# A Topological Data Analysis Perspective on Non-Covalent Interactions in Relativistic Calculations - supplementary information

Małgorzata Olejniczak<sup>a</sup>, André Severo Pereira Gomes<sup>b</sup> and Julien Tierny<sup>c</sup>

<sup>a</sup> Centre of New Technologies, University of Warsaw, S. Banacha 2c 02-097 Warsaw, Poland
 <sup>b</sup> Université de Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers, Atomes et Molécules, F-59000 Lille, France
 <sup>c</sup> Sorbonne Université, CNRS, Laboratoire d'Informatique de Paris 6, LIP6, F-75005 Paris, France

August 2, 2019

#### List of tables:

- Table 1: Selected interatomic distances in **g1**, **g2** and **g3** molecules.
- Table 2: Optimized xyz-coordinates of **g1** molecule.
- Table 3: Optimized xyz-coordinates of g2 molecule.
- Table 4: Optimized xyz-coordinates of g3 molecule.
- Table 5: The xyz-coordinates of **m-a-g1** molecule.
- Table 6: The xyz-coordinates of **m-b-g1** molecule.
- Table 7: Persistence values of extra saddle-saddle pairs of  $log(\rho)$  between Au and H atoms and the full persistence range of  $log(\rho)$  in **g1** molecule. ADF calculations.
- Table 8: Persistence values of extra saddle-saddle pairs of  $log(\rho)$  between Au and H atoms and the full persistence range of  $log(\rho)$  in **g2** molecule. ADF calculations.
- Table 9: Persistence values of extra saddle-saddle pairs of  $log(\rho)$  between Au and H atoms and the full persistence range of  $log(\rho)$  in **g3** molecule. ADF calculations.
- Table 10: Persistence values of extra saddle-saddle pairs of  $log(\rho)$  between Au and H atoms and the full persistence range of  $log(\rho)$  in **m-a-g1** molecule. DIRAC and ADF calculations.
- Table 11: Persistence values of extra saddle-saddle pairs of  $log(\rho)$  between Au and H atoms and the full persistence range of  $log(\rho)$  in **m-b-g1** molecule. DIRAC and ADF calculations.
- Table 12: The full persistence range of  $log(\rho)$ , persistence values of extra saddlesaddle pairs of  $log(\rho)$  between Au and H atoms and the Euclidean distance between the critical points forming these pairs calculated for **m-a-g1** molecule on grids of various dimensions. ADF calculations with so-ZORA Hamiltonian and PBE functional.

 Table 13: The values of log(ρ) in the location of extra critical points of this scalar field between Au and H atoms in g1 molecule. ADF calculations with a selected QM model.

### List of plots:

• Figure 1 An example of ED with more complex topology in the interatomic Au-H area.

### Additional information:

- The supplementary data also includes the **esi.tgz** file, which contains a collection of inputs, outputs and ED data from QM calculations, as well as the description of the analysis pipeline. The detailed information on the content of this repository is in the **README.md** file (after extracting the esi.tgz).
- TDA of scalar fields is well-described on the TTK website (link) and can be done for each scalar field using TTK-GUI.
- The automated analysis of many electron density files was done with the set of scripts (link) an example analysis workflow is described in **esi.tgz**.

| mol | interactions | $R_e$ (this work) [Å] | $R_e$ (Ref. [1]) [Å] |
|-----|--------------|-----------------------|----------------------|
|     | Au4-H1       | 2.807                 | 2.819                |
|     | Au4-C2       | 3.446                 | -                    |
|     | C2-H1        | 1.092                 | 1.090                |
| g1  |              |                       |                      |
|     | Au8-H2       | 2.822                 | 2.830                |
|     | Au8-C3       | 3.480                 | -                    |
|     | C3-H2        | 1.093                 | 1.090                |
|     | Au4-H1       | 2.798                 | 2.825                |
|     | Au4-C2       | 3.438                 | -                    |
|     | C2-H1        | 1.092                 | 1.090                |
| g2  |              |                       |                      |
|     | Au8-H2       | 2.822                 | 2.804                |
|     | Au8-C3       | 3.481                 | -                    |
|     | C3-H2        | 1.093                 | 1.090                |
|     | Au4-H1       | 2.820                 | -                    |
|     | Au4-C2       | 3.444                 | -                    |
|     | C2-H1        | 1.090                 | 1.090                |
| g3  |              |                       |                      |
|     | Au8-H2       | 2.850                 | -                    |
|     | Au8-C3       | 3.483                 | -                    |
|     | C3-H2        | 1.091                 | 1.091                |

Table 1: Selected interatomic distances (atom numbering as in Ref. [1]) for **g1**, **g2** and **g3** molecules - optimized in this work and compared with the geometrical parameters reported in Ref. [1] (when available).

| atom         | Х         | У         | Z         |
|--------------|-----------|-----------|-----------|
| Η            | 1.447129  | -3.218916 | 0.443356  |
| $\mathbf{C}$ | 0.891218  | -2.282030 | 0.513704  |
| $\mathbf{C}$ | -0.488085 | -2.292899 | 0.482397  |
| Η            | -1.025116 | -3.238994 | 0.391156  |
| $\mathbf{C}$ | -1.231052 | -1.081540 | 0.574520  |
| $\mathbf{S}$ | -2.957115 | -1.200669 | 0.552737  |
| $\mathbf{C}$ | -0.515616 | 0.140932  | 0.691914  |
| Η            | -1.077478 | 1.074420  | 0.768003  |
| $\mathbf{C}$ | 0.863439  | 0.152115  | 0.721561  |
| Η            | 1.406100  | 1.096468  | 0.813571  |
| $\mathbf{C}$ | 1.597343  | -1.057583 | 0.641735  |
| $\mathbf{S}$ | 3.338453  | -1.120221 | 0.735160  |
| Au           | -3.877913 | 0.894515  | 0.726014  |
| Au           | 4.284613  | -1.219358 | -1.562293 |
| Au           | -4.414556 | 2.043917  | 3.213722  |
| Au           | -5.058650 | 3.315975  | 0.973362  |
| Au           | -4.596259 | 2.428347  | -1.486199 |
| Au           | 4.217251  | 1.068153  | 0.564033  |
| Au           | 5.507891  | 3.266987  | -0.151806 |
| Au           | 5.423294  | 1.188213  | -1.899938 |

Table 2: Optimized xyz-coordinates of **g1** molecule [Å]. Geometry optimization with scalar ZORA, PBE functional, TZP basis set and  $\Delta E = 1.0e - 4$  tolerance on the convergence of the energy gradient; singlet (minimum confirmed by frequency calculations). ADF software. Input, output and xyz files available in esi.tgz.

| atom         | Х         | У         | Z         |
|--------------|-----------|-----------|-----------|
| Η            | 1.445543  | -3.228520 | 0.467639  |
| $\mathbf{C}$ | 0.891585  | -2.289730 | 0.526716  |
| $\mathbf{C}$ | -0.491708 | -2.300111 | 0.496800  |
| Η            | -1.027760 | -3.247819 | 0.417458  |
| $\mathbf{C}$ | -1.230387 | -1.089980 | 0.573772  |
| $\mathbf{S}$ | -2.969057 | -1.214692 | 0.547851  |
| $\mathbf{C}$ | -0.517263 | 0.130157  | 0.674760  |
| Η            | -1.076000 | 1.066538  | 0.734930  |
| $\mathbf{C}$ | 0.866155  | 0.140807  | 0.705464  |
| Η            | 1.407948  | 1.086537  | 0.785942  |
| $\mathbf{C}$ | 1.594584  | -1.067185 | 0.637831  |
| $\mathbf{S}$ | 3.350096  | -1.136226 | 0.748306  |
| Au           | -3.868699 | 0.893830  | 0.726644  |
| Au           | 4.270429  | -1.187408 | -1.541928 |
| Au           | -4.446213 | 2.026757  | 3.210992  |
| Au           | -5.027572 | 3.339367  | 0.981216  |
| Au           | -4.526540 | 2.468274  | -1.473689 |
| Au           | 4.220646  | 1.061036  | 0.561745  |
| Au           | 5.475904  | 3.279692  | -0.147066 |
| Au           | 5.393201  | 1.226509  | -1.928674 |

Table 3: Optimized xyz-coordinates of **g2** molecule [Å]. Geometry optimization with scalar ZORA, PBE functional, TZP basis set and  $\Delta E = 1.0e - 4$  tolerance on the convergence of the energy gradient; triplet (minimum confirmed by frequency calculations). ADF software. Input, output and xyz files available in esi.tgz.

| atom | Х         | У         | Z         |
|------|-----------|-----------|-----------|
| Н    | 1.459756  | -3.182355 | 0.461869  |
| C    | 0.903988  | -2.247269 | 0.530118  |
| C    | -0.476221 | -2.256657 | 0.462371  |
| Н    | -1.009443 | -3.199787 | 0.344118  |
| C    | -1.216320 | -1.048812 | 0.545927  |
| S    | -2.942748 | -1.176034 | 0.450860  |
| C    | -0.508436 | 0.166999  | 0.702885  |
| Н    | -1.068184 | 1.099653  | 0.774824  |
| C    | 0.872705  | 0.176958  | 0.766838  |
| Н    | 1.410970  | 1.118464  | 0.885680  |
| C    | 1.602369  | -1.027917 | 0.682554  |
| S    | 3.347944  | -1.094758 | 0.814537  |
| Au   | -3.878050 | 0.879765  | 0.690327  |
| Au   | 4.268177  | -1.259067 | -1.423403 |
| Au   | -4.549077 | 1.859681  | 3.184034  |
| Au   | -5.089136 | 3.261072  | 1.035560  |
| Au   | -4.499984 | 2.544068  | -1.416046 |
| Au   | 4.234028  | 1.049117  | 0.502335  |
| Au   | 5.483517  | 3.203170  | -0.315025 |
| Au   | 5.389036  | 1.091540  | -1.973655 |

Table 4: Optimized xyz-coordinates of **g3** molecule [Å]. Geometry optimization with scalar ZORA, PBE functional, QZ4P basis set and  $\Delta E = 1.0e - 6$  tolerance on the convergence of the energy gradient; triplet (frequency calculations not performed due to large computational cost). ADF software. Input, output and xyz files available in esi.tgz.

| atom | Х         | у         | Z        |
|------|-----------|-----------|----------|
| Н    | -0.488085 | -2.292899 | 0.482397 |
| C    | -1.231052 | -1.081540 | 0.574520 |
| S    | -2.957115 | -1.200669 | 0.552737 |
| C    | -0.515616 | 0.140932  | 0.691914 |
| Н    | -1.077478 | 1.074420  | 0.768003 |
| Н    | 0.863439  | 0.152115  | 0.721561 |
| Au   | -3.877913 | 0.894515  | 0.726014 |

Table 5: The xyz-coordinates in **m-a-g1** molecule [Å]. The xyz file available in esi.tgz.

| atom | Х         | У         | Z        |
|------|-----------|-----------|----------|
| Н    | 0.891218  | -2.282030 | 0.513704 |
| Н    | -0.515616 | 0.140932  | 0.691914 |
| С    | 0.863439  | 0.152115  | 0.721561 |
| Н    | 1.406100  | 1.096468  | 0.813571 |
| С    | 1.597343  | -1.057583 | 0.641735 |
| S    | 3.338453  | -1.120221 | 0.735160 |
| Au   | 4.217251  | 1.068153  | 0.564033 |

Table 6: The xyz-coordinates in **m-b-g1** molecule [Å]. The xyz file available in esi.tgz.

| Hamiltonian | XC functional | basis set | $D_{f_2,H}$              | <i>nece ece</i> (Au4-H1) | <i>пъсъ ъсъ</i> (Ац8-Н2) | $n_{DCD}  _{DCD}  _{DCD}  _{(5nq)}$ |
|-------------|---------------|-----------|--------------------------|--------------------------|--------------------------|-------------------------------------|
| sr-ZORA     | PBF           | DZ        | $\frac{1}{1.769451e+01}$ | 1.125930e-02             | 1.224516e-02             | -                                   |
| sr-ZORA     | B3LYP         | DZ        | 1.769064e+01             | 1.166529e-02             | 1.298286e-02             |                                     |
| sr-ZORA     | SAOP          | DZ        | 1.771703e+01             | 1.226280e-02             | 1.453581e-02             |                                     |
| sr-ZORA     | M06-2X        | DZ        | $1.763837e{+}01$         | 3.978651e-03             | 4.677878e-03             | ı                                   |
| sr-ZORA     | PBE           | TZP       | $1.642941e{+}01$         | 5.110330e-03             | 4.153433e-03             | 4.817177e-04                        |
| sr-ZORA     | B3LYP         | TZP       | $1.638242e{+}01$         | 5.406346e-03             | 3.624376e-03             | 3.977777e-04                        |
| sr-ZORA     | SAOP          | TZP       | $1.660280e{+}01$         | 6.874537e-03             | 5.794189e-03             |                                     |
| sr-ZORA     | M06-2X        | TZP       | $1.635400e{+}01$         | 1.122817e-03             | ı                        | I                                   |
| sr-ZORA     | PBE           | QZ4P      | 1.521122e+01             | 1.525617e-04             | 1.519517e-03             | I                                   |
| sr-ZORA     | B3LYP         | QZ4P      | $1.523449e{+}01$         | 1.019242e-03             | 1.016382e-03             | 5.151300e-04                        |
| sr-ZORA     | SAOP          | QZ4P      | $1.526692e{+}01$         | 8.397415e-04             | 8.749194e-04             |                                     |
| sr-ZORA     | M06-2X        | QZ4P      | $1.503546e{+}01$         | 1                        | 1                        | I                                   |
| so-ZORA     | PBE           | DZ        | 1.770511e+01             | 1.196422e-02             | 1.263567e-02             | ı                                   |
| so-ZORA     | B3LYP         | DZ        | $1.770213e{+}01$         | 1.272368e-02             | 1.326464e-02             |                                     |
| so-ZORA     | SAOP          | DZ        | $1.772945e{+}01$         | 1.324461e-02             | 1.492975e-02             | 1                                   |
| so-ZORA     | M06-2X        | DZ        | 1.765091e+01             | 4.419973e-03             | 5.437300e-03             | I                                   |
| so-ZORA     | PBE           | TZP       | $1.643886e{+}01$         | 5.453016e-03             | 4.973991e-03             | I                                   |
| so-ZORA     | B3LYP         | TZP       | $1.639362e{+}01$         | 5.761828e-03             | 4.038796e-03             | 6.564660e-04                        |
| so-ZORA     | SAOP          | TZP       | $1.661120e{+}01$         | 7.168729e-03             | 6.162753e-03             | 1                                   |
| so-ZORA     | M06-2X        | TZP       | $1.635670e{+}01$         | 1.546018e-03             | 3.733271e-04             | I                                   |
| so-ZORA     | PBE           | QZ4P      | $1.521225e{+}01$         | 4.770581e-04             | 2.216330e-03             | I                                   |
| so-ZORA     | B3LYP         | QZ4P      | $1.524024e{+}01$         | 1.240513e-03             | 1.287909e-03             | 6.496557e-04                        |
| so-ZORA     | SAOP          | QZ4P      | $1.526583e{+}01$         | 1.032044e-03             | 1.023866e-03             |                                     |
| so-ZORA     | M06-2X        | QZ4P      | 1.503793e+01             |                          |                          |                                     |

and the full persistence range  $(p_{full})$  of  $log(\rho)$  in **g1** molecule. In some cases, there are two pairs of saddle-saddle points in the same Empty persistence value field means that the corresponding saddle-saddle pair is absent. Nonrelativistic electron densities do not exhibit extra saddle-saddle pairs in these interatomic areas, hence the results are not included in the table, yet the corresponding outputs are attached in esi.tgz. ADF calculations (data/raw\_data/g1/ED\_calcs\_ADF directory in esi.tgz). These values were used to prepare the plot interatomic area, in which case the second pair exhibits even smaller persistence value  $(p_{BCP-RCP} (2^{nd}))$ , as also demonstrated in Figure 1. Table 7: Persistence values of extra saddle-saddle pairs of  $log(\rho)$  between Au and H atoms ( $p_{BCP-RCP}$  (Au4-H1) and  $p_{BCP-RCP}$  (Au8-H2)) in Figure 3 (top) in the main publication.

| $p_{BCP-RCP}$ (2 <sup>nd</sup> ) |              |                  |                  |                  |                  |                  |                  |                  |              |                  |                  |                  |              |                     |                  |              |                 |                  |                  |                           | 7.394137e-04     |                  | 6.570162e-04     |                  |
|----------------------------------|--------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|--------------|------------------|------------------|------------------|--------------|---------------------|------------------|--------------|-----------------|------------------|------------------|---------------------------|------------------|------------------|------------------|------------------|
| pBCP-RCP (Au8-H2)                | 1.397782e-02 | 1.474009e-02     | 1.651262e-02     | 5.235502e-03     | 5.443757e-03     | 5.035625e-03     | 7.196483e-03     | 3.857565e-04     | 1.520771e-03 | 1.978182e-03     | 2.930192e-03     |                  | 1.574424e-02 | 1.592183e-02        | 1.651262e-02     | 6.322581e-03 | 6.347091 e-03   | 5.498912e-03     | 6.617830e-03     | 6.231982e-04              | 2.212547e-03     | 3.987820e-03     | 2.709691e-03     |                  |
| pBCP-RCP (Au4-H1)                | 1.435171e-02 | 1.495156e-02     | 1.592493e-02     | 5.865562e-03     | 7.602445e-03     | 8.005509e-03     | 9.626236e-03     | 3.599969e-03     | 2.000082e-03 | 3.396760e-03     | 4.277207e-03     | 8.094562e-04     | 1.644953e-02 | 1.634773e-02        | 1.592493e-02     | 6.137765e-03 | 8.553137e-03    | 8.190917e-03     | 8.482935e-03     | 3.872325e-03              | 2.316956e-03     | 2.327404e-03     | 2.690176e-03     | 1.037826e-03     |
| $p_{full}$                       | 1.717114e+01 | $1.716389e{+}01$ | $1.719425e{+}01$ | $1.711547e{+}01$ | $1.591613e{+}01$ | $1.587128e{+}01$ | $1.608863e{+}01$ | $1.585316e{+}01$ | 1.471760e+01 | $1.475556e{+}01$ | $1.488288e{+}01$ | $1.458157e{+}01$ | 1.717679e+01 | $1.718075e{+}01$    | $1.719425e{+}01$ | 1.711381e+01 | $1.58848e{+}01$ | $1.586315e{+}01$ | $1.599783e{+}01$ | $1.587124\mathrm{e}{+01}$ | $1.468633e{+}01$ | $1.474735e{+}01$ | $1.471088e{+}01$ | $1.459987e{+}01$ |
| basis set                        | DZ           | DZ               | DZ               | DZ               | TZP              | TZP              | TZP              | TZP              | QZ4P         | QZ4P             | QZ4P             | QZ4P             | DZ           | $\mathrm{DZ}^{(a)}$ | DZ               | DZ           | TZP             | TZP              | TZP              | $\mathrm{TZP}^{(b)}$      | QZ4P             | $QZ4P^{(c,d)}$   | QZ4P             | $QZ4P^{(e)}$     |
| XC functional                    | PBE          | B3LYP            | SAOP             | M06-2X           | PBE              | B3LYP            | SAOP             | M06-2X           | PBE          | B3LYP            | SAOP             | M06-2X           | PBE          | B3LYP               | SAOP             | M06-2X       | PBE             | B3LYP            | SAOP             | M06-2X                    | PBE              | B3LYP            | SAOP             | M06-2X           |
| Hamiltonian                      | sr-ZORA      | sr-ZORA          | sr-ZORA          | sr-ZORA          | sr-ZORA          | sr-ZORA          | sr-ZORA          | sr-ZORA          | sr-ZORA      | sr-ZORA          | sr-ZORA          | sr-ZORA          | so-ZORA      | so-ZORA             | so-ZORA          | so-ZORA      | so-ZORA         | so-ZORA          | so-ZORA          | so-ZORA                   | so-ZORA          | so-ZORA          | so-ZORA          | so-ZORA          |

Persistence values of extra saddle-saddle pairs of log(p) between Au and H atoms ( $p_{BCP-RCP}$  (Au4-H1) and  $p_{BCP-RCP}$  (Au8-H2)) and the full persistence range ( $p_{full}$ ) of  $(og(\rho))$  in **g2** molecule. In some cases, there are two pairs of saddle-saddle points in the same interatomic area, in which case the second pair exhibits even smaller persistence value  $(p_{BCP-RCP})$  $(2^{nd})$ , as also demonstrated in Figure 1. Empty persistence value field means that the corresponding saddle-saddle pair is absent. Nonrelativistic electron densities do not exhibit extra saddle-saddle pairs in these interatomic areas, hence the results are not included in the table, yet the corresponding outputs are attached in esi.tgz. ADF calculations. These values were used to prepare the plot in Figure  $3 \pmod{\text{in the main publication}}$ . Table 8:

[ssues in ADF calculations (also see data/raw\_data/g2/ED\_calcs\_ADF/ADF\_issues file in esi.tgz):

(a) Lower convergence criteria in SCF procedure in ED single-point calculations were used: SCFcnv=2e-05 (instead of 1e-06, applied in other cases).(\*)

<sup>(b)</sup> Lower convergence criteria in SCF procedure in ED single-point calculations were used: SCFcnv=3e-05 (instead of 1e-06, applied in other cases).<sup>(\*)</sup>

(c) Lower convergence criteria in SCF procedure in ED single-point calculations were used: SCFcnv=1e-05 (instead of 1e-06, applied in other cases).(\*)

(d) Lower integration accuracy in SCF procedure (ED calculations) was used: 1e-04 (instead of 1e-08, applied in other cases). (\*\*)

(e) Lower convergence criteria in SCF procedure in ED single-point calculations were used: SCFenv=8e-06 (instead of 1e-06, applied in other cases).(\*) (\*) SCFcnv is explained in https://www.scm.com/doc/ADF/Input/SCF.html

(\*\*) accint is explained in https://www.scm.com/doc/ADF/Input/Numerical\_integration.html

| $P(2^{nd})$   |                  |                  |                  | 04               |              |              |              |                  |                  |                  |                           |                  |              |                  |                  |                  |                  |                           |                  |                  |                  |                  |                           |                  |
|---------------|------------------|------------------|------------------|------------------|--------------|--------------|--------------|------------------|------------------|------------------|---------------------------|------------------|--------------|------------------|------------------|------------------|------------------|---------------------------|------------------|------------------|------------------|------------------|---------------------------|------------------|
| PBCP-RC.      |                  |                  |                  | 4.944822e-       |              |              |              |                  |                  |                  |                           |                  |              |                  |                  |                  |                  |                           |                  |                  |                  |                  |                           |                  |
| (Au8-H2)      | ~                | ~                | ~                | _                |              |              | Ţ            |                  |                  |                  |                           |                  | ~            | ~                | ~                |                  | 1                | 1                         | 1                |                  |                  |                  |                           |                  |
| PBCP-RCP      | 5.789720e-03     | 6.593143e-05     | 7.400598e-05     | 5.694157e-04     | ı            |              | 6.805312e-04 | I                |                  | ı                | ı                         | ı                | 7.152668e-0  | 7.563135e-05     | 7.291676e-08     | ı                | 6.121454e-04     | 4.187489e-04              | 6.677462e-04     | ı                | ı                | I                | ı                         | ı                |
| (Au4-H1)      |                  |                  |                  |                  |              |              |              |                  |                  |                  |                           |                  |              |                  |                  |                  |                  |                           |                  |                  |                  |                  |                           |                  |
| $p_{BCP-RCP}$ | 8.709746e-03     | 9.163789e-03     | 9.594903e-03     | 1.339880e-03     | 1.694424e-03 | 2 039347e-03 | 3.201481e-03 | I                |                  | ,                | ı                         | ı                | 1.063200e-02 | 1.084425e-02     | 1.094759e-02     | 2.596635e-03     | 2.471294e-03     | 2.645973e-03              | 2.586178e-03     | I                | ı                | ı                |                           | I                |
| $p_{full}$    | $1.801864e{+}01$ | $1.801225e{+}01$ | $1.804687e{+}01$ | $1.796336e{+}01$ | 1.658976e+01 | 1.653246e+01 | 1.680598e+01 | $1.649374e{+}01$ | $1.537412e{+}01$ | $1.549474e{+}01$ | $1.565850\mathrm{e}{+}01$ | $1.529012e{+}01$ | 1.802720e+01 | $1.802282e{+}01$ | $1.804031e{+}01$ | $1.796916e{+}01$ | $1.656615e{+}01$ | $1.652044\mathrm{e}{+01}$ | $1.668164e{+}01$ | $1.655847e{+}01$ | $1.544652e{+}01$ | $1.547454e{+}01$ | $1.547503\mathrm{e}{+01}$ | $1.532595e{+}01$ |
| basis set     | DZ               | DZ               | DZ               | DZ               | TZP          | TZP          | TZP          | TZP              | QZ4P             | OZ4P             | OZ4P                      | QZ4P             | DZ           | DZ               | DZ               | DZ               | TZP              | TZP                       | TZP              | TZP              | QZ4P             | $QZ4P^{(a,b)}$   | QZ4P                      | $QZ4P^{(c)}$     |
| XC functional | PBE              | B3LYP            | SAOP             | M06-2X           | PBE          | R3LVP        | SAOP         | M06-2X           | PBE              | B3LYP            | SAOP                      | M06-2X           | PBE          | B3LYP            | SAOP             | M06-2X           | PBE              | B3LYP                     | SAOP             | M06-2X           | PBE              | B3LYP            | SAOP                      | M06-2X           |
| Hamiltonian   | sr-ZORA          | sr-ZORA          | sr-ZORA          | sr-ZORA          | sr-ZOBA      | sr-ZORA      | sr-ZORA      | sr-ZORA          | sr-ZORA          | sr-ZORA          | sr-ZORA                   | sr-ZORA          | so-ZORA      | so-ZORA          | so-ZORA          | so-ZORA          | so-ZORA          | so-ZORA                   | so-ZORA          | so-ZORA          | so-ZORA          | so-ZORA          | so-ZORA                   | so-ZORA          |

persistence range  $(p_{full})$  of  $log(\rho)$  in **g3** molecule. In some cases, there are two pairs of saddle-saddle points in the same interatomic area, in which case the second pair exhibits even smaller persistence value  $(p_{BCP-RCP} (2^{nd}))$ , as also demonstrated in Figure 1. Empty persistence value field means that the corresponding Persistence values of extra saddle-saddle pairs of  $log(\rho)$  between Au and H atoms ( $p_{BCP-RCP}$  (Au4-H1) and  $p_{BCP-RCP}$  (Au8-H2)) and the full based based of a basent. Nonrelativistic electron densities do not exhibit extra saddle-saddle pairs in these interatomic areas, hence the results are not included in the table, yet the corresponding outputs are attached in esi.tgz. ADF calculations. These values were used to prepare the plot in Figure 3 (top) in the main publication. Table 9:

[ssues in ADF calculations (also see data/raw\_data/g3/ED\_calcs\_ADF/ADF\_issues file in esi.tgz):

<sup>(a)</sup> Lower convergence criteria in SCF procedure in ED single-point calculations were used: SCFcnv=2e-05 (instead of 1e-06, applied in other cases).<sup>(\*)</sup>

<sup>(b)</sup> Lower integration accuracy in SCF procedure (ED calculations) was used: accint=1e-04 (instead of 1e-08, applied in other cases).<sup>(\*\*)</sup>

<sup>(c)</sup> Lower convergence criteria in SCF procedure in ED single-point calculations were used: SCFcnv=2e-05 (instead of 1e-06, applied in other cases).<sup>(\*)</sup>

(\*) SCFcnv is explained in https://www.scm.com/doc/ADF/Input/SCF.html

(\*\*) accint is explained in https://www.scm.com/doc/ADF/Input/Numerical\_integration.html

| software | Hamiltonian | method     | basis set | $p_{full}$                | $p_{BCP-RCP}$ (Au-H) |
|----------|-------------|------------|-----------|---------------------------|----------------------|
| ADF      | NR          | PBE        | QZ4P      | $1.305694\mathrm{e}{+01}$ | -                    |
| ADF      | sr-ZORA     | PBE        | QZ4P      | $1.335749\mathrm{e}{+01}$ | 3.872066e-03         |
| ADF      | so-ZORA     | PBE        | QZ4P      | $1.335972\mathrm{e}{+01}$ | 4.176261e-03         |
|          |             |            |           |                           |                      |
| DIRAC    | LL          | $_{ m HF}$ | TZ        | $1.324935\mathrm{e}{+01}$ | -                    |
| DIRAC    | LL          | PBE        | TZ        | $1.324776\mathrm{e}{+01}$ | -                    |
| DIRAC    | SFDC        | $_{ m HF}$ | TZ        | $1.359010\mathrm{e}{+01}$ | -                    |
| DIRAC    | SFDC        | PBE        | TZ        | $1.352066\mathrm{e}{+01}$ | 7.112031e-03         |
| DIRAC    | DC          | $_{ m HF}$ | ΤZ        | $1.359544\mathrm{e}{+01}$ | -                    |
| DIRAC    | DC          | PBE        | TZ        | $1.350644\mathrm{e}{+01}$ | 7.252288e-03         |

Table 10: Persistence values of extra saddle-saddle pairs of  $log(\rho)$  between Au and H atoms  $(p_{BCP-RCP} (Au-H))$  and the full persistence range  $(p_{full})$  of  $log(\rho)$  in **m-a-g1** molecule. Empty persistence value field means that the corresponding saddle-saddle pair is absent. DIRAC and ADF calculations. These values were used to prepare the plot in Figure 3 (bottom) in the main publication.

| software | Hamiltonian | method     | basis set | $p_{full}$                | $p_{BCP-RCP}$ (Au-H) |
|----------|-------------|------------|-----------|---------------------------|----------------------|
| ADF      | NR          | PBE        | QZ4P      | $1.327969e{+}01$          | -                    |
| ADF      | sr-ZORA     | PBE        | QZ4P      | $1.355098\mathrm{e}{+01}$ | 3.954927e-03         |
| ADF      | so-ZORA     | PBE        | QZ4P      | $1.355417\mathrm{e}{+01}$ | 4.173114e-03         |
|          |             |            |           |                           |                      |
| DIRAC    | LL          | $_{ m HF}$ | TZ        | $1.339789\mathrm{e}{+01}$ | -                    |
| DIRAC    | LL          | PBE        | ΤZ        | $1.335818e{+}01$          | -                    |
| DIRAC    | SFDC        | $_{ m HF}$ | TZ        | $1.364721\mathrm{e}{+01}$ | -                    |
| DIRAC    | SFDC        | PBE        | TZ        | $1.360986\mathrm{e}{+01}$ | 6.706207e-03         |
| DIRAC    | DC          | $_{ m HF}$ | TZ        | $1.365221\mathrm{e}{+01}$ | -                    |
| DIRAC    | DC          | PBE        | ΤZ        | $1.359180\mathrm{e}{+01}$ | 6.851428e-03         |

Table 11: Persistence values of extra saddle-saddle pairs of  $log(\rho)$  between Au and H atoms  $(p_{BCP-RCP} \text{ (Au-H)})$  and the full persistence range  $(p_{full})$  of  $log(\rho)$  in **m-b-g1** molecule. Empty persistence value field means that the corresponding saddle-saddle pair is absent. DIRAC and ADF calculations. These values were used to prepare the plot in Figure 3 (bottom) in the main publication.

| grid size $[^3]$ | basis set | $p_{full}$                 | $p_{BCP-RCP}$ (Au-H) | $d_{BCP-RCP}$ (Au-H) |
|------------------|-----------|----------------------------|----------------------|----------------------|
| 100              | DZ        | $1.195127 \mathrm{e}{+01}$ | 1.869950e-02         | 3.671269e-01         |
| 120              | DZ        | $1.309020e{+}01$           | 2.236385e-02         | 3.781513e-01         |
| 140              | DZ        | $1.248961e{+}01$           | 1.994952e-02         | 3.938479e-01         |
| 160              | DZ        | $1.208379e{+}01$           | 1.826069e-02         | 3.396226e-01         |
| 180              | DZ        | $1.241236e{+}01$           | 2.064556e-02         | 3.563615e-01         |
| 200              | DZ        | $1.239989e{+}01$           | 2.017480e-02         | 3.680712e-01         |
| 220              | DZ        | $1.225804e{+}01$           | 1.893280e-02         | 3.749301e-01         |
| 240              | DZ        | $1.231507\mathrm{e}{+}01$  | 1.978607 e-02        | 3.771497e-01         |
| 260              | DZ        | $1.261110e{+}01$           | 2.010359e-02         | 3.843008e-01         |
| 280              | DZ        | $1.276228e{+}01$           | 1.960953e-02         | 3.921415e-01         |
| 300              | DZ        | $1.251713e{+}01$           | 1.945282e-02         | 3.956538e-01         |
| 320              | DZ        | $1.331789e{+}01$           | 1.970133e-02         | 3.708479e-01         |
|                  |           |                            |                      |                      |
| 100              | TZP       | $1.221650\mathrm{e}{+01}$  | 1.321338e-02         | 2.773642e-01         |
| 120              | TZP       | $1.335541\mathrm{e}{+01}$  | 1.242765e-02         | 3.146496e-01         |
| 140              | TZP       | $1.275482e{+}01$           | 1.105273e-02         | 3.237410e-01         |
| 160              | TZP       | $1.234902e{+}01$           | 1.291310e-02         | 3.396226e-01         |
| 180              | TZP       | $1.267758\mathrm{e}{+01}$  | 1.164339e-02         | 3.598911e-01         |
| 200              | TZP       | $1.266510\mathrm{e}{+01}$  | 1.135396e-02         | 3.205463 e-01        |
| 220              | TZP       | $1.252326\mathrm{e}{+01}$  | 1.257816e-02         | 3.319230e-01         |
| 240              | TZP       | $1.258029\mathrm{e}{+01}$  | 1.144852e-02         | 3.043196e-01         |
| 260              | TZP       | $1.287632\mathrm{e}{+01}$  | 1.135001e-02         | 2.786618e-01         |
| 280              | TZP       | $1.302749\mathrm{e}{+01}$  | 1.244543e-02         | 2.908751e-01         |
| 300              | TZP       | $1.278235\mathrm{e}{+01}$  | 1.160138e-02         | 3.029665e-01         |
| 320              | TZP       | $1.358311\mathrm{e}{+01}$  | 1.154929e-02         | 2.825667 e-01        |
|                  |           |                            |                      |                      |
| 100              | QZ4P      | $1.166440\mathrm{e}{+01}$  | 5.851856e-03         | 2.773642e-01         |
| 120              | QZ4P      | $1.278673e{+}01$           | 5.696846e-03         | 2.428267e-01         |
| 140              | QZ4P      | $1.220642\mathrm{e}{+01}$  | 3.577124e-03         | 1.942446e-01         |
| 160              | QZ4P      | $1.179808e{+}01$           | 5.121765e-03         | 2.830188e-01         |
| 180              | QZ4P      | $1.212905\mathrm{e}{+01}$  | 4.983849e-03         | 2.563753e-01         |
| 200              | QZ4P      | $1.211652\mathrm{e}{+01}$  | 4.115400e-03         | 2.316469e-01         |
| 220              | QZ4P      | $1.197374e{+}01$           | 4.998110e-03         | 2.507677e-01         |
| 240              | QZ4P      | $1.203120e{+}01$           | 4.605919e-03         | 2.328481e-01         |
| 260              | QZ4P      | $1.232757\mathrm{e}{+01}$  | 4.009358e-03         | 2.462884e-01         |
| 280              | QZ4P      | $1.247791\mathrm{e}{+01}$  | 4.883752e-03         | 2.286334e-01         |
| 300              | QZ4P      | $1.223392e{+}01$           | 4.408231e-03         | 2.128415e-01         |
| 320              | QZ4P      | $1.303013\mathrm{e}{+01}$  | 4.116861e-03         | 2.262489e-01         |

Table 12: The full persistence range  $(p_{full})$  of  $log(\rho)$ , persistence values of extra saddlesaddle pairs of  $log(\rho)$  between Au and H atoms  $(p_{BCP-RCP} (Au-H))$  and the Euclidean distance between the critical points forming these pairs  $(d_{BCP-RCP} (Au-H))$  calculated for **m-a-g1** molecule on grids of various dimensions. ADF calculations with so-ZORA Hamiltonian and PBE functional. These values were used to prepare plots in Figure 4 in the main publication.

|                                    | 0                 | 0                          | <br>0                     | 0                         |
|------------------------------------|-------------------|----------------------------|---------------------------|---------------------------|
| $log(\rho^{NR}(r^{so-ZORA}))$      | -1.948988e+0      | -1.947044e+0               | $-1.954695e{+0}$          | -1.951012e+0              |
| $log(\rho^{so-ZORA}(r^{so-ZORA}))$ | $-1.930624e{+00}$ | $-1.931102\mathrm{e}{+00}$ | $-1.936628e{+}00$         | -1.938844e+00             |
|                                    | 7.450982e-01      | 7.450982e-01               | 7.058825e-01              | 7.450982e-01              |
| $r^{so-ZORA}$                      | 7.294119e-01      | 6.352943e-01               | 8.235295e-01              | 6.352943e-01              |
|                                    | -2.101960e+00     | -2.101960e+00              | $2.415687\mathrm{e}{+00}$ | $2.415687\mathrm{e}{+00}$ |
| interatomic area                   | Au4-H1            | Au4-H1                     | Au8-H2                    | Au8-H2                    |
| critical point                     | "BCP"             | "RCP"                      | "BCP"                     | "RCP"                     |

example with the PBE functional and QZ4P basis set (ADF calculations), for which the topology of  $log(\rho)$  is visualized in Figure 2 in the main publication. The additional critical points appear only for the electron density calculated with the relativistic so-ZORA Hamiltonian (what is emphasized by the superscript so - ZORA in  $r^{so-ZORA}$ ). The values of  $log(\rho)$  within both, the nonrelativistic and the relativistic Table 13: The values of  $log(\rho)$  in the location of extra critical points of this scalar field between Au and H atoms in **g1** molecule - an formalisms  $(log(\rho^{NR}(r^{so-ZORA})))$  and  $log(\rho^{so-ZORA}(r^{so-ZORA}))$ , respectively), were probed in these locations in order to illustrate the total order of the  $log(\rho)$  values in these two cases. This analysis justifies the emergence of the additional critical points in the relativistic case and their absence in the nonrelativistic framework (discussion in the main publication).



Figure 1: An example of ED with more complex topology of ED in the interatomic Au-H area - ED exhibiting 2 extra pairs of saddle-saddle points in the same interatomic area (here: between Au8-H2 nuclei). ADF calculations on **g1** with so-ZORA/B3LYP/QZ4P setup.

## References

[1] Anderson, J.S.M., *et al.*, Chem. Eur. J. **2019**, 25, 2538–2544, doi:10.1002/chem.201804464