5F).

Discussion

Recent advances indicate that Flavivirus replication complex is

constituted upon structures derived from the ER [13,45].

According to this observations, the internal ‘vesicles’ observed

inside VPs, which contain dsRNA [13,45], actually constitute

invaginations from the external membrane and contact by pores

with the cell cytoplasm [13,45]. Supporting this model, we have

observed an association of these vesicles to the external membrane

of the VP, and a fibrous material stained by uranyl acetate, which

binds to phosphate groups present in nucleic acids [45], was also

observed inside some of these structures. Assembled virions may

bud into the ER (which were also observed in VP packets together

with vesicles), and traffic across the Golgi complex for maturation,

prior to extracellular release [6,10,11]. In addition to VPs, CMs,

which may be derived from the rough ER [11], as well as whorls of

stacked ribosome free membranes similar to organized smooth ER

structures [46,47] were observed. Supporting the origin of these

membranes from ER, dsRNA only colocalized with markers from

the ER. Regarding assembly of the viral replication complex

among different members of the Flaviviridae family, HCV

replication complex also contains components of the endocytic

machinery normally associated to endosomes, i.e. Rab 4, 5 and 7

[23,48], and Rab 7L1 has been also associated with DENV

replication [16]. Our results showed that all markers of endocytic

organelles tested, Rab 4, 5, 7, 11 and LAMP-1, which included

early and late endosomes as well as lysosomes, were not associated

to dsRNA in WNV infected cells, thus indicating that endocytic

machinery components are not recruited to membranous

structures where WNV replication takes place.

Membrane rearrangements driven by viral replication are

connected with lipid metabolism [14,18,19,49]. In this way, the

specific lipid content of membranes has been related either to the

achievement of proper membrane fluidity, plasticity and topology

(helping membrane curvature) or to favouring the recruitment of

viral and cellular factors to the replication complex [14,50,51,52].

Flaviviruses manipulate host-cell machinery to create an optimal

specific lipid microenvironment for assembly of their replication

complex, where cholesterol seems to play an essential role [28,53].

In this study lipid requirements, other than cholesterol, in WNV

replication were addressed. Fatty acid synthesis was found to be

related to WNV replication, as RNA replication and virus

production were reduced by drugs targeting this process. These

findings are consistent with previous reports analyzing the

involvement of fatty acid synthesis and FASN activity on the

replication of virus of the Flaviviridae family [16,17]. In the case of

DENV, it has been documented that FASN is recruited to the viral

replication complex by specific interaction with viral protein [16].

Regarding FASN levels, they were not substantially altered by

WNV infection when analyzed by western blot, consistent with

that reported for DENV [16] and in contrast to HCV-infection,

Figure 4. Comparative analysis of WNV and USUV infection
and cytophatology in Vero cells. (A) Growth curve of WNV and
USUV. Cells were infected (MOI of 0.1 PFU/cell) and supernatant virus
yield was determined at different times p.i. (B) Cells were infected as
in (A), fixed and processed for immunofluorescence and confocal
microscopy at 48 h p.i. Monoclonal antibody against dsRNA and AF-488
labelled secondary antibodies were used to detect dsRNA. Cell nucleus
was stained with To-Pro3. Arrows point to apoptotic cell nuclei. Scale
bar: 10 mm.
doi:10.1371/journal.pone.0024970.g004

Cellular Lipid Requirements for WNV Replication
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which curses with an increase in FASN expression [17]. The

involvement of fatty acid synthesis in viral replication seems to be a

widely used strategy for RNA virus replication, since enzymes of

the fatty acid metabolic pathway are also involved in intracellular

membrane remodelling of a variety RNA virus [49,52,54].

It has been also recently proposed that a common specific lipid

microenvironment specifically enriched in PI4P is crucial for the

replication of RNA viruses as enteroviruses (CVB3 and PV) and

HCV [14]. PI4P location to the viral replication complex is

mediated by recruitment of a lipid kinase that synthesizes this lipid,

namely PI4KIIIa for HCV and PI4KIIIb for CVB3, PV, and also

HCV [14,20,21,22,23,24,25]. Our results show that, in contrast to

what has been described for CVB3 and HCV [14,22], and observed

in this report for CVB5, PI4P was not redistributed in WNV

infected cells. Even more, the fact that PI4P lipids did not colocalize

with dsRNA indicates that they were not located at WNV

replication complex, opposite to that observed for CVB5. In

addition to these, when PIK93, a drug that specifically blocks the

PI4KIIIb [26], although it can also inhibit PI4KIIIa [24], was used,

it was observed that concentrations of PIK93 that successfully

inhibited replication of enteroviruses and HCV [14,24,25] did not

inhibit infection with WNV, or WNV RNA synthesis. This lack of

PIK93 effect revealed an independence of PI4P for WNV and

USUV replication, in contrast to that previously suggested for

enteroviruses and HCV replication [14,24].

As it has been suggested that comparative studies using different

flaviviruses may unlock crucial mechanisms of disease pathogen-

esis [27], similar experiments were carried out using USUV.

Supporting WNV results, USUV-infected cells displayed similar

membrane rearrangements to that induced by WNV, and dsRNA

also was localized at the ER. When lipid requirements for USUV

infection were analyzed, no PI4P relocalization or colocalization

with dsRNA was observed, but USUV infection, as well as WNV

infection, was also sensitive to inhibition of fatty acid synthesis and

was not affected by PIK93.

Modulation of lipid composition, specially cholesterol, is related

to viral-induced membrane rearrangements [47]. Along this line,

fatty acid biosynthesis may also act in concert with cholesterol

synthesis to enable proper membrane rearrangements for

replication complex assembly [16,55]. In addition to this, a link

between fatty acid requirements for virus replication and the

induction of autophagy, as an alternative source of fatty acids, has

been also recently reported for DENV infection [56]. The whorls

of stacked ribosome free membranes observed in this study in

WNV and USUV infected cells resembled multi-lamellar bodies,

which have been reported to be associated with autophagy, and

whose formation is also regulated through lipid composition

[57,58]. Although authophagy has been characterized for other

members of the Flaviviridae family as DENV, HCV, and Modoc

virus [56,59,60], in the case of WNV and USUV the potential role

of autophagy in viral replication remains to be explored. However,

it has been recently reported that infection by WNV results in an

induction of the unfolded protein response [61,62], which, in other

viral models leads to the induction of autophagy [63].

Figure 5. Replication of USUV is associated to the ER, requires fatty acid synthesis and is independent of PI4P. (A) Ultrastructure of
USUV-induced membrane alterations. Vero cells infected with USUV (MOI of 5 PFU/cell) were fixed and processed for electron microscopy at 24 h p.i.
(a) and (b) Electron micrographs showing membrane alteration on USUV infected cells: induced-vesicles (Ve), vesicle packets (VP), and electron dense
virions (Vi). Black arrows indicate the point of contact between a vesicle and the outer membrane of the VP. Asterisks denote Ve with electron dense
fibrous material. (c) Whorls of stacked membranes. Scale bars: 200 nm. (B). Cells infected as in (A) were fixed and processed for immunofluorescence
using a rabbit anti-calnexin antibody combined with a monoclonal antibody against dsRNA and WGA labelled with AF594. (C) Cells transfected with
plasmid encoding an mRFP1 version coupled to an ER retention signal (IgLdR1kdel) were infected with USUV as is (A) and then fixed and processed
for immunofluorescence using a monoclonal antibody against dsRNA. (D) Cells transfected with plasmid encoding a GFP-tagged FAPP1-PH protein
(to detect PI4P) were infected with USUV as is (A) and then fixed and processed for immunofluorescence using a monoclonal antibody against dsRNA
(E) USUV-infected Huh-7 cells were stained using rabbit anti-FASN antibodies combined with a monoclonal antibody against dsRNA. Suitable
secondary antibodies coupled to AF-488, 594 or 647 were used in (B), (C), (D) and (E). (F) Vero cells infected with USUV (MOI of 0.5 PFU/cell) were
treated with 1 mM PIK93, 15 mM cerulenin, or 15 mM C75 from 3 h p.i. throughout the rest of the assay, and total virus yield (24 h p.i.) was determined
by standard titration in semisolid medium. Scale bars: 10 mm.
doi:10.1371/journal.pone.0024970.g005
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In summary, our observations indicate that WNV replication

complex, organized by remodelling membranes derived from the

ER, is dependent on fatty acid synthesis but does not share some

common features described for other members of the same family

(Flaviviridae), i.e. PI4P requirements or involvement of the

endocytic machinery. Apart from providing basic information of

the cellular mechanisms involved in flaviviral replication, these

unique features of WNV and USUV replication may help in the

design of specific antiviral approaches.

Supporting Information

Figure S1 Localization of WNV E protein at the Golgi
complex. Vero cells infected with WNV (MOI of 5 PFU/cell)

were fixed and processed for immunofluorescence (24 h p.i.) using

a monoclonal antibody against E glycoprotein revealed with a

suitable AF488 coupled secondary antibody, and WGA lectin

AF594 as a Golgi marker. Scale bar: 10 mm.

(TIF)

Figure S2 Analysis of cellular viability upon drug
treatments. Cellular ATP levels were determined after 24 h of

treatment with DMSO (drug vehicle), 15 mM cerulenin, 15 mM

C75 or 1 mM PIK93. RLU, relative luciferase units.

(TIF)
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